提交 7b40f7ce 编写于 作者: L Liu Yiqun

Merge branch 'develop' into core_inference_prepare

......@@ -25,12 +25,3 @@ third_party/
# clion workspace.
cmake-build-*
# generated while compiling
paddle/pybind/pybind.h
CMakeFiles
cmake_install.cmake
paddle/.timestamp
python/paddlepaddle.egg-info/
paddle/fluid/pybind/pybind.h
python/paddle/version.py
......@@ -28,7 +28,7 @@ INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.1.20171007")
SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.11/${MKLML_VER}.tgz")
SET(MKLML_URL "http://paddlepaddledeps.bj.bcebos.com/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "mklml")
......
......@@ -54,5 +54,7 @@ add_library(snappystream STATIC IMPORTED GLOBAL)
set_property(TARGET snappystream PROPERTY IMPORTED_LOCATION
"${SNAPPYSTREAM_INSTALL_DIR}/lib/libsnappystream.a")
include_directories(${SNAPPYSTREAM_INCLUDE_DIR})
include_directories(${SNAPPYSTREAM_INCLUDE_DIR}) # For snappysteam to include its own headers.
include_directories(${THIRD_PARTY_PATH}/install) # For Paddle to include snappy stream headers.
add_dependencies(snappystream extern_snappystream)
......@@ -62,7 +62,8 @@ ExternalProject_Add(
)
MESSAGE(STATUS "warp-ctc library: ${WARPCTC_LIBRARIES}")
INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR}) # For warpctc code to include its headers.
INCLUDE_DIRECTORIES(${THIRD_PARTY_PATH}/install) # For Paddle code to include warpctc headers.
ADD_LIBRARY(warpctc SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET warpctc PROPERTY IMPORTED_LOCATION ${WARPCTC_LIBRARIES})
......
......@@ -25,7 +25,8 @@ ELSE(WIN32)
SET(ZLIB_LIBRARIES "${ZLIB_INSTALL_DIR}/lib/libz.a" CACHE FILEPATH "zlib library." FORCE)
ENDIF(WIN32)
INCLUDE_DIRECTORIES(${ZLIB_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${ZLIB_INCLUDE_DIR}) # For zlib code to include its own headers.
INCLUDE_DIRECTORIES(${THIRD_PARTY_PATH}/install) # For Paddle code to include zlib.h.
ExternalProject_Add(
extern_zlib
......
......@@ -251,7 +251,7 @@ function(cc_test TARGET_NAME)
add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main paddle_memory gtest gflags glog)
add_test(NAME ${TARGET_NAME}
COMMAND ${TARGET_NAME} ${cc_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
endfunction(cc_test)
......@@ -561,9 +561,9 @@ function(py_test TARGET_NAME)
set(multiValueArgs SRCS DEPS ARGS ENVS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_BUILD_DIR}/lib-python ${py_test_ENVS}
COMMAND env PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_ENVS}
${PYTHON_EXECUTABLE} -u ${py_test_SRCS} ${py_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
endfunction()
......
......@@ -27,7 +27,7 @@ sphinx_add_target(paddle_fluid_docs
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
add_dependencies(paddle_fluid_docs gen_proto_py)
add_dependencies(paddle_fluid_docs gen_proto_py paddle_python)
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
......@@ -50,6 +50,6 @@ sphinx_add_target(paddle_fluid_docs_cn
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
add_dependencies(paddle_fluid_docs_cn gen_proto_py)
add_dependencies(paddle_fluid_docs_cn gen_proto_py paddle_python)
add_subdirectory(api)
......@@ -19,4 +19,4 @@ sphinx_add_target(paddle_fluid_apis
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
add_dependencies(paddle_fluid_apis gen_proto_py framework_py_proto copy_paddle_pybind)
add_dependencies(paddle_fluid_apis gen_proto_py framework_py_proto copy_paddle_pybind paddle_python)
......@@ -9,5 +9,5 @@
use_eigen_cn.md
name_convention.md
support_new_device.md
releasing_process.md
releasing_process_cn.md
op_markdown_format.md
......@@ -9,5 +9,5 @@ Development
use_eigen_en.md
name_convention.md
support_new_device.md
releasing_process.md
releasing_process_en.md
op_markdown_format.md
......@@ -10,19 +10,10 @@ PaddlePaddle每次发新的版本,遵循以下流程:
* 使用Regression Test List作为检查列表,测试本次release的正确性。
* 如果失败,记录下所有失败的例子,在这个`release/版本号`分支中,修复所有bug后,Patch号加一,到第二步
* 修改`python/setup.py.in`中的版本信息,并将`istaged`字段设为`True`
* 编译这个版本的python wheel包,并发布到pypi。
* 由于pypi.python.org目前遵循[严格的命名规范PEP 513](https://www.python.org/dev/peps/pep-0513),在使用twine上传之前,需要重命名wheel包中platform相关的后缀,比如将`linux_x86_64`修改成`manylinux1_x86_64`
* pypi上的package名称为paddlepaddle和paddlepaddle_gpu,如果要上传GPU版本的包,需要修改build/python/setup.py中,name: "paddlepaddle_gpu"并重新打包wheel包:`python setup.py bdist_wheel`
* 上传方法:
```
cd build/python
pip install twine
twine upload dist/[package to upload]
```
* 编译这个版本的Docker发行镜像,发布到dockerhub。如果失败,修复Docker编译镜像问题,Patch号加一,返回第二步
1. 第三步完成后,将`release/版本号`分支合入master分支,并删除`release/版本号`分支。将master分支的合入commit打上tag,tag为`版本号`。同时再将`master`分支合入`develop`分支。最后删除`release/版本号`分支。
1. 协同完成Release Note的书写
* 将这个版本的python wheel包发布到pypi。
* 更新Docker镜像(参考后面的操作细节)。
1. 第三步完成后,将`release/版本号`分支合入master分支,将master分支的合入commit打上tag,tag为`版本号`。同时再将`master`分支合入`develop`分支。
1. 协同完成Release Note的书写。
需要注意的是:
......@@ -31,13 +22,18 @@ PaddlePaddle每次发新的版本,遵循以下流程:
## 发布wheel包到pypi
使用[PaddlePaddle CI](https://paddleci.ngrok.io/project.html?projectId=Manylinux1&tab=projectOverview)
1. 使用[PaddlePaddle CI](https://paddleci.ngrok.io/project.html?projectId=Manylinux1&tab=projectOverview)
完成自动化二进制编译,参考下图,选择需要发布的版本(通常包含一个CPU版本和一个GPU版本),点击"run"右侧的"..."按钮,可以
弹出下面的选择框,在第二个tab (Changes)里选择需要发布的分支,这里选择0.11.0,然后点击"Run Build"按钮。等待编译完成后
可以在此页面的"Artifacts"下拉框中找到生成的3个二进制文件,分别对应CAPI,`cp27m``cp27mu`的版本。然后按照上述的方法
使用`twine`工具上传即可。
<img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/ci_build_whl.png">
弹出下面的选择框,在第二个tab (Changes)里选择需要发布的分支,这里选择0.11.0,然后点击"Run Build"按钮。
<img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/ci_build_whl.png">
1. 等待编译完成后可以在此页面的"Artifacts"下拉框中找到生成的3个二进制文件,分别对应CAPI,`cp27m``cp27mu`的版本。
1. 由于pypi.python.org目前遵循[严格的命名规范PEP 513](https://www.python.org/dev/peps/pep-0513),在使用twine上传之前,需要重命名wheel包中platform相关的后缀,比如将`linux_x86_64`修改成`manylinux1_x86_64`
1. 上传:
```
cd build/python
pip install twine
twine upload dist/[package to upload]
```
* 注:CI环境使用 https://github.com/PaddlePaddle/buildtools 这里的DockerImage作为编译环境以支持更多的Linux
发型版,如果需要手动编译,也可以使用这些镜像。这些镜像也可以从 https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/ 下载得到。
......@@ -48,10 +44,20 @@ PaddlePaddle每次发新的版本,遵循以下流程:
上述PaddlePaddle CI编译wheel完成后会自动将Docker镜像push到DockerHub,所以,发布Docker镜像只需要对自动push的镜像打上
版本号对应的tag即可:
1. 进入 https://hub.docker.com/r/paddlepaddle/paddle/tags/ 查看latest tag的更新时间是否在上述编译wheel包完成后是否最新。
1. 执行 `docker pull paddlepaddle/paddle:[latest tag]`,latest tag可以是latest或latest-gpu等。
1. 执行 `docker tag paddlepaddle/paddle:[latest tag] paddlepaddle/paddle:[version]`
1. 执行 `docker push paddlepaddle/paddle:[version]`
```
docker pull [镜像]:latest
docker tag [镜像]:latest [镜像]:[version]
docker push [镜像]:[version]
```
需要更新的镜像tag包括:
* `[version]`: CPU版本
* `[version]-openblas`: openblas版本
* `[version]-gpu`: GPU版本(CUDA 8.0 cudnn 5)
* `[version]-gpu-[cudaver]-[cudnnver]`: 不同cuda, cudnn版本的镜像
之后可进入 https://hub.docker.com/r/paddlepaddle/paddle/tags/ 查看是否发布成功。
## PaddlePaddle 分支规范
......@@ -76,7 +82,7 @@ PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-
### PaddlePaddle Book中所有章节
PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。
PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练(V2和Fluid)模型正确性。
<table>
<thead>
......
# PaddlePaddle Releasing Process
PaddlePaddle manages its branches using "git-flow branching model", and [Semantic Versioning](http://semver.org/) as it's version number semantics.
Each time we release a new PaddlePaddle version, we should follow the below steps:
1. Fork a new branch from `develop` named `release/[version]`, e.g. `release/0.10.0`.
1. Push a new tag on the release branch, the tag name should be like `[version]rc.patch`. The
first tag should be `0.10.0rc1`, and the second should be `0.10.0.rc2` and so on.
1. After that, we should do:
* Run all regression test on the Regression Test List (see PaddlePaddle TeamCity CI), to confirm
that this release has no major bugs.
* If regression test fails, we must fix those bugs and create a new `release/[version]`
branch from previous release branch.
* Modify `python/setup.py.in`, change the version number and change `ISTAGED` to `True`.
* Publish PaddlePaddle release wheel packages to pypi (see below instructions for detail).
* Update the Docker images (see below instructions for detail).
1. After above step, merge `release/[version]` branch to master and push a tag on the master commit,
then merge `master` to `develop`.
1. Update the Release Note.
***NOTE:***
* Do ***NOT*** merge commits from develop branch to release branches to keep the release branch contain
features only for current release, so that we can test on that version.
* If we want to fix bugs on release branches, we must merge the fix to master, develop and release branch.
## Publish Wheel Packages to pypi
1. Use our [CI tool](https://paddleci.ngrok.io/project.html?projectId=Manylinux1&tab=projectOverview)
to build all wheel packages needed to publish. As shown in the following picture, choose a build
version, click "..." button on the right side of "Run" button, and switch to the second tab in the
pop-up box, choose the current release branch and click "Run Build" button. You may repeat this
step to start different versions of builds.
<img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/ci_build_whl.png">
1. After the build succeeds, download the outputs under "Artifacts" including capi, `cp27m` and `cp27mu`.
1. Since pypi.python.org follows [PEP 513](https://www.python.org/dev/peps/pep-0513), before we
upload the package using `twine`, we need to rename the package from `linux_x86_64` to
`manylinux1_x86_64`.
1. Start the upload:
```
cd build/python
pip install twine
twine upload dist/[package to upload]
```
* NOTE: We use a special Docker image to build our releases to support more Linux distributions, you can
download it from https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/, or build it using
scripts under `tools/manylinux1`.
* pypi does not allow overwrite the already uploaded version of wheel package, even if you delete the
old version. you must change the version number before upload a new one.
## Publish Docker Images
Our CI tool will push latest images to DockerHub, so we only need to push a version tag like:
```
docker pull [image]:latest
docker tag [image]:latest [image]:[version]
docker push [image]:[version]
```
Tags that need to be updated are:
* `[version]`: CPU only version image
* `[version]-openblas`: openblas version image
* `[version]-gpu`: GPU version(using CUDA 8.0 cudnn 5)
* `[version]-gpu-[cudaver]-[cudnnver]`: tag for different cuda, cudnn versions
You can then checkout the latest pushed tags at https://hub.docker.com/r/paddlepaddle/paddle/tags/.
## Branching Model
We use [git-flow](http://nvie.com/posts/a-successful-git-branching-model/) as our branching model,
with some modifications:
* `master` branch is the stable branch. Each version on the master branch is tested and guaranteed.
* `develop` branch is for development. Each commit on develop branch has passed CI unit test, but no
regression tests are run.
* `release/[version]` branch is used to publish each release. Latest release version branches have
bugfix only for that version, but no feature updates.
* Developer forks are not required to follow
[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)
branching model, all forks is like a feature branch.
* Advise: developer fork's develop branch is used to sync up with main repo's develop branch.
* Advise: developer use it's fork's develop branch to for new branch to start developing.
* Use that branch on developer's fork to create pull requests and start reviews.
* developer can push new commits to that branch when the pull request is open.
* Bug fixes are also started from developers forked repo. And, bug fixes branch can merge to
`master`, `develop` and `releases`.
## PaddlePaddle Regression Test List
### All Chapters of PaddlePaddle Book
We need to guarantee that all the chapters of PaddlePaddle Book can run correctly. Including
V1 (`paddle_trainer` training) and V2 training and Fluid training.
<table>
<thead>
<tr>
<th></th>
<th>Linear Regression</th>
<th>Recognize Digits</th>
<th>Image Classification</th>
<th>Word2Vec</th>
<th>Personalized Recommendation</th>
<th>Sentiment Analysis</th>
<th>Semantic Role Labeling</th>
<th>Machine Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>API.V2 + Docker + GPU </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> API.V2 + Docker + CPU </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>`paddle_trainer` + Docker + GPU </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>`paddle_trainer` + Docker + CPU </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> API.V2 + Ubuntu + GPU</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>API.V2 + Ubuntu + CPU </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> `paddle_trainer` + Ubuntu + GPU</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> `paddle_trainer` + Ubuntu + CPU</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>
......@@ -13,7 +13,7 @@
# serve to show the default.
import sys
import os, subprocess
sys.path.insert(0, os.path.abspath('@PADDLE_SOURCE_DIR@/python'))
sys.path.insert(0, os.path.abspath('@PADDLE_BINARY_DIR@/python'))
import shlex
from recommonmark import parser, transform
import paddle
......
......@@ -13,7 +13,7 @@
# serve to show the default.
import sys
import os, subprocess
sys.path.insert(0, os.path.abspath('@PADDLE_SOURCE_DIR@/python'))
sys.path.insert(0, os.path.abspath('@PADDLE_BINARY_DIR@/python'))
import shlex
from recommonmark import parser, transform
import paddle
......
......@@ -27,7 +27,7 @@ sphinx_add_target(paddle_v2_docs
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
add_dependencies(paddle_v2_docs gen_proto_py)
add_dependencies(paddle_v2_docs gen_proto_py paddle_python)
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
......@@ -50,6 +50,6 @@ sphinx_add_target(paddle_v2_docs_cn
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
add_dependencies(paddle_v2_docs_cn gen_proto_py)
add_dependencies(paddle_v2_docs_cn gen_proto_py paddle_python)
add_subdirectory(api)
......@@ -19,4 +19,4 @@ sphinx_add_target(paddle_v2_apis
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
add_dependencies(paddle_v2_apis gen_proto_py framework_py_proto copy_paddle_pybind)
add_dependencies(paddle_v2_apis gen_proto_py framework_py_proto copy_paddle_pybind paddle_python)
......@@ -89,16 +89,17 @@ SWIG_LINK_LIBRARIES(swig_paddle
${START_END}
)
add_custom_command(OUTPUT ${PADDLE_SOURCE_DIR}/paddle/py_paddle/_swig_paddle.so
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PADDLE_SOURCE_DIR}/paddle/py_paddle
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PADDLE_SOURCE_DIR}/paddle/py_paddle
COMMAND ${CMAKE_COMMAND} -E touch .timestamp
add_custom_command(OUTPUT ${PADDLE_BINARY_DIR}/python/py_paddle/_swig_paddle.so
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_BINARY_DIR}/python/py_paddle
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PADDLE_BINARY_DIR}/python/py_paddle
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PADDLE_BINARY_DIR}/python/py_paddle
COMMAND ${CMAKE_COMMAND} -E touch ${PADDLE_BINARY_DIR}/.timestamp
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle
DEPENDS _swig_paddle
)
# TODO(yuyang18) : make wheel name calculated by cmake
add_custom_target(python_api_wheel ALL DEPENDS ${PADDLE_SOURCE_DIR}/paddle/py_paddle/_swig_paddle.so)
add_custom_target(python_api_wheel ALL DEPENDS ${PADDLE_BINARY_DIR}/python/py_paddle/_swig_paddle.so)
if(WITH_TESTING)
IF(NOT PY_PIP_FOUND)
......
add_custom_command(OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/testTrain.py
COMMAND cp -r ${CMAKE_CURRENT_SOURCE_DIR}/*.py ${CMAKE_CURRENT_BINARY_DIR}
)
add_custom_target(copy_api_test ALL DEPENDS testTrain.py)
py_test(testTrain SRCS testTrain.py)
py_test(testMatrix SRCS testMatrix.py)
py_test(testVector SRCS testVector.py)
......
......@@ -74,8 +74,8 @@ py_proto_compile(framework_py_proto SRCS framework.proto)
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init)
add_custom_command(TARGET framework_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SOURCE_DIR}/python/paddle/fluid/proto
COMMAND cp *.py ${PADDLE_SOURCE_DIR}/python/paddle/fluid/proto/
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_BINARY_DIR}/python/paddle/fluid/proto
COMMAND cp *.py ${PADDLE_BINARY_DIR}/python/paddle/fluid/proto/
COMMENT "Copy generated python proto into directory paddle/fluid/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
......
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <deque>
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
......@@ -96,6 +97,8 @@ class BlockDesc {
*/
void RemoveOp(size_t s, size_t e);
void RemoveVar(const std::string &name) { vars_.erase(name); }
std::vector<OpDesc *> AllOps() const;
size_t OpSize() const { return ops_.size(); }
......
......@@ -14,8 +14,8 @@ limitations under the License. */
#pragma once
#include <stddef.h> // for size_t
#include <condition_variable>
#include <stddef.h> // for size_t
#include <condition_variable> // NOLINT
#include <typeindex>
#include "paddle/fluid/platform/enforce.h"
......@@ -216,7 +216,8 @@ class ChannelHolder {
template <typename T>
struct PlaceholderImpl : public Placeholder {
PlaceholderImpl(size_t buffer_size) : type_(std::type_index(typeid(T))) {
explicit PlaceholderImpl(size_t buffer_size)
: type_(std::type_index(typeid(T))) {
channel_.reset(MakeChannel<T>(buffer_size));
}
......
......@@ -15,7 +15,7 @@ limitations under the License. */
#pragma once
#include <stddef.h> // for size_t
#include <atomic>
#include <condition_variable>
#include <condition_variable> // NOLINT
#include <deque>
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/platform/enforce.h"
......@@ -38,7 +38,7 @@ class ChannelImpl : public paddle::framework::Channel<T> {
virtual void Unlock();
virtual bool IsClosed();
virtual void Close();
ChannelImpl(size_t);
explicit ChannelImpl(size_t);
virtual ~ChannelImpl();
virtual void AddToSendQ(const void *referrer, T *data,
......@@ -60,7 +60,7 @@ class ChannelImpl : public paddle::framework::Channel<T> {
const void *referrer; // TODO(thuan): figure out better way to do this
std::function<bool(ChannelAction)> callback;
QueueMessage(T *item)
explicit QueueMessage(T *item)
: data(item), cond(std::make_shared<std::condition_variable_any>()) {}
QueueMessage(T *item, std::shared_ptr<std::condition_variable_any> cond)
......@@ -88,15 +88,15 @@ class ChannelImpl : public paddle::framework::Channel<T> {
}
std::shared_ptr<QueueMessage> get_first_message(
std::deque<std::shared_ptr<QueueMessage>> &queue, ChannelAction action) {
while (!queue.empty()) {
std::deque<std::shared_ptr<QueueMessage>> *queue, ChannelAction action) {
while (!queue->empty()) {
// Check whether this message was added by Select
// If this was added by Select then execute the callback
// to check if you can execute this message. The callback
// can return false if some other case was executed in Select.
// In that case just discard this QueueMessage and process next.
std::shared_ptr<QueueMessage> m = queue.front();
queue.pop_front();
std::shared_ptr<QueueMessage> m = queue->front();
queue->pop_front();
if (m->callback == nullptr || m->callback(action)) return m;
}
return nullptr;
......@@ -147,7 +147,7 @@ void ChannelImpl<T>::Send(T *item) {
// to send to the receiver, bypassing the channel buffer if any
if (!recvq.empty()) {
std::shared_ptr<QueueMessage> m =
get_first_message(recvq, ChannelAction::SEND);
get_first_message(&recvq, ChannelAction::SEND);
if (m != nullptr) {
*(m->data) = std::move(*item);
......@@ -198,7 +198,7 @@ bool ChannelImpl<T>::Receive(T *item) {
// buffer and move front of send queue to the buffer
if (!sendq.empty()) {
std::shared_ptr<QueueMessage> m =
get_first_message(sendq, ChannelAction::RECEIVE);
get_first_message(&sendq, ChannelAction::RECEIVE);
if (buf_.size() > 0) {
// Case 1 : Channel is Buffered
// Do Data transfer from front of buffer
......@@ -219,8 +219,9 @@ bool ChannelImpl<T>::Receive(T *item) {
if (m != nullptr) {
*item = std::move(*(m->data));
m->Notify();
} else
} else {
return recv_return(Receive(item));
}
}
return recv_return(true);
}
......
......@@ -14,8 +14,8 @@ limitations under the License. */
#include "paddle/fluid/framework/channel.h"
#include <chrono>
#include <thread>
#include <chrono> // NOLINT
#include <thread> // NOLINT
#include "gtest/gtest.h"
using paddle::framework::Channel;
......@@ -166,9 +166,9 @@ TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) {
std::thread t([&]() {
// Try to write more than buffer size.
for (size_t i = 0; i < 2 * buffer_size; ++i) {
if (i < buffer_size)
if (i < buffer_size) {
ch->Send(&i); // should block after 10 iterations
else {
} else {
bool is_exception = false;
try {
ch->Send(&i);
......@@ -212,12 +212,12 @@ TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel3) {
}
void ChannelCloseUnblocksReceiversTest(Channel<int> *ch) {
size_t num_threads = 5;
std::thread t[num_threads];
bool thread_ended[num_threads];
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
......@@ -230,7 +230,7 @@ void ChannelCloseUnblocksReceiversTest(Channel<int> *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all the threads are blocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
......@@ -241,21 +241,21 @@ void ChannelCloseUnblocksReceiversTest(Channel<int> *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all threads got unblocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
for (size_t i = 0; i < num_threads; i++) t[i].join();
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
void ChannelCloseUnblocksSendersTest(Channel<int> *ch, bool isBuffered) {
size_t num_threads = 5;
std::thread t[num_threads];
bool thread_ended[num_threads];
bool send_success[num_threads];
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
......@@ -277,13 +277,13 @@ void ChannelCloseUnblocksSendersTest(Channel<int> *ch, bool isBuffered) {
if (isBuffered) {
// If ch is Buffered, atleast 4 threads must be blocked.
int ct = 0;
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
if (!thread_ended[i]) ct++;
}
EXPECT_GE(ct, 4);
} else {
// If ch is UnBuffered, all the threads should be blocked.
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
......@@ -294,21 +294,21 @@ void ChannelCloseUnblocksSendersTest(Channel<int> *ch, bool isBuffered) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
if (isBuffered) {
// Verify that only 1 send was successful
int ct = 0;
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
// Only 1 send must be successful
EXPECT_EQ(ct, 1);
}
for (size_t i = 0; i < num_threads; i++) t[i].join();
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that closing a buffered channel also unblocks
......@@ -409,13 +409,13 @@ TEST(Channel, UnbufferedMoreReceiveLessSendTest) {
// This tests that destroying a channel unblocks
// any senders waiting for channel to have write space
void ChannelDestroyUnblockSenders(Channel<int> *ch, bool isBuffered) {
size_t num_threads = 5;
std::thread t[num_threads];
bool thread_ended[num_threads];
bool send_success[num_threads];
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
......@@ -438,14 +438,14 @@ void ChannelDestroyUnblockSenders(Channel<int> *ch, bool isBuffered) {
if (isBuffered) {
// If channel is buffered, verify that atleast 4 threads are blocked
int ct = 0;
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
if (thread_ended[i] == false) ct++;
}
// Atleast 4 threads must be blocked
EXPECT_GE(ct, 4);
} else {
// Verify that all the threads are blocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
......@@ -454,13 +454,13 @@ void ChannelDestroyUnblockSenders(Channel<int> *ch, bool isBuffered) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
// Count number of successful sends
int ct = 0;
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
......@@ -473,18 +473,18 @@ void ChannelDestroyUnblockSenders(Channel<int> *ch, bool isBuffered) {
}
// Join all threads
for (size_t i = 0; i < num_threads; i++) t[i].join();
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that destroying a channel also unblocks
// any receivers waiting on the channel
void ChannelDestroyUnblockReceivers(Channel<int> *ch) {
size_t num_threads = 5;
std::thread t[num_threads];
bool thread_ended[num_threads];
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
......@@ -498,18 +498,18 @@ void ChannelDestroyUnblockReceivers(Channel<int> *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait
// Verify that all threads are blocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
// delete the channel
delete ch;
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
for (size_t i = 0; i < num_threads; i++) t[i].join();
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
TEST(Channel, BufferedChannelDestroyUnblocksReceiversTest) {
......@@ -679,12 +679,12 @@ TEST(ChannelHolder, TypeMismatchReceiveTest) {
}
void ChannelHolderCloseUnblocksReceiversTest(ChannelHolder *ch) {
size_t num_threads = 5;
std::thread t[num_threads];
bool thread_ended[num_threads];
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
......@@ -697,7 +697,7 @@ void ChannelHolderCloseUnblocksReceiversTest(ChannelHolder *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all the threads are blocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
......@@ -708,21 +708,21 @@ void ChannelHolderCloseUnblocksReceiversTest(ChannelHolder *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all threads got unblocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
for (size_t i = 0; i < num_threads; i++) t[i].join();
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) {
size_t num_threads = 5;
std::thread t[num_threads];
bool thread_ended[num_threads];
bool send_success[num_threads];
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
......@@ -744,13 +744,13 @@ void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) {
if (isBuffered) {
// If ch is Buffered, atleast 4 threads must be blocked.
int ct = 0;
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
if (!thread_ended[i]) ct++;
}
EXPECT_GE(ct, 4);
} else {
// If ch is UnBuffered, all the threads should be blocked.
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
......@@ -761,21 +761,21 @@ void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
if (isBuffered) {
// Verify that only 1 send was successful
int ct = 0;
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
// Only 1 send must be successful
EXPECT_EQ(ct, 1);
}
for (size_t i = 0; i < num_threads; i++) t[i].join();
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that closing a channelholder unblocks
......@@ -813,13 +813,13 @@ TEST(Channel, ChannelHolderCloseUnblocksSendersTest) {
// This tests that destroying a channelholder unblocks
// any senders waiting for channel
void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
size_t num_threads = 5;
std::thread t[num_threads];
bool thread_ended[num_threads];
bool send_success[num_threads];
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
......@@ -841,14 +841,14 @@ void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
if (isBuffered) {
// If channel is buffered, verify that atleast 4 threads are blocked
int ct = 0;
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
if (thread_ended[i] == false) ct++;
}
// Atleast 4 threads must be blocked
EXPECT_GE(ct, 4);
} else {
// Verify that all the threads are blocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
......@@ -857,13 +857,13 @@ void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
// Count number of successfuld sends
int ct = 0;
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
......@@ -876,18 +876,18 @@ void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
}
// Join all threads
for (size_t i = 0; i < num_threads; i++) t[i].join();
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that destroying a channelholder also unblocks
// any receivers waiting on the channel
void ChannelHolderDestroyUnblockReceivers(ChannelHolder *ch) {
size_t num_threads = 5;
std::thread t[num_threads];
bool thread_ended[num_threads];
const size_t kNumThreads = 5;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
......@@ -901,18 +901,18 @@ void ChannelHolderDestroyUnblockReceivers(ChannelHolder *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads are blocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
// delete the channel
delete ch;
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
for (size_t i = 0; i < num_threads; i++) t[i].join();
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
TEST(ChannelHolder, ChannelHolderDestroyUnblocksReceiversTest) {
......@@ -945,12 +945,12 @@ TEST(ChannelHolder, ChannelHolderDestroyUnblocksSendersTest) {
// This tests that closing a channelholder many times.
void ChannelHolderManyTimesClose(ChannelHolder *ch) {
const int num_threads = 15;
std::thread t[num_threads];
bool thread_ended[num_threads];
const int kNumThreads = 15;
std::thread t[kNumThreads];
bool thread_ended[kNumThreads];
// Launches threads that try to send data to channel.
for (size_t i = 0; i < num_threads / 3; i++) {
for (size_t i = 0; i < kNumThreads / 3; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *ended) {
......@@ -962,7 +962,7 @@ void ChannelHolderManyTimesClose(ChannelHolder *ch) {
}
// Launches threads that try to receive data to channel.
for (size_t i = num_threads / 3; i < 2 * num_threads / 3; i++) {
for (size_t i = kNumThreads / 3; i < 2 * kNumThreads / 3; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
......@@ -976,7 +976,7 @@ void ChannelHolderManyTimesClose(ChannelHolder *ch) {
}
// Launches threads that try to close the channel.
for (size_t i = 2 * num_threads / 3; i < num_threads; i++) {
for (size_t i = 2 * kNumThreads / 3; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
......@@ -991,13 +991,13 @@ void ChannelHolderManyTimesClose(ChannelHolder *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait
// Verify that all threads are unblocked
for (size_t i = 0; i < num_threads; i++) {
for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
EXPECT_TRUE(ch->IsClosed());
// delete the channel
delete ch;
for (size_t i = 0; i < num_threads; i++) t[i].join();
for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
TEST(ChannelHolder, ChannelHolderManyTimesCloseTest) {
......
......@@ -16,6 +16,6 @@ else()
endif()
cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
scale_loss_grad_op_handle ${multi_devices_graph_builder_deps})
cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph)
cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto)
cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context)
......@@ -142,6 +142,7 @@ class LoDTensor : public Tensor {
return (lod_)[level].size() - 1;
}
// Split LoDTensor and copy to each place specified in places.
std::vector<LoDTensor> SplitLoDTensor(
const std::vector<platform::Place> places) const;
......
......@@ -35,6 +35,17 @@ std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
if (var->IsType<framework::LoDTensor>()) {
return framework::ToDataType(var->Get<framework::LoDTensor>().type());
} else if (var->IsType<framework::SelectedRows>()) {
return framework::ToDataType(
var->Get<framework::SelectedRows>().value().type());
} else {
PADDLE_THROW("Var should be LoDTensor or SelectedRows");
}
}
static DDim GetDims(const Scope& scope, const std::string& name) {
Variable* var = scope.FindVar(name);
if (var == nullptr) {
......
......@@ -61,6 +61,8 @@ inline std::string GradVarName(const std::string& var_name) {
return var_name + kGradVarSuffix;
}
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
class OperatorBase;
class ExecutionContext;
......
......@@ -150,13 +150,30 @@ void ParallelExecutor::BCastParamsToGPUs(
#endif
}
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
const std::string &fetched_var_name) {
void ParallelExecutor::Run(
const std::vector<std::string> &fetch_tensors,
const std::string &fetched_var_name,
const std::unordered_map<std::string, LoDTensor> &feed_tensors) {
platform::RecordBlock b(0);
SplitTensorToPlaces(feed_tensors);
auto fetch_data = member_->executor_->Run(fetch_tensors);
*member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
fetch_data;
}
void ParallelExecutor::SplitTensorToPlaces(
const std::unordered_map<std::string, LoDTensor> &feed_tensors) {
for (auto it : feed_tensors) {
auto lod_tensors = it.second.SplitLoDTensor(member_->places_);
for (size_t j = 0; j < member_->places_.size(); ++j) {
// TODO(panxy0718): Do I need to delete this var?
member_->local_scopes_[j]
->Var(it.first)
->GetMutable<LoDTensor>()
->ShareDataWith(lod_tensors[j]);
}
}
}
} // namespace framework
} // namespace paddle
......@@ -42,9 +42,13 @@ class ParallelExecutor {
bool allow_op_delay);
void Run(const std::vector<std::string>& fetch_tensors,
const std::string& fetched_var_name = "fetched_var");
const std::string& fetched_var_name,
const std::unordered_map<std::string, LoDTensor>& feed_tensors);
private:
void SplitTensorToPlaces(
const std::unordered_map<std::string, LoDTensor>& feed_tensors);
ParallelExecutorPrivate* member_;
void BCastParamsToGPUs(const ProgramDesc& startup_program) const;
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......@@ -13,6 +16,7 @@ limitations under the License. */
namespace paddle {
namespace framework {
void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows,
const platform::DeviceContext& dev_ctx) {
{ // the 1st field, uint32_t version
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......@@ -47,6 +50,15 @@ class SelectedRows {
void set_rows(const Vector<int64_t>& rows) { rows_ = rows; }
/**
* get the index of id in rows
*/
int64_t index(int64_t id) const {
auto it = std::find(rows_.begin(), rows_.end(), id);
PADDLE_ENFORCE(it != rows_.end(), "id should be in rows");
return static_cast<int64_t>(std::distance(rows_.begin(), it));
}
DDim GetCompleteDims() const {
std::vector<int64_t> dims = vectorize(value_->dims());
dims[0] = height_;
......
......@@ -128,13 +128,20 @@ inline void* Tensor::mutable_data(platform::Place place, std::type_index type) {
if (platform::is_cpu_place(place)) {
holder_.reset(new PlaceholderImpl<platform::CPUPlace>(
boost::get<platform::CPUPlace>(place), size, type));
} else if (platform::is_gpu_place(place)) {
} else if (platform::is_gpu_place(place) ||
platform::is_cuda_pinned_place(place)) {
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
PADDLE_THROW(
"CUDAPlace or CUDAPinnedPlace is not supported in CPU-only mode.");
}
#else
holder_.reset(new PlaceholderImpl<platform::CUDAPlace>(
boost::get<platform::CUDAPlace>(place), size, type));
if (platform::is_gpu_place(place)) {
holder_.reset(new PlaceholderImpl<platform::CUDAPlace>(
boost::get<platform::CUDAPlace>(place), size, type));
} else if (platform::is_cuda_pinned_place(place)) {
holder_.reset(new PlaceholderImpl<platform::CUDAPinnedPlace>(
boost::get<platform::CUDAPinnedPlace>(place), size, type));
}
}
#endif
offset_ = 0;
......@@ -145,7 +152,7 @@ inline void* Tensor::mutable_data(platform::Place place, std::type_index type) {
inline void* Tensor::mutable_data(platform::Place place) {
PADDLE_ENFORCE(this->holder_ != nullptr,
"Cannot invoke mutable data if current hold nothing");
"Cannot invoke mutable data if current hold nothing.");
return mutable_data(place, holder_->type());
}
......
......@@ -35,24 +35,25 @@ class Tuple {
public:
using ElementVars = std::vector<ElementVar>;
Tuple(std::vector<ElementVar>& var, std::vector<VarDesc>& var_desc)
Tuple(const std::vector<ElementVar>& var,
const std::vector<VarDesc>& var_desc)
: var_(var), var_desc_(var_desc) {}
Tuple(std::vector<ElementVar>& var) : var_(var) {}
explicit Tuple(std::vector<ElementVar>& var) : var_(var) {}
ElementVar get(int idx) const { return var_[idx]; };
ElementVar get(int idx) const { return var_[idx]; }
ElementVar& get(int idx) { return var_[idx]; };
ElementVar& get(int idx) { return var_[idx]; }
bool isSameType(Tuple& t) const;
bool isSameType(const Tuple& t) const;
size_t getSize() const { return var_.size(); };
size_t getSize() const { return var_.size(); }
private:
ElementVars var_;
std::vector<VarDesc> var_desc_;
};
bool Tuple::isSameType(Tuple& t) const {
bool Tuple::isSameType(const Tuple& t) const {
size_t tuple_size = getSize();
if (tuple_size != t.getSize()) {
return false;
......
......@@ -41,8 +41,7 @@ bool IsPersistable(const framework::VarDesc* var) {
return false;
}
void LoadPersistables(framework::Executor& executor,
framework::Scope& scope,
void LoadPersistables(framework::Executor& executor, framework::Scope& scope,
const framework::ProgramDesc& main_program,
const std::string& dirname,
const std::string& param_filename) {
......@@ -108,10 +107,8 @@ std::unique_ptr<framework::ProgramDesc> Load(framework::Executor& executor,
}
std::unique_ptr<framework::ProgramDesc> Load(
framework::Executor& executor,
framework::Scope& scope,
const std::string& prog_filename,
const std::string& param_filename) {
framework::Executor& executor, framework::Scope& scope,
const std::string& prog_filename, const std::string& param_filename) {
std::string model_filename = prog_filename;
std::string program_desc_str;
ReadBinaryFile(model_filename, program_desc_str);
......
......@@ -24,8 +24,7 @@ limitations under the License. */
namespace paddle {
namespace inference {
void LoadPersistables(framework::Executor& executor,
framework::Scope& scope,
void LoadPersistables(framework::Executor& executor, framework::Scope& scope,
const framework::ProgramDesc& main_program,
const std::string& dirname,
const std::string& param_filename);
......
......@@ -4,7 +4,7 @@ function(inference_test TARGET_NAME)
set(multiValueArgs ARGS)
cmake_parse_arguments(inference_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(PYTHON_TESTS_DIR ${PADDLE_SOURCE_DIR}/python/paddle/fluid/tests)
set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests)
set(arg_list "")
if(inference_test_ARGS)
foreach(arg ${inference_test_ARGS})
......
......@@ -9,8 +9,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
......@@ -30,8 +30,8 @@ TEST(inference, fit_a_line) {
// The second dim of the input tensor should be 13
// The input data should be >= 0
int64_t batch_size = 10;
SetupTensor<float>(
input, {batch_size, 13}, static_cast<float>(0), static_cast<float>(10));
SetupTensor<float>(&input, {batch_size, 13}, static_cast<float>(0),
static_cast<float>(10));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&input);
......
......@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
......@@ -35,10 +35,8 @@ TEST(inference, image_classification) {
paddle::framework::LoDTensor input;
// Use normilized image pixels as input data,
// which should be in the range [0.0, 1.0].
SetupTensor<float>(input,
{FLAGS_batch_size, 3, 32, 32},
static_cast<float>(0),
static_cast<float>(1));
SetupTensor<float>(&input, {FLAGS_batch_size, 3, 32, 32},
static_cast<float>(0), static_cast<float>(1));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&input);
......@@ -48,8 +46,8 @@ TEST(inference, image_classification) {
// Run inference on CPU
LOG(INFO) << "--- CPU Runs: ---";
TestInference<paddle::platform::CPUPlace, true>(
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat);
TestInference<paddle::platform::CPUPlace, true>(dirname, cpu_feeds,
cpu_fetchs1, FLAGS_repeat);
LOG(INFO) << output1.dims();
#ifdef PADDLE_WITH_CUDA
......@@ -59,8 +57,8 @@ TEST(inference, image_classification) {
// Run inference on CUDA GPU
LOG(INFO) << "--- GPU Runs: ---";
TestInference<paddle::platform::CUDAPlace, true>(
dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat);
TestInference<paddle::platform::CUDAPlace, true>(dirname, cpu_feeds,
cpu_fetchs2, FLAGS_repeat);
LOG(INFO) << output2.dims();
CheckError<float>(output1, output2);
......
......@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
......@@ -36,37 +36,21 @@ TEST(inference, label_semantic_roles) {
int64_t predicate_dict_len = 3162;
int64_t mark_dict_len = 2;
SetupLoDTensor(word,
lod,
static_cast<int64_t>(0),
SetupLoDTensor(&word, lod, static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
SetupLoDTensor(predicate,
lod,
static_cast<int64_t>(0),
SetupLoDTensor(&predicate, lod, static_cast<int64_t>(0),
static_cast<int64_t>(predicate_dict_len - 1));
SetupLoDTensor(ctx_n2,
lod,
static_cast<int64_t>(0),
SetupLoDTensor(&ctx_n2, lod, static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
SetupLoDTensor(ctx_n1,
lod,
static_cast<int64_t>(0),
SetupLoDTensor(&ctx_n1, lod, static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
SetupLoDTensor(ctx_0,
lod,
static_cast<int64_t>(0),
SetupLoDTensor(&ctx_0, lod, static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
SetupLoDTensor(ctx_p1,
lod,
static_cast<int64_t>(0),
SetupLoDTensor(&ctx_p1, lod, static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
SetupLoDTensor(ctx_p2,
lod,
static_cast<int64_t>(0),
SetupLoDTensor(&ctx_p2, lod, static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
SetupLoDTensor(mark,
lod,
static_cast<int64_t>(0),
SetupLoDTensor(&mark, lod, static_cast<int64_t>(0),
static_cast<int64_t>(mark_dict_len - 1));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
......
......@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
......@@ -35,10 +35,8 @@ TEST(inference, recognize_digits) {
paddle::framework::LoDTensor input;
// Use normilized image pixels as input data,
// which should be in the range [-1.0, 1.0].
SetupTensor<float>(input,
{FLAGS_batch_size, 1, 28, 28},
static_cast<float>(-1),
static_cast<float>(1));
SetupTensor<float>(&input, {FLAGS_batch_size, 1, 28, 28},
static_cast<float>(-1), static_cast<float>(1));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&input);
......@@ -49,8 +47,8 @@ TEST(inference, recognize_digits) {
// Run inference on CPU
LOG(INFO) << "--- CPU Runs: is_combined=" << is_combined << " ---";
TestInference<paddle::platform::CPUPlace>(
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, is_combined);
TestInference<paddle::platform::CPUPlace>(dirname, cpu_feeds, cpu_fetchs1,
FLAGS_repeat, is_combined);
LOG(INFO) << output1.dims();
#ifdef PADDLE_WITH_CUDA
......@@ -60,8 +58,8 @@ TEST(inference, recognize_digits) {
// Run inference on CUDA GPU
LOG(INFO) << "--- GPU Runs: is_combined=" << is_combined << " ---";
TestInference<paddle::platform::CUDAPlace>(
dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat, is_combined);
TestInference<paddle::platform::CUDAPlace>(dirname, cpu_feeds, cpu_fetchs2,
FLAGS_repeat, is_combined);
LOG(INFO) << output2.dims();
CheckError<float>(output1, output2);
......
......@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
......@@ -36,25 +36,25 @@ TEST(inference, recommender_system) {
// Use the first data from paddle.dataset.movielens.test() as input
std::vector<int64_t> user_id_data = {1};
SetupTensor<int64_t>(user_id, {batch_size, 1}, user_id_data);
SetupTensor<int64_t>(&user_id, {batch_size, 1}, user_id_data);
std::vector<int64_t> gender_id_data = {1};
SetupTensor<int64_t>(gender_id, {batch_size, 1}, gender_id_data);
SetupTensor<int64_t>(&gender_id, {batch_size, 1}, gender_id_data);
std::vector<int64_t> age_id_data = {0};
SetupTensor<int64_t>(age_id, {batch_size, 1}, age_id_data);
SetupTensor<int64_t>(&age_id, {batch_size, 1}, age_id_data);
std::vector<int64_t> job_id_data = {10};
SetupTensor<int64_t>(job_id, {batch_size, 1}, job_id_data);
SetupTensor<int64_t>(&job_id, {batch_size, 1}, job_id_data);
std::vector<int64_t> movie_id_data = {783};
SetupTensor<int64_t>(movie_id, {batch_size, 1}, movie_id_data);
SetupTensor<int64_t>(&movie_id, {batch_size, 1}, movie_id_data);
std::vector<int64_t> category_id_data = {10, 8, 9};
SetupLoDTensor<int64_t>(category_id, {3, 1}, {{0, 3}}, category_id_data);
SetupLoDTensor<int64_t>(&category_id, {3, 1}, {{0, 3}}, category_id_data);
std::vector<int64_t> movie_title_data = {1069, 4140, 2923, 710, 988};
SetupLoDTensor<int64_t>(movie_title, {5, 1}, {{0, 5}}, movie_title_data);
SetupLoDTensor<int64_t>(&movie_title, {5, 1}, {{0, 5}}, movie_title_data);
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&user_id);
......
......@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
......@@ -32,10 +32,10 @@ TEST(inference, rnn_encoder_decoder) {
paddle::framework::LoDTensor word_data, trg_word;
paddle::framework::LoD lod{{0, 4, 10}};
SetupLoDTensor(
word_data, lod, static_cast<int64_t>(0), static_cast<int64_t>(1));
SetupLoDTensor(
trg_word, lod, static_cast<int64_t>(0), static_cast<int64_t>(1));
SetupLoDTensor(&word_data, lod, static_cast<int64_t>(0),
static_cast<int64_t>(1));
SetupLoDTensor(&trg_word, lod, static_cast<int64_t>(0),
static_cast<int64_t>(1));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&word_data);
......
......@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
......@@ -33,9 +33,7 @@ TEST(inference, understand_sentiment) {
paddle::framework::LoD lod{{0, 4, 10}};
int64_t word_dict_len = 5147;
SetupLoDTensor(words,
lod,
static_cast<int64_t>(0),
SetupLoDTensor(&words, lod, static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
......
......@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
......@@ -33,10 +33,10 @@ TEST(inference, word2vec) {
paddle::framework::LoD lod{{0, 1}};
int64_t dict_size = 2073; // The size of dictionary
SetupLoDTensor(first_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(second_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(third_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(fourth_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(&first_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(&second_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(&third_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(&fourth_word, lod, static_cast<int64_t>(0), dict_size - 1);
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&first_word);
......
......@@ -11,59 +11,59 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <map>
#include <random>
#include <string>
#include <vector>
#include <time.h>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/profiler.h"
template <typename T>
void SetupTensor(paddle::framework::LoDTensor& input,
paddle::framework::DDim dims,
T lower,
T upper) {
srand(time(0));
T* input_ptr = input.mutable_data<T>(dims, paddle::platform::CPUPlace());
for (int i = 0; i < input.numel(); ++i) {
input_ptr[i] =
(static_cast<T>(rand()) / static_cast<T>(RAND_MAX)) * (upper - lower) +
lower;
void SetupTensor(paddle::framework::LoDTensor* input,
paddle::framework::DDim dims, T lower, T upper) {
std::mt19937 rng(100); // An arbitrarily chosen but fixed seed.
std::uniform_real_distribution<double> uniform_dist(0, 1);
T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
for (int i = 0; i < input->numel(); ++i) {
input_ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
}
}
template <typename T>
void SetupTensor(paddle::framework::LoDTensor& input,
paddle::framework::DDim dims,
std::vector<T>& data) {
void SetupTensor(paddle::framework::LoDTensor* input,
paddle::framework::DDim dims, const std::vector<T>& data) {
CHECK_EQ(paddle::framework::product(dims), static_cast<int64_t>(data.size()));
T* input_ptr = input.mutable_data<T>(dims, paddle::platform::CPUPlace());
memcpy(input_ptr, data.data(), input.numel() * sizeof(T));
T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
memcpy(input_ptr, data.data(), input->numel() * sizeof(T));
}
template <typename T>
void SetupLoDTensor(paddle::framework::LoDTensor& input,
paddle::framework::LoD& lod,
T lower,
T upper) {
input.set_lod(lod);
void SetupLoDTensor(paddle::framework::LoDTensor* input,
const paddle::framework::LoD& lod, T lower, T upper) {
input->set_lod(lod);
int dim = lod[0][lod[0].size() - 1];
SetupTensor<T>(input, {dim, 1}, lower, upper);
}
template <typename T>
void SetupLoDTensor(paddle::framework::LoDTensor& input,
void SetupLoDTensor(paddle::framework::LoDTensor* input,
paddle::framework::DDim dims,
paddle::framework::LoD lod,
std::vector<T>& data) {
const paddle::framework::LoD lod,
const std::vector<T>& data) {
const size_t level = lod.size() - 1;
CHECK_EQ(dims[0], static_cast<int64_t>((lod[level]).back()));
input.set_lod(lod);
input->set_lod(lod);
SetupTensor<T>(input, dims, data);
}
template <typename T>
void CheckError(paddle::framework::LoDTensor& output1,
paddle::framework::LoDTensor& output2) {
void CheckError(const paddle::framework::LoDTensor& output1,
const paddle::framework::LoDTensor& output2) {
// Check lod information
EXPECT_EQ(output1.lod(), output2.lod());
......@@ -91,9 +91,8 @@ void CheckError(paddle::framework::LoDTensor& output1,
template <typename Place, bool PrepareContext = false>
void TestInference(const std::string& dirname,
const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
std::vector<paddle::framework::LoDTensor*>& cpu_fetchs,
const int repeat = 1,
const bool is_combined = false) {
const std::vector<paddle::framework::LoDTensor*>& cpu_fetchs,
const int repeat = 1, const bool is_combined = false) {
// 1. Define place, executor, scope
auto place = Place();
auto executor = paddle::framework::Executor(place);
......@@ -132,11 +131,9 @@ void TestInference(const std::string& dirname,
// `fluid.io.save_inference_model`.
std::string prog_filename = "__model_combined__";
std::string param_filename = "__params_combined__";
inference_program =
paddle::inference::Load(executor,
*scope,
dirname + "/" + prog_filename,
dirname + "/" + param_filename);
inference_program = paddle::inference::Load(
executor, *scope, dirname + "/" + prog_filename,
dirname + "/" + param_filename);
} else {
// Parameters are saved in separate files sited in the specified
// `dirname`.
......@@ -173,8 +170,8 @@ void TestInference(const std::string& dirname,
std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
if (PrepareContext) {
ctx = executor.Prepare(*inference_program, 0);
executor.RunPreparedContext(
ctx.get(), scope, feed_targets, fetch_targets);
executor.RunPreparedContext(ctx.get(), scope, feed_targets,
fetch_targets);
} else {
executor.Run(*inference_program, scope, feed_targets, fetch_targets);
}
......@@ -191,8 +188,8 @@ void TestInference(const std::string& dirname,
if (PrepareContext) {
// Note: if you changed the inference_program, you need to call
// executor.Prepare() again to get a new ExecutorPrepareContext.
executor.RunPreparedContext(
ctx.get(), scope, feed_targets, fetch_targets);
executor.RunPreparedContext(ctx.get(), scope, feed_targets,
fetch_targets);
} else {
executor.Run(*inference_program, scope, feed_targets, fetch_targets);
}
......
---
Language: Cpp
BasedOnStyle: Google
Standard: Cpp11
...
......@@ -95,7 +95,7 @@ void* Alloc<platform::CUDAPlace>(platform::CUDAPlace place, size_t size) {
int cur_dev = platform::GetCurrentDeviceId();
platform::SetDeviceId(place.device);
size_t avail, total;
platform::GpuMemoryUsage(avail, total);
platform::GpuMemoryUsage(&avail, &total);
LOG(WARNING) << "Cannot allocate " << size << " bytes in GPU "
<< place.device << ", available " << avail << " bytes";
LOG(WARNING) << "total " << total;
......
......@@ -13,16 +13,16 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/memory/memory.h"
#include <unordered_map>
#include "gtest/gtest.h"
#include "paddle/fluid/memory/detail/memory_block.h"
#include "paddle/fluid/memory/detail/meta_data.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/place.h"
#include <gtest/gtest.h>
#include <unordered_map>
inline bool is_aligned(void const *p) {
return 0 == (reinterpret_cast<uintptr_t>(p) & 0x3);
}
......
---
Language: Cpp
BasedOnStyle: Google
Standard: Cpp11
...
......@@ -3,8 +3,8 @@ string(REPLACE "_mkldnn" "" GENERAL_OPS "${GENERAL_OPS}")
string(REPLACE ".cc" "" GENERAL_OPS "${GENERAL_OPS}")
list(REMOVE_DUPLICATES GENERAL_OPS)
set(DEPS_OPS "")
set(pybind_file ${PADDLE_SOURCE_DIR}/paddle/fluid/pybind/pybind.h)
file(WRITE ${pybind_file} "// Generated by the paddle/operator/CMakeLists.txt. DO NOT EDIT!\n\n")
set(pybind_file ${PADDLE_BINARY_DIR}/paddle/fluid/pybind/pybind.h)
file(WRITE ${pybind_file} "// Generated by the paddle/fluid/operator/CMakeLists.txt. DO NOT EDIT!\n\n")
function(op_library TARGET)
# op_library is a function to create op library. The interface is same as
# cc_library. But it handle split GPU/CPU code and link some common library
......
......@@ -128,10 +128,32 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &algo));
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
// Tensor core is supported since the volta GPU and
// is only enabled when input and filter data are float16
if (dev_ctx.GetComputeCapability() >= 70 &&
std::type_index(typeid(T)) ==
std::type_index(typeid(platform::float16))) {
PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
// Currently tensor core is only enabled using this algo
algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
} else {
PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
cudnn_conv_desc, CUDNN_DEFAULT_MATH));
}
#endif
// get workspace size able to allocate
PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
cudnn_output_desc, algo, &workspace_size_in_bytes));
// It is possible for float16 on Volta GPU to allocate more memory than
// the limit because the algo is overrided to use tensor core.
PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
"workspace_size to be allocated exceeds the limit");
// Allocate on GPU memory
platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
......
......@@ -27,8 +27,8 @@ template <typename T>
class MKLDNNMD {
public:
explicit MKLDNNMD(const T* in, const T* w, bool bias)
: in{paddle::framework::vectorize2int(in->dims())},
w{paddle::framework::vectorize2int(w->dims())} {
: in(paddle::framework::vectorize2int(in->dims())),
w(paddle::framework::vectorize2int(w->dims())) {
with_bias_ = bias;
}
......@@ -78,7 +78,7 @@ class MKLDNNMD {
class MKLDNNMemory {
public:
MKLDNNMemory(MKLDNNMD<Tensor>* t, const mkldnn::engine& e)
: md_{t}, engine_{e} {}
: md_(t), engine_(e) {}
virtual ~MKLDNNMemory() = default;
template <typename Output>
......
......@@ -18,22 +18,6 @@ limitations under the License. */
namespace paddle {
namespace operators {
static inline framework::OpKernelType ExpectedKernelType(
const framework::ExecutionContext& ctx) {
auto* table_var = ctx.InputVar("W");
if (table_var->IsType<LoDTensor>()) {
return framework::OpKernelType(
framework::ToDataType(table_var->Get<LoDTensor>().type()),
ctx.device_context());
} else if (table_var->IsType<SelectedRows>()) {
return framework::OpKernelType(
framework::ToDataType(table_var->Get<SelectedRows>().value().type()),
ctx.device_context());
} else {
PADDLE_THROW("W should be LoDTensor or SelectedRows");
}
}
class LookupTableOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
......@@ -67,7 +51,8 @@ class LookupTableOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return ExpectedKernelType(ctx);
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
return framework::OpKernelType(data_type, ctx.device_context());
}
};
......@@ -138,7 +123,8 @@ class LookupTableOpGrad : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return ExpectedKernelType(ctx);
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
return framework::OpKernelType(data_type, ctx.device_context());
}
};
......
......@@ -30,13 +30,7 @@ using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;
static constexpr int64_t kNoPadding = -1;
inline size_t getIndex(const std::vector<int64_t> &rows, int64_t value) {
auto it = std::find(rows.begin(), rows.end(), value);
PADDLE_ENFORCE(it != rows.end(), "id should be in rows");
return static_cast<size_t>(std::distance(rows.begin(), it));
}
constexpr int64_t kNoPadding = -1;
template <typename T>
class LookupTableKernel : public framework::OpKernel<T> {
......@@ -55,7 +49,9 @@ class LookupTableKernel : public framework::OpKernel<T> {
auto *table_t = context.Input<SelectedRows>("W");
table_dim = table_t->value().dims();
} else {
PADDLE_THROW("table only support LoDTensor and SelectedRows");
PADDLE_THROW(
"The parameter W of a LookupTable "
"must be either LoDTensor or SelectedRows");
}
int64_t *ids;
......@@ -107,7 +103,7 @@ class LookupTableKernel : public framework::OpKernel<T> {
memset(output + i * row_width, 0, row_width * sizeof(T));
} else {
PADDLE_ENFORCE_GE(ids[i], 0);
auto id_index = getIndex(table_t.rows(), ids[i]);
auto id_index = table_t.index(ids[i]);
memcpy(output + i * row_width, table + id_index * row_width,
row_width * sizeof(T));
}
......@@ -128,7 +124,9 @@ class LookupTableGradKernel : public framework::OpKernel<T> {
auto *table_t = context.Input<SelectedRows>("W");
table_dim = table_t->value().dims();
} else {
PADDLE_THROW("table only support LoDTensor and SelectedRows");
PADDLE_THROW(
"The parameter W of a LookupTable "
"must be either LoDTensor or SelectedRows");
}
bool is_sparse = context.Attr<bool>("is_sparse");
......
......@@ -39,18 +39,33 @@ void gemm<platform::CUDADeviceContext, float16>(
cublasOperation_t cuTransB =
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const half h_alpha = static_cast<const half>(alpha);
const half h_beta = static_cast<const half>(beta);
const half* h_A = reinterpret_cast<const half*>(A);
const half* h_B = reinterpret_cast<const half*>(B);
half* h_C = reinterpret_cast<half*>(C);
float h_alpha = static_cast<float>(alpha);
float h_beta = static_cast<float>(beta);
// TODO(kexinzhao): add processing code for compute capability < 53 case
PADDLE_ENFORCE_GE(context.GetComputeCapability(), 53,
"cublas Hgemm requires GPU compute capability >= 53");
PADDLE_ENFORCE(platform::dynload::cublasHgemm(
context.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, h_B, ldb,
h_A, lda, &h_beta, h_C, N));
"cublas fp16 gemm requires GPU compute capability >= 53");
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
if (context.GetComputeCapability() >= 70) {
PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(context.cublas_handle(),
CUBLAS_TENSOR_OP_MATH));
algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
} else {
PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(context.cublas_handle(),
CUBLAS_DEFAULT_MATH));
}
#endif
// cublasHgemm does true FP16 computation which is slow for non-Volta
// GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
// input/output in fp16, computation in fp32, which can also be accelerated
// using tensor cores in volta GPUs.
PADDLE_ENFORCE(platform::dynload::cublasGemmEx(
context.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, B,
CUDA_R_16F, ldb, A, CUDA_R_16F, lda, &h_beta, C, CUDA_R_16F, N,
CUDA_R_32F, algo));
}
template <>
......
......@@ -14,6 +14,8 @@ limitations under the License. */
#define EIGEN_USE_GPU
#include <vector>
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/operators/math/softmax_impl.h"
......@@ -95,6 +97,7 @@ template class SoftmaxCUDNNFunctor<double>;
template class SoftmaxGradCUDNNFunctor<float>;
template class SoftmaxGradCUDNNFunctor<double>;
template class SoftmaxFunctor<platform::CUDADeviceContext, platform::float16>;
template class SoftmaxFunctor<platform::CUDADeviceContext, float>;
template class SoftmaxFunctor<platform::CUDADeviceContext, double>;
template class SoftmaxGradFunctor<platform::CUDADeviceContext, float>;
......
......@@ -27,7 +27,7 @@ using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename T>
struct ValueClip {
HOSTDEVICE T operator()(const T& x) const {
const T kThreshold = -64.;
const T kThreshold = static_cast<T>(-64.);
return x < kThreshold ? kThreshold : x;
}
};
......
......@@ -73,7 +73,7 @@ class PriorBoxOp : public framework::OperatorWithKernel {
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::Tensor>("Input")->type()),
platform::CPUPlace());
ctx.device_context());
}
};
......@@ -171,6 +171,5 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR(prior_box, ops::PriorBoxOp, ops::PriorBoxOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
prior_box, ops::PriorBoxOpKernel<paddle::platform::CPUPlace, float>,
ops::PriorBoxOpKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(prior_box, ops::PriorBoxOpKernel<float>,
ops::PriorBoxOpKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/prior_box_op.h"
namespace paddle {
namespace operators {
template <typename T>
__device__ inline T clip(T in) {
return min(max(in, 0.), 1.);
}
template <typename T>
__global__ void GenPriorBox(T* out, const T* aspect_ratios, const int height,
const int width, const int im_height,
const int im_width, const int as_num,
const T offset, const T step_width,
const T step_height, const T* min_sizes,
const T* max_sizes, const int min_num,
bool is_clip) {
int num_priors = max_sizes ? as_num * min_num + min_num : as_num * min_num;
int box_num = height * width * num_priors;
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < box_num;
i += blockDim.x * gridDim.x) {
int h = i / (num_priors * width);
int w = (i / num_priors) % width;
int p = i % num_priors;
int m = max_sizes ? p / (as_num + 1) : p / as_num;
T cx = (w + offset) * step_width;
T cy = (h + offset) * step_height;
T bw, bh;
T min_size = min_sizes[m];
if (max_sizes) {
int s = p % (as_num + 1);
if (s < as_num) {
T ar = aspect_ratios[s];
bw = min_size * sqrt(ar) / 2.;
bh = min_size / sqrt(ar) / 2.;
} else {
T max_size = max_sizes[m];
bw = sqrt(min_size * max_size) / 2.;
bh = bw;
}
} else {
int s = p % as_num;
T ar = aspect_ratios[s];
bw = min_size * sqrt(ar) / 2.;
bh = min_size / sqrt(ar) / 2.;
}
T xmin = (cx - bw) / im_width;
T ymin = (cy - bh) / im_height;
T xmax = (cx + bw) / im_width;
T ymax = (cy + bh) / im_height;
out[i * 4] = is_clip ? clip<T>(xmin) : xmin;
out[i * 4 + 1] = is_clip ? clip<T>(ymin) : ymin;
out[i * 4 + 2] = is_clip ? clip<T>(xmax) : xmax;
out[i * 4 + 3] = is_clip ? clip<T>(ymax) : ymax;
}
}
template <typename T>
__global__ void SetVariance(T* out, const T* var, const int vnum,
const int num) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num;
i += blockDim.x * gridDim.x) {
out[i] = var[i % vnum];
}
}
template <typename T>
class PriorBoxOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<paddle::framework::Tensor>("Input");
auto* image = ctx.Input<paddle::framework::Tensor>("Image");
auto* boxes = ctx.Output<paddle::framework::Tensor>("Boxes");
auto* vars = ctx.Output<paddle::framework::Tensor>("Variances");
auto min_sizes = ctx.Attr<std::vector<float>>("min_sizes");
auto max_sizes = ctx.Attr<std::vector<float>>("max_sizes");
auto input_aspect_ratio = ctx.Attr<std::vector<float>>("aspect_ratios");
auto variances = ctx.Attr<std::vector<float>>("variances");
auto flip = ctx.Attr<bool>("flip");
auto clip = ctx.Attr<bool>("clip");
std::vector<float> aspect_ratios;
ExpandAspectRatios(input_aspect_ratio, flip, aspect_ratios);
T step_w = static_cast<T>(ctx.Attr<float>("step_w"));
T step_h = static_cast<T>(ctx.Attr<float>("step_h"));
T offset = static_cast<T>(ctx.Attr<float>("offset"));
auto im_width = image->dims()[3];
auto im_height = image->dims()[2];
auto width = input->dims()[3];
auto height = input->dims()[2];
T step_width, step_height;
if (step_w == 0 || step_h == 0) {
step_width = static_cast<T>(im_width) / width;
step_height = static_cast<T>(im_height) / height;
} else {
step_width = step_w;
step_height = step_h;
}
int num_priors = aspect_ratios.size() * min_sizes.size();
if (max_sizes.size() > 0) {
num_priors += max_sizes.size();
}
int min_num = static_cast<int>(min_sizes.size());
int box_num = width * height * num_priors;
int block = 512;
int grid = (box_num + block - 1) / block;
auto stream =
ctx.template device_context<platform::CUDADeviceContext>().stream();
boxes->mutable_data<T>(ctx.GetPlace());
vars->mutable_data<T>(ctx.GetPlace());
framework::Tensor r;
framework::TensorFromVector(aspect_ratios, ctx.device_context(), &r);
framework::Tensor min;
framework::TensorFromVector(min_sizes, ctx.device_context(), &min);
T* max_data = nullptr;
framework::Tensor max;
if (max_sizes.size() > 0) {
framework::TensorFromVector(max_sizes, ctx.device_context(), &max);
max_data = max.data<T>();
}
GenPriorBox<T><<<grid, block, 0, stream>>>(
boxes->data<T>(), r.data<T>(), height, width, im_height, im_width,
aspect_ratios.size(), offset, step_width, step_height, min.data<T>(),
max_data, min_num, clip);
framework::Tensor v;
framework::TensorFromVector(variances, ctx.device_context(), &v);
grid = (box_num * 4 + block - 1) / block;
SetVariance<T><<<grid, block, 0, stream>>>(vars->data<T>(), v.data<T>(),
variances.size(), box_num * 4);
}
}; // namespace operators
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(prior_box, ops::PriorBoxOpCUDAKernel<float>,
ops::PriorBoxOpCUDAKernel<double>);
......@@ -51,7 +51,7 @@ struct ClipFunctor {
}
};
template <typename Place, typename T>
template <typename T>
class PriorBoxOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
......@@ -106,49 +106,24 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
int idx = 0;
for (size_t s = 0; s < min_sizes.size(); ++s) {
auto min_size = min_sizes[s];
// first prior: aspect_ratio = 1, size = min_size
box_width = box_height = min_size / 2.;
// xmin
e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
// ymin
e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
// xmax
e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
// ymax
e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
idx++;
if (max_sizes.size() > 0) {
auto max_size = max_sizes[s];
// second prior: aspect_ratio = 1,
// size = sqrt(min_size * max_size)
box_width = box_height = sqrt(min_size * max_size) / 2.;
// xmin
// priors with different aspect ratios
for (size_t r = 0; r < aspect_ratios.size(); ++r) {
float ar = aspect_ratios[r];
box_width = min_size * sqrt(ar) / 2.;
box_height = min_size / sqrt(ar) / 2.;
e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
// ymin
e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
// xmax
e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
// ymax
e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
idx++;
}
// rest of priors
for (size_t r = 0; r < aspect_ratios.size(); ++r) {
float ar = aspect_ratios[r];
if (fabs(ar - 1.) < 1e-6) {
continue;
}
box_width = min_size * sqrt(ar) / 2.;
box_height = min_size / sqrt(ar) / 2.;
// xmin
if (max_sizes.size() > 0) {
auto max_size = max_sizes[s];
// square prior with size sqrt(minSize * maxSize)
box_width = box_height = sqrt(min_size * max_size) / 2.;
e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
// ymin
e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
// xmax
e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
// ymax
e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
idx++;
}
......
......@@ -43,9 +43,8 @@ class SGDOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("Param")->type()),
ctx.GetPlace());
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("Param"));
return framework::OpKernelType(data_type, ctx.device_context());
}
};
......@@ -53,10 +52,12 @@ class SGDOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SGDOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Param", "(Tensor or SelectedRows) Input parameter");
AddInput("LearningRate", "(Tensor) Learning rate of SGD");
AddInput("Grad", "(Tensor) Input gradient");
AddOutput("ParamOut", "(Tensor) Output parameter");
AddInput("Grad", "(Tensor or SelectedRows) Input gradient");
AddOutput("ParamOut",
"(Tensor or SelectedRows, same with Param) "
"Output parameter, should share the same memory with Param");
AddComment(R"DOC(
SGD operator
......
......@@ -23,60 +23,97 @@ namespace operators {
template <typename T>
class SGDOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* param = ctx.Input<framework::Tensor>("Param");
auto* param_out = ctx.Output<framework::Tensor>("ParamOut");
auto* learning_rate = ctx.Input<framework::Tensor>("LearningRate");
auto* grad_var = ctx.InputVar("Grad");
// Actually, all tensors are LoDTensor except SelectedRows.
if (grad_var->IsType<framework::LoDTensor>()) {
param_out->mutable_data<T>(ctx.GetPlace());
auto* grad = ctx.Input<framework::Tensor>("Grad");
auto p = framework::EigenVector<T>::Flatten(*param);
auto g = framework::EigenVector<T>::Flatten(*grad);
auto o = framework::EigenVector<T>::Flatten(*param_out);
auto* lr = learning_rate->data<T>();
o = p - lr[0] * g;
} else if (grad_var->IsType<framework::SelectedRows>()) {
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
// This manual optimization brings difficulty to track data dependency.
// It's better to find a more elegant solution.
PADDLE_ENFORCE_EQ(param, param_out);
auto* grad = ctx.Input<framework::SelectedRows>("Grad");
void Compute(const framework::ExecutionContext &ctx) const override {
const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
const auto *param_var = ctx.InputVar("Param");
const auto *grad_var = ctx.InputVar("Grad");
if (param_var->IsType<framework::LoDTensor>()) {
const auto *param = ctx.Input<framework::Tensor>("Param");
auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
// Actually, all tensors are LoDTensor except SelectedRows.
if (grad_var->IsType<framework::LoDTensor>()) {
param_out->mutable_data<T>(ctx.GetPlace());
const auto *grad = ctx.Input<framework::Tensor>("Grad");
auto p = framework::EigenVector<T>::Flatten(*param);
auto g = framework::EigenVector<T>::Flatten(*grad);
auto o = framework::EigenVector<T>::Flatten(*param_out);
auto *lr = learning_rate->data<T>();
o = p - lr[0] * g;
} else if (grad_var->IsType<framework::SelectedRows>()) {
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
// This manual optimization brings difficulty to track data dependency.
// It's better to find a more elegant solution.
PADDLE_ENFORCE_EQ(param, param_out);
const auto *grad = ctx.Input<framework::SelectedRows>("Grad");
// for distributed training, a sparse var may be empty,
// just skip updating.
if (grad->rows().size() == 0) {
return;
}
auto grad_height = grad->height();
auto out_dims = param_out->dims();
PADDLE_ENFORCE_EQ(grad_height, out_dims[0]);
auto &grad_value = grad->value();
auto &grad_rows = grad->rows();
size_t grad_row_numel = grad_value.numel() / grad_rows.size();
PADDLE_ENFORCE_EQ(grad_row_numel, param_out->numel() / grad_height);
auto *grad_data = grad_value.data<T>();
auto *out_data = param_out->data<T>();
auto *lr = learning_rate->data<T>();
for (size_t i = 0; i < grad_rows.size(); i++) {
PADDLE_ENFORCE(grad_rows[i] < grad_height,
"Input rows index should less than height");
for (int64_t j = 0; j < grad_row_numel; j++) {
out_data[grad_rows[i] * grad_row_numel + j] -=
lr[0] * grad_data[i * grad_row_numel + j];
}
}
} else {
PADDLE_THROW("Unsupported Variable Type of Grad");
}
} else if (param_var->IsType<framework::SelectedRows>()) {
PADDLE_ENFORCE(grad_var->IsType<framework::SelectedRows>(),
"when param "
"is SelectedRows, gradient should also be SelectedRows");
const auto &param = param_var->Get<framework::SelectedRows>();
auto *param_out = ctx.Output<framework::SelectedRows>("ParamOut");
const auto &grad = grad_var->Get<framework::SelectedRows>();
// for distributed training, a sparse var may be empty,
// just skip updating.
if (grad->rows().size() == 0) {
if (grad.rows().size() == 0) {
return;
}
auto in_height = grad->height();
auto out_dims = param_out->dims();
PADDLE_ENFORCE_EQ(in_height, out_dims[0]);
auto& in_value = grad->value();
auto& in_rows = grad->rows();
size_t param_row_width = param.value().numel() / param.rows().size();
size_t grad_row_width = grad.value().numel() / grad.rows().size();
PADDLE_ENFORCE_EQ(param_row_width, grad_row_width,
"param_row should have the same size with grad_row");
int64_t in_row_numel = in_value.numel() / in_rows.size();
PADDLE_ENFORCE_EQ(in_row_numel, param_out->numel() / in_height);
auto* in_data = in_value.data<T>();
auto* out_data = param_out->data<T>();
auto* lr = learning_rate->data<T>();
for (size_t i = 0; i < in_rows.size(); i++) {
PADDLE_ENFORCE(in_rows[i] < in_height,
const auto *lr = learning_rate->data<T>();
const auto *grad_data = grad.value().data<T>();
auto *out_data = param_out->mutable_value()->data<T>();
for (size_t i = 0; i < grad.rows().size(); i++) {
PADDLE_ENFORCE(grad.rows()[i] < grad.height(),
"Input rows index should less than height");
for (int64_t j = 0; j < in_row_numel; j++) {
out_data[in_rows[i] * in_row_numel + j] -=
lr[0] * in_data[i * in_row_numel + j];
int64_t id_index = param.index(grad.rows()[i]);
for (int64_t j = 0; j < grad_row_width; j++) {
out_data[id_index * grad_row_width + j] -=
lr[0] * grad_data[i * grad_row_width + j];
}
}
} else {
PADDLE_THROW("Unsupported Variable Type of Grad");
PADDLE_THROW("Unsupported Variable Type of Parameter");
}
}
};
......
......@@ -13,6 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/softmax_op.h"
#include <string>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
......@@ -20,6 +23,7 @@ limitations under the License. */
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
......@@ -60,8 +64,8 @@ class SoftmaxOp : public framework::OperatorWithKernel {
auto input_data_type =
framework::ToDataType(ctx.Input<Tensor>("X")->type());
if (input_data_type == framework::proto::VarType::FP16) {
PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
"float16 can only be used when CUDNN is used");
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"float16 can only be used on GPU place");
}
std::string data_format = ctx.Attr<std::string>("data_format");
......@@ -70,6 +74,7 @@ class SoftmaxOp : public framework::OperatorWithKernel {
library_);
}
};
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker)
......
......@@ -13,11 +13,12 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/platform/float16.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
softmax, ops::SoftmaxKernel<paddle::platform::CUDADeviceContext, float>);
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
softmax_grad,
ops::SoftmaxGradKernel<paddle::platform::CUDADeviceContext, float>);
softmax, ops::SoftmaxKernel<plat::CUDADeviceContext, float>,
ops::SoftmaxKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(softmax_grad,
ops::SoftmaxGradKernel<plat::CUDADeviceContext, float>);
---
Language: Cpp
BasedOnStyle: Google
Standard: Cpp11
...
......@@ -6,8 +6,8 @@ add_custom_target(profiler_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch _
add_dependencies(profiler_py_proto profiler_py_proto_init)
add_custom_command(TARGET profiler_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SOURCE_DIR}/python/paddle/fluid/proto/profiler
COMMAND cp *.py ${PADDLE_SOURCE_DIR}/python/paddle/fluid/proto/profiler
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_BINARY_DIR}/python/paddle/fluid/proto/profiler
COMMAND cp *.py ${PADDLE_BINARY_DIR}/python/paddle/fluid/proto/profiler
COMMENT "Copy generated python proto into directory paddle/fluid/proto/profiler."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
......
......@@ -12,7 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/string/printf.h"
#include <ostream>
#include <sstream>
......@@ -20,6 +19,7 @@
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/string/printf.h"
DECLARE_double(fraction_of_cpu_memory_to_use);
......
......@@ -257,9 +257,11 @@ class ScopedConvolutionDescriptor {
}
#endif
cudnnDataType_t compute_type =
(type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
PADDLE_ENFORCE(dynload::cudnnSetConvolutionNdDescriptor(
desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
CUDNN_CROSS_CORRELATION, type));
CUDNN_CROSS_CORRELATION, compute_type));
return desc_;
}
......
......@@ -24,6 +24,10 @@ void *cublas_dso_handle = nullptr;
CUBLAS_BLAS_ROUTINE_EACH(DEFINE_WRAP);
#ifdef CUBLAS_BLAS_ROUTINE_EACH_R2
CUBLAS_BLAS_ROUTINE_EACH_R2(DEFINE_WRAP);
#endif
} // namespace dynload
} // namespace platform
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cublas_v2.h>
#include <cuda.h>
#include <dlfcn.h>
#include <mutex>
#include <mutex> // NOLINT
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
namespace paddle {
......@@ -34,18 +35,18 @@ extern void *cublas_dso_handle;
* note: default dynamic linked libs
*/
#ifdef PADDLE_USE_DSO
#define DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
inline cublasStatus_t operator()(Args... args) { \
typedef cublasStatus_t (*cublasFunc)(Args...); \
std::call_once(cublas_dso_flag, \
paddle::platform::dynload::GetCublasDsoHandle, \
&cublas_dso_handle); \
void *p_##__name = dlsym(cublas_dso_handle, #__name); \
return reinterpret_cast<cublasFunc>(p_##__name)(args...); \
} \
}; \
#define DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
inline cublasStatus_t operator()(Args... args) { \
typedef cublasStatus_t (*cublasFunc)(Args...); \
std::call_once(cublas_dso_flag, []() { \
cublas_dso_handle = paddle::platform::dynload::GetCublasDsoHandle(); \
}); \
void *p_##__name = dlsym(cublas_dso_handle, #__name); \
return reinterpret_cast<cublasFunc>(p_##__name)(args...); \
} \
}; \
extern DynLoad__##__name __name
#else
#define DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP(__name) \
......@@ -70,6 +71,7 @@ extern void *cublas_dso_handle;
__macro(cublasDgemm_v2); \
__macro(cublasHgemm); \
__macro(cublasSgemmEx); \
__macro(cublasGemmEx); \
__macro(cublasSgeam_v2); \
__macro(cublasDgeam_v2); \
__macro(cublasCreate_v2); \
......@@ -89,9 +91,15 @@ extern void *cublas_dso_handle;
__macro(cublasSgetrfBatched); \
__macro(cublasSgetriBatched); \
__macro(cublasDgetrfBatched); \
__macro(cublasDgetriBatched)
__macro(cublasDgetriBatched);
CUBLAS_BLAS_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP);
CUBLAS_BLAS_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
// APIs available after CUDA 9.0
#if CUDA_VERSION >= 9000
#define CUBLAS_BLAS_ROUTINE_EACH_R2(__macro) __macro(cublasSetMathMode);
CUBLAS_BLAS_ROUTINE_EACH_R2(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
#endif
#undef DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP
} // namespace dynload
......
......@@ -44,7 +44,8 @@ CUDNN_DNN_ROUTINE_EACH_R7(DEFINE_WRAP);
#ifdef PADDLE_USE_DSO
bool HasCUDNN() {
std::call_once(cudnn_dso_flag, GetCUDNNDsoHandle, &cudnn_dso_handle);
std::call_once(cudnn_dso_flag,
[]() { cudnn_dso_handle = GetCUDNNDsoHandle(); });
return cudnn_dso_handle != nullptr;
}
......
......@@ -16,7 +16,7 @@ limitations under the License. */
#include <cudnn.h>
#include <dlfcn.h>
#include <mutex>
#include <mutex> // NOLINT
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
namespace paddle {
......@@ -30,19 +30,19 @@ extern bool HasCUDNN();
#ifdef PADDLE_USE_DSO
extern void EnforceCUDNNLoaded(const char* fn_name);
#define DECLARE_DYNAMIC_LOAD_CUDNN_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> decltype(__name(args...)) { \
using cudnn_func = decltype(__name(args...)) (*)(Args...); \
std::call_once(cudnn_dso_flag, \
paddle::platform::dynload::GetCUDNNDsoHandle, \
&cudnn_dso_handle); \
EnforceCUDNNLoaded(#__name); \
void* p_##__name = dlsym(cudnn_dso_handle, #__name); \
return reinterpret_cast<cudnn_func>(p_##__name)(args...); \
} \
}; \
#define DECLARE_DYNAMIC_LOAD_CUDNN_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> decltype(__name(args...)) { \
using cudnn_func = decltype(__name(args...)) (*)(Args...); \
std::call_once(cudnn_dso_flag, []() { \
cudnn_dso_handle = paddle::platform::dynload::GetCUDNNDsoHandle(); \
}); \
EnforceCUDNNLoaded(#__name); \
void* p_##__name = dlsym(cudnn_dso_handle, #__name); \
return reinterpret_cast<cudnn_func>(p_##__name)(args...); \
} \
}; \
extern struct DynLoad__##__name __name
#else
......@@ -140,7 +140,8 @@ CUDNN_DNN_ROUTINE_EACH_R5(DECLARE_DYNAMIC_LOAD_CUDNN_WRAP)
#if CUDNN_VERSION >= 7001
#define CUDNN_DNN_ROUTINE_EACH_R7(__macro) \
__macro(cudnnSetConvolutionGroupCount);
__macro(cudnnSetConvolutionGroupCount); \
__macro(cudnnSetConvolutionMathType);
CUDNN_DNN_ROUTINE_EACH_R7(DECLARE_DYNAMIC_LOAD_CUDNN_WRAP)
#endif
......
......@@ -11,14 +11,15 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_CUPTI
#include <cuda.h>
#include <cupti.h>
#include <dlfcn.h>
#include <mutex>
#include <mutex> // NOLINT
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
namespace paddle {
......@@ -36,18 +37,18 @@ extern void *cupti_dso_handle;
* note: default dynamic linked libs
*/
#ifdef PADDLE_USE_DSO
#define DECLARE_DYNAMIC_LOAD_CUPTI_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
inline CUptiResult CUPTIAPI operator()(Args... args) { \
typedef CUptiResult CUPTIAPI (*cuptiFunc)(Args...); \
std::call_once(cupti_dso_flag, \
paddle::platform::dynload::GetCUPTIDsoHandle, \
&cupti_dso_handle); \
void *p_##__name = dlsym(cupti_dso_handle, #__name); \
return reinterpret_cast<cuptiFunc>(p_##__name)(args...); \
} \
}; \
#define DECLARE_DYNAMIC_LOAD_CUPTI_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
inline CUptiResult CUPTIAPI operator()(Args... args) { \
typedef CUptiResult CUPTIAPI (*cuptiFunc)(Args...); \
std::call_once(cupti_dso_flag, []() { \
cupti_dso_handle = paddle::platform::dynload::GetCUPTIDsoHandle(); \
}); \
void *p_##__name = dlsym(cupti_dso_handle, #__name); \
return reinterpret_cast<cuptiFunc>(p_##__name)(args...); \
} \
}; \
extern DynLoad__##__name __name
#else
#define DECLARE_DYNAMIC_LOAD_CUPTI_WRAP(__name) \
......
......@@ -11,12 +11,13 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <curand.h>
#include <dlfcn.h>
#include <mutex>
#include <mutex> // NOLINT
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
namespace paddle {
......@@ -25,18 +26,18 @@ namespace dynload {
extern std::once_flag curand_dso_flag;
extern void *curand_dso_handle;
#ifdef PADDLE_USE_DSO
#define DECLARE_DYNAMIC_LOAD_CURAND_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
curandStatus_t operator()(Args... args) { \
typedef curandStatus_t (*curandFunc)(Args...); \
std::call_once(curand_dso_flag, \
paddle::platform::dynload::GetCurandDsoHandle, \
&curand_dso_handle); \
void *p_##__name = dlsym(curand_dso_handle, #__name); \
return reinterpret_cast<curandFunc>(p_##__name)(args...); \
} \
}; \
#define DECLARE_DYNAMIC_LOAD_CURAND_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
curandStatus_t operator()(Args... args) { \
typedef curandStatus_t (*curandFunc)(Args...); \
std::call_once(curand_dso_flag, []() { \
curand_dso_handle = paddle::platform::dynload::GetCurandDsoHandle(); \
}); \
void *p_##__name = dlsym(curand_dso_handle, #__name); \
return reinterpret_cast<curandFunc>(p_##__name)(args...); \
} \
}; \
extern DynLoad__##__name __name
#else
#define DECLARE_DYNAMIC_LOAD_CURAND_WRAP(__name) \
......
......@@ -11,12 +11,14 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include <dlfcn.h>
#include <memory>
#include <mutex>
#include <mutex> // NOLINT
#include <string>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/platform/dynload/cupti_lib_path.h"
......@@ -65,22 +67,21 @@ static inline std::string join(const std::string& part1,
return ret;
}
static inline void GetDsoHandleFromDefaultPath(std::string& dso_path,
void** dso_handle,
int dynload_flags) {
static inline void* GetDsoHandleFromDefaultPath(const std::string& dso_path,
int dynload_flags) {
VLOG(3) << "Try to find library: " << dso_path
<< " from default system path.";
// default search from LD_LIBRARY_PATH/DYLD_LIBRARY_PATH
*dso_handle = dlopen(dso_path.c_str(), dynload_flags);
void* dso_handle = dlopen(dso_path.c_str(), dynload_flags);
// DYLD_LIBRARY_PATH is disabled after Mac OS 10.11 to
// bring System Integrity Projection (SIP), if dso_handle
// is null, search from default package path in Mac OS.
#if defined(__APPLE__) || defined(__OSX__)
if (nullptr == *dso_handle) {
dso_path = join("/usr/local/cuda/lib/", dso_path);
*dso_handle = dlopen(dso_path.c_str(), dynload_flags);
if (nullptr == *dso_handle) {
if (nullptr == dso_handle) {
dso_handle =
dlopen(join("/usr/local/cuda/lib/", dso_path).c_str(), dynload_flags);
if (nullptr == dso_handle) {
if (dso_path == "libcudnn.dylib") {
LOG(WARNING) << "Note: [Recommend] copy cudnn into /usr/local/cuda/ \n "
"For instance, sudo tar -xzf "
......@@ -91,28 +92,29 @@ static inline void GetDsoHandleFromDefaultPath(std::string& dso_path,
}
}
#endif
return dso_handle;
}
static inline void GetDsoHandleFromSearchPath(const std::string& search_root,
const std::string& dso_name,
void** dso_handle,
bool throw_on_error = true) {
static inline void* GetDsoHandleFromSearchPath(const std::string& search_root,
const std::string& dso_name,
bool throw_on_error = true) {
int dynload_flags = RTLD_LAZY | RTLD_LOCAL;
*dso_handle = nullptr;
void* dso_handle = nullptr;
std::string dlPath = dso_name;
if (search_root.empty()) {
GetDsoHandleFromDefaultPath(dlPath, dso_handle, dynload_flags);
dso_handle = GetDsoHandleFromDefaultPath(dlPath, dynload_flags);
} else {
// search xxx.so from custom path
dlPath = join(search_root, dso_name);
*dso_handle = dlopen(dlPath.c_str(), dynload_flags);
dso_handle = dlopen(dlPath.c_str(), dynload_flags);
// if not found, search from default path
if (nullptr == *dso_handle) {
if (nullptr == dso_handle) {
LOG(WARNING) << "Failed to find dynamic library: " << dlPath << " ("
<< dlerror() << ")";
dlPath = dso_name;
GetDsoHandleFromDefaultPath(dlPath, dso_handle, dynload_flags);
dso_handle = GetDsoHandleFromDefaultPath(dlPath, dynload_flags);
}
}
auto error_msg =
......@@ -124,70 +126,71 @@ static inline void GetDsoHandleFromSearchPath(const std::string& search_root,
"using the DYLD_LIBRARY_PATH is impossible unless System "
"Integrity Protection (SIP) is disabled.";
if (throw_on_error) {
PADDLE_ENFORCE(nullptr != *dso_handle, error_msg, dlPath, dlerror());
} else if (nullptr == *dso_handle) {
PADDLE_ENFORCE(nullptr != dso_handle, error_msg, dlPath, dlerror());
} else if (nullptr == dso_handle) {
LOG(WARNING) << string::Sprintf(error_msg, dlPath, dlerror());
}
return dso_handle;
}
void GetCublasDsoHandle(void** dso_handle) {
void* GetCublasDsoHandle() {
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcublas.dylib", dso_handle);
return GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcublas.dylib");
#else
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcublas.so", dso_handle);
return GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcublas.so");
#endif
}
void GetCUDNNDsoHandle(void** dso_handle) {
void* GetCUDNNDsoHandle() {
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.dylib", dso_handle,
false);
return GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.dylib", false);
#else
GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.so", dso_handle, false);
return GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.so", false);
#endif
}
void GetCUPTIDsoHandle(void** dso_handle) {
void* GetCUPTIDsoHandle() {
std::string cupti_path = cupti_lib_path;
if (!FLAGS_cupti_dir.empty()) {
cupti_path = FLAGS_cupti_dir;
}
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath(cupti_path, "libcupti.dylib", dso_handle, false);
return GetDsoHandleFromSearchPath(cupti_path, "libcupti.dylib", false);
#else
GetDsoHandleFromSearchPath(cupti_path, "libcupti.so", dso_handle, false);
return GetDsoHandleFromSearchPath(cupti_path, "libcupti.so", false);
#endif
}
void GetCurandDsoHandle(void** dso_handle) {
void* GetCurandDsoHandle() {
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcurand.dylib", dso_handle);
return GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcurand.dylib");
#else
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcurand.so", dso_handle);
return GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcurand.so");
#endif
}
void GetWarpCTCDsoHandle(void** dso_handle) {
void* GetWarpCTCDsoHandle() {
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath(FLAGS_warpctc_dir, "libwarpctc.dylib", dso_handle);
return GetDsoHandleFromSearchPath(FLAGS_warpctc_dir, "libwarpctc.dylib");
#else
GetDsoHandleFromSearchPath(FLAGS_warpctc_dir, "libwarpctc.so", dso_handle);
return GetDsoHandleFromSearchPath(FLAGS_warpctc_dir, "libwarpctc.so");
#endif
}
void GetLapackDsoHandle(void** dso_handle) {
void* GetLapackDsoHandle() {
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath(FLAGS_lapack_dir, "liblapacke.dylib", dso_handle);
return GetDsoHandleFromSearchPath(FLAGS_lapack_dir, "liblapacke.dylib");
#else
GetDsoHandleFromSearchPath(FLAGS_lapack_dir, "liblapacke.so", dso_handle);
return GetDsoHandleFromSearchPath(FLAGS_lapack_dir, "liblapacke.so");
#endif
}
void GetNCCLDsoHandle(void** dso_handle) {
void* GetNCCLDsoHandle() {
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath(FLAGS_nccl_dir, "libnccl.dylib", dso_handle);
return GetDsoHandleFromSearchPath(FLAGS_nccl_dir, "libnccl.dylib");
#else
GetDsoHandleFromSearchPath(FLAGS_nccl_dir, "libnccl.so", dso_handle);
return GetDsoHandleFromSearchPath(FLAGS_nccl_dir, "libnccl.so");
#endif
}
......
......@@ -18,55 +18,13 @@ namespace paddle {
namespace platform {
namespace dynload {
/**
* @brief load the DSO of CUBLAS
*
* @param **dso_handle dso handler
*
*/
void GetCublasDsoHandle(void** dso_handle);
/**
* @brief load the DSO of CUDNN
*
* @param **dso_handle dso handler
*
*/
void GetCUDNNDsoHandle(void** dso_handle);
void GetCUPTIDsoHandle(void** dso_handle);
/**
* @brief load the DSO of CURAND
*
* @param **dso_handle dso handler
*
*/
void GetCurandDsoHandle(void** dso_handle);
/**
* @brief load the DSO of warp-ctc
*
* @param **dso_handle dso handler
*
*/
void GetWarpCTCDsoHandle(void** dso_handle);
/**
* @brief load the DSO of lapack
*
* @param **dso_handle dso handler
*
*/
void GetLapackDsoHandle(void** dso_handle);
/**
* @brief load the DSO of NVIDIA nccl
*
* @param **dso_handle dso handler
*
*/
void GetNCCLDsoHandle(void** dso_handle);
void* GetCublasDsoHandle();
void* GetCUDNNDsoHandle();
void* GetCUPTIDsoHandle();
void* GetCurandDsoHandle();
void* GetWarpCTCDsoHandle();
void* GetLapackDsoHandle();
void* GetNCCLDsoHandle();
} // namespace dynload
} // namespace platform
......
......@@ -25,11 +25,6 @@ void *nccl_dso_handle;
NCCL_RAND_ROUTINE_EACH(DEFINE_WRAP);
void LoadNCCLDSO() {
platform::call_once(nccl_dso_flag,
[] { GetNCCLDsoHandle(&nccl_dso_handle); });
}
} // namespace dynload
} // namespace platform
} // namespace paddle
......@@ -11,12 +11,13 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <dlfcn.h>
#include <nccl.h>
#include <mutex>
#include <mutex> // NOLINT
#include "paddle/fluid/platform/call_once.h"
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
......@@ -28,18 +29,19 @@ extern std::once_flag nccl_dso_flag;
extern void* nccl_dso_handle;
#ifdef PADDLE_USE_DSO
extern void LoadNCCLDSO();
#define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> decltype(__name(args...)) { \
using nccl_func = decltype(__name(args...)) (*)(Args...); \
paddle::platform::dynload::LoadNCCLDSO(); \
void* p_##__name = dlsym(nccl_dso_handle, #__name); \
return reinterpret_cast<nccl_func>(p_##__name)(args...); \
} \
}; \
#define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> decltype(__name(args...)) { \
using nccl_func = decltype(__name(args...)) (*)(Args...); \
std::call_once(nccl_dso_flag, []() { \
nccl_dso_handle = paddle::platform::dynload::GetNCCLDsoHandle(); \
}); \
void* p_##__name = dlsym(nccl_dso_handle, #__name); \
return reinterpret_cast<nccl_func>(p_##__name)(args...); \
} \
}; \
extern DynLoad__##__name __name
#else
#define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \
......
......@@ -15,9 +15,10 @@ limitations under the License. */
#pragma once
#include <dlfcn.h>
#include <mutex>
#include "ctc.h"
#include <mutex> // NOLINT
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "warpctc/include/ctc.h"
namespace paddle {
namespace platform {
......@@ -31,18 +32,18 @@ extern void* warpctc_dso_handle;
* (for each function) to dynamic load warpctc routine
* via operator overloading.
*/
#define DYNAMIC_LOAD_WARPCTC_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> decltype(__name(args...)) { \
using warpctcFunc = decltype(__name(args...)) (*)(Args...); \
std::call_once(warpctc_dso_flag, \
paddle::platform::dynload::GetWarpCTCDsoHandle, \
&warpctc_dso_handle); \
void* p_##_name = dlsym(warpctc_dso_handle, #__name); \
return reinterpret_cast<warpctcFunc>(p_##_name)(args...); \
} \
}; \
#define DYNAMIC_LOAD_WARPCTC_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> decltype(__name(args...)) { \
using warpctcFunc = decltype(__name(args...)) (*)(Args...); \
std::call_once(warpctc_dso_flag, []() { \
warpctc_dso_handle = paddle::platform::dynload::GetWarpCTCDsoHandle(); \
}); \
void* p_##_name = dlsym(warpctc_dso_handle, #__name); \
return reinterpret_cast<warpctcFunc>(p_##_name)(args...); \
} \
}; \
extern DynLoad__##__name __name
#define DECLARE_DYNAMIC_LOAD_WARPCTC_WRAP(__name) \
......
......@@ -16,35 +16,35 @@ limitations under the License. */
#include <dlfcn.h> // for dladdr
#include <execinfo.h> // for backtrace
#ifdef __GNUC__
#include <cxxabi.h> // for __cxa_demangle
#endif // __GNUC__
#ifdef PADDLE_WITH_CUDA
#include <cublas_v2.h>
#include <cudnn.h>
#include <curand.h>
#include <thrust/system/cuda/error.h>
#include <thrust/system_error.h>
#endif // PADDLE_WITH_CUDA
#include <iomanip>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/platform/macros.h"
#include "paddle/fluid/string/printf.h"
#include "paddle/fluid/string/to_string.h"
#ifdef __GNUC__
#include <cxxabi.h> // for __cxa_demangle
#endif
#include <glog/logging.h>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/dynload/curand.h"
#include "paddle/fluid/platform/dynload/nccl.h"
#include <cublas_v2.h>
#include <cudnn.h>
#include <curand.h>
#include <thrust/system/cuda/error.h>
#include <thrust/system_error.h>
#endif
namespace paddle {
......@@ -185,7 +185,7 @@ inline typename std::enable_if<sizeof...(Args) != 0, void>::type throw_on_error(
}
}
#endif // PADDLE_ONLY_CPU
#endif // PADDLE_WITH_CUDA
template <typename T>
inline void throw_on_error(T e) {
......
......@@ -96,7 +96,6 @@ TEST(ENFORCE_GT, FAIL) {
bool caught_exception = false;
try {
PADDLE_ENFORCE_GT(1, 2UL);
} catch (paddle::platform::EnforceNotMet error) {
caught_exception = true;
EXPECT_TRUE(
......@@ -115,7 +114,6 @@ TEST(ENFORCE_GE, FAIL) {
bool caught_exception = false;
try {
PADDLE_ENFORCE_GE(1, 2UL);
} catch (paddle::platform::EnforceNotMet error) {
caught_exception = true;
EXPECT_TRUE(
......@@ -135,7 +133,6 @@ TEST(ENFORCE_LE, FAIL) {
bool caught_exception = false;
try {
PADDLE_ENFORCE_GT(1, 2UL);
} catch (paddle::platform::EnforceNotMet error) {
caught_exception = true;
EXPECT_TRUE(
......@@ -171,7 +168,6 @@ TEST(ENFORCE_NOT_NULL, FAIL) {
try {
int* a = nullptr;
PADDLE_ENFORCE_NOT_NULL(a);
} catch (paddle::platform::EnforceNotMet error) {
caught_exception = true;
EXPECT_TRUE(HasPrefix(StringPiece(error.what()), "a should not be null"));
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <stdint.h>
#include <limits>
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
......@@ -293,39 +294,39 @@ struct PADDLE_ALIGN(2) float16 {
HOSTDEVICE inline explicit operator bool() const { return (x & 0x7fff) != 0; }
HOSTDEVICE inline explicit operator int8_t() const {
return static_cast<int8_t>(float(*this));
return static_cast<int8_t>(static_cast<float>(*this));
}
HOSTDEVICE inline explicit operator uint8_t() const {
return static_cast<uint8_t>(float(*this));
return static_cast<uint8_t>(static_cast<float>(*this));
}
HOSTDEVICE inline explicit operator int16_t() const {
return static_cast<int16_t>(float(*this));
return static_cast<int16_t>(static_cast<float>(*this));
}
HOSTDEVICE inline explicit operator uint16_t() const {
return static_cast<uint16_t>(float(*this));
return static_cast<uint16_t>(static_cast<float>(*this));
}
HOSTDEVICE inline explicit operator int32_t() const {
return static_cast<int32_t>(float(*this));
return static_cast<int32_t>(static_cast<float>(*this));
}
HOSTDEVICE inline explicit operator uint32_t() const {
return static_cast<uint32_t>(float(*this));
return static_cast<uint32_t>(static_cast<float>(*this));
}
HOSTDEVICE inline explicit operator int64_t() const {
return static_cast<int64_t>(float(*this));
return static_cast<int64_t>(static_cast<float>(*this));
}
HOSTDEVICE inline explicit operator uint64_t() const {
return static_cast<uint64_t>(float(*this));
return static_cast<uint64_t>(static_cast<float>(*this));
}
HOSTDEVICE inline explicit operator double() const {
return static_cast<double>(float(*this));
return static_cast<double>(static_cast<float>(*this));
}
private:
......@@ -370,7 +371,7 @@ DEVICE inline half operator+(const half& a, const half& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hadd(a, b);
#else
float res = float(float16(a)) + float(float16(b));
float res = static_cast<float>(float16(a)) + static_cast<float>(float16(b));
return half(float16(res));
#endif
}
......@@ -379,7 +380,7 @@ DEVICE inline half operator-(const half& a, const half& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hsub(a, b);
#else
float res = float(float16(a)) - float(float16(b));
float res = static_cast<float>(float16(a)) - static_cast<float>(float16(b));
return half(float16(res));
#endif
}
......@@ -388,7 +389,7 @@ DEVICE inline half operator*(const half& a, const half& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hmul(a, b);
#else
float res = float(float16(a)) * float(float16(b));
float res = static_cast<float>(float16(a)) * static_cast<float>(float16(b));
return half(float16(res));
#endif
}
......@@ -399,7 +400,7 @@ DEVICE inline half operator/(const half& a, const half& b) {
float denom = __half2float(b);
return __float2half(num / denom);
#else
float res = float(float16(a)) / float(float16(b));
float res = static_cast<float>(float16(a)) / static_cast<float>(float16(b));
return half(float16(res));
#endif
}
......@@ -408,27 +409,27 @@ DEVICE inline half operator-(const half& a) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hneg(a);
#else
float res = -float(float16(a));
float res = -static_cast<float>(float16(a));
return half(float16(res));
#endif
}
DEVICE inline half& operator+=(half& a, const half& b) {
DEVICE inline half& operator+=(half& a, const half& b) { // NOLINT
a = a + b;
return a;
}
DEVICE inline half& operator-=(half& a, const half& b) {
DEVICE inline half& operator-=(half& a, const half& b) { // NOLINT
a = a - b;
return a;
}
DEVICE inline half& operator*=(half& a, const half& b) {
DEVICE inline half& operator*=(half& a, const half& b) { // NOLINT
a = a * b;
return a;
}
DEVICE inline half& operator/=(half& a, const half& b) {
DEVICE inline half& operator/=(half& a, const half& b) { // NOLINT
a = a / b;
return a;
}
......@@ -437,7 +438,7 @@ DEVICE inline bool operator==(const half& a, const half& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __heq(a, b);
#else
return float(float16(a)) == float(float16(b));
return static_cast<float>(float16(a)) == static_cast<float>(float16(b));
#endif
}
......@@ -445,7 +446,7 @@ DEVICE inline bool operator!=(const half& a, const half& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hne(a, b);
#else
return float(float16(a)) != float(float16(b));
return static_cast<float>(float16(a)) != static_cast<float>(float16(b));
#endif
}
......@@ -453,7 +454,7 @@ DEVICE inline bool operator<(const half& a, const half& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hlt(a, b);
#else
return float(float16(a)) < float(float16(b));
return static_cast<float>(float16(a)) < static_cast<float>(float16(b));
#endif
}
......@@ -461,7 +462,7 @@ DEVICE inline bool operator<=(const half& a, const half& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hle(a, b);
#else
return float(float16(a)) <= float(float16(b));
return static_cast<float>(float16(a)) <= static_cast<float>(float16(b));
#endif
}
......@@ -469,7 +470,7 @@ DEVICE inline bool operator>(const half& a, const half& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hgt(a, b);
#else
return float(float16(a)) > float(float16(b));
return static_cast<float>(float16(a)) > static_cast<float>(float16(b));
#endif
}
......@@ -477,7 +478,7 @@ DEVICE inline bool operator>=(const half& a, const half& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hge(a, b);
#else
return float(float16(a)) >= float(float16(b));
return static_cast<float>(float16(a)) >= static_cast<float>(float16(b));
#endif
}
......@@ -489,7 +490,7 @@ HOSTDEVICE inline float16 operator+(const float16& a, const float16& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return float16(__hadd(half(a), half(b)));
#else
return float16(float(a) + float(b));
return float16(static_cast<float>(a) + static_cast<float>(b));
#endif
}
......@@ -497,7 +498,7 @@ HOSTDEVICE inline float16 operator-(const float16& a, const float16& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return float16(__hsub(half(a), half(b)));
#else
return float16(float(a) - float(b));
return float16(static_cast<float>(a) - static_cast<float>(b));
#endif
}
......@@ -505,7 +506,7 @@ HOSTDEVICE inline float16 operator*(const float16& a, const float16& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return float16(__hmul(half(a), half(b)));
#else
return float16(float(a) * float(b));
return float16(static_cast<float>(a) * static_cast<float>(b));
#endif
}
......@@ -516,7 +517,7 @@ HOSTDEVICE inline float16 operator/(const float16& a, const float16& b) {
float denom = __half2float(half(b));
return float16(num / denom);
#else
return float16(float(a) / float(b));
return float16(static_cast<float>(a) / static_cast<float>(b));
#endif
}
......@@ -530,22 +531,22 @@ HOSTDEVICE inline float16 operator-(const float16& a) {
#endif
}
HOSTDEVICE inline float16& operator+=(float16& a, const float16& b) {
HOSTDEVICE inline float16& operator+=(float16& a, const float16& b) { // NOLINT
a = a + b;
return a;
}
HOSTDEVICE inline float16& operator-=(float16& a, const float16& b) {
HOSTDEVICE inline float16& operator-=(float16& a, const float16& b) { // NOLINT
a = a - b;
return a;
}
HOSTDEVICE inline float16& operator*=(float16& a, const float16& b) {
HOSTDEVICE inline float16& operator*=(float16& a, const float16& b) { // NOLINT
a = a * b;
return a;
}
HOSTDEVICE inline float16& operator/=(float16& a, const float16& b) {
HOSTDEVICE inline float16& operator/=(float16& a, const float16& b) { // NOLINT
a = a / b;
return a;
}
......@@ -554,7 +555,7 @@ HOSTDEVICE inline bool operator==(const float16& a, const float16& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __heq(half(a), half(b));
#else
return float(a) == float(b);
return static_cast<float>(a) == static_cast<float>(b);
#endif
}
......@@ -562,7 +563,7 @@ HOSTDEVICE inline bool operator!=(const float16& a, const float16& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hne(half(a), half(b));
#else
return float(a) != float(b);
return static_cast<float>(a) != static_cast<float>(b);
#endif
}
......@@ -570,7 +571,7 @@ HOSTDEVICE inline bool operator<(const float16& a, const float16& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hlt(half(a), half(b));
#else
return float(a) < float(b);
return static_cast<float>(a) < static_cast<float>(b);
#endif
}
......@@ -578,7 +579,7 @@ HOSTDEVICE inline bool operator<=(const float16& a, const float16& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hle(half(a), half(b));
#else
return float(a) <= float(b);
return static_cast<float>(a) <= static_cast<float>(b);
#endif
}
......@@ -586,7 +587,7 @@ HOSTDEVICE inline bool operator>(const float16& a, const float16& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hgt(half(a), half(b));
#else
return float(a) > float(b);
return static_cast<float>(a) > static_cast<float>(b);
#endif
}
......@@ -594,7 +595,7 @@ HOSTDEVICE inline bool operator>=(const float16& a, const float16& b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hge(half(a), half(b));
#else
return float(a) >= float(b);
return static_cast<float>(a) >= static_cast<float>(b);
#endif
}
......@@ -679,22 +680,22 @@ inline float16 operator-(const float16& a) {
return res;
}
inline float16& operator+=(float16& a, const float16& b) {
inline float16& operator+=(float16& a, const float16& b) { // NOLINT
a = a + b;
return a;
}
inline float16& operator-=(float16& a, const float16& b) {
inline float16& operator-=(float16& a, const float16& b) { // NOLINT
a = a - b;
return a;
}
inline float16& operator*=(float16& a, const float16& b) {
inline float16& operator*=(float16& a, const float16& b) { // NOLINT
a = a * b;
return a;
}
inline float16& operator/=(float16& a, const float16& b) {
inline float16& operator/=(float16& a, const float16& b) { // NOLINT
a = a / b;
return a;
}
......@@ -784,19 +785,19 @@ inline bool operator>=(const float16& a, const float16& b) {
// Arithmetic operators for float16, software emulated on other CPU
#else
inline float16 operator+(const float16& a, const float16& b) {
return float16(float(a) + float(b));
return float16(static_cast<float>(a) + static_cast<float>(b));
}
inline float16 operator-(const float16& a, const float16& b) {
return float16(float(a) - float(b));
return float16(static_cast<float>(a) - static_cast<float>(b));
}
inline float16 operator*(const float16& a, const float16& b) {
return float16(float(a) * float(b));
return float16(static_cast<float>(a) * static_cast<float>(b));
}
inline float16 operator/(const float16& a, const float16& b) {
return float16(float(a) / float(b));
return float16(static_cast<float>(a) / static_cast<float>(b));
}
inline float16 operator-(const float16& a) {
......@@ -805,51 +806,57 @@ inline float16 operator-(const float16& a) {
return res;
}
inline float16& operator+=(float16& a, const float16& b) {
a = float16(float(a) + float(b));
inline float16& operator+=(float16& a, const float16& b) { // NOLINT
a = float16(static_cast<float>(a) + static_cast<float>(b));
return a;
}
inline float16& operator-=(float16& a, const float16& b) {
a = float16(float(a) - float(b));
inline float16& operator-=(float16& a, const float16& b) { // NOLINT
a = float16(static_cast<float>(a) - static_cast<float>(b));
return a;
}
inline float16& operator*=(float16& a, const float16& b) {
a = float16(float(a) * float(b));
inline float16& operator*=(float16& a, const float16& b) { // NOLINT
a = float16(static_cast<float>(a) * static_cast<float>(b));
return a;
}
inline float16& operator/=(float16& a, const float16& b) {
a = float16(float(a) / float(b));
inline float16& operator/=(float16& a, const float16& b) { // NOLINT
a = float16(static_cast<float>(a) / static_cast<float>(b));
return a;
}
inline bool operator==(const float16& a, const float16& b) {
return float(a) == float(b);
return static_cast<float>(a) == static_cast<float>(b);
}
inline bool operator!=(const float16& a, const float16& b) {
return float(a) != float(b);
return static_cast<float>(a) != static_cast<float>(b);
}
inline bool operator<(const float16& a, const float16& b) {
return float(a) < float(b);
return static_cast<float>(a) < static_cast<float>(b);
}
inline bool operator<=(const float16& a, const float16& b) {
return float(a) <= float(b);
return static_cast<float>(a) <= static_cast<float>(b);
}
inline bool operator>(const float16& a, const float16& b) {
return float(a) > float(b);
return static_cast<float>(a) > static_cast<float>(b);
}
inline bool operator>=(const float16& a, const float16& b) {
return float(a) >= float(b);
return static_cast<float>(a) >= static_cast<float>(b);
}
#endif
HOSTDEVICE inline float16 raw_uint16_to_float16(uint16_t a) {
float16 res;
res.x = a;
return res;
}
HOSTDEVICE inline bool(isnan)(const float16& a) {
#if defined(PADDLE_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hisnan(half(a));
......@@ -886,28 +893,116 @@ struct is_pod<paddle::platform::float16> {
is_standard_layout<paddle::platform::float16>::value;
};
template <>
struct numeric_limits<paddle::platform::float16> {
static const bool is_specialized = true;
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;
static const bool has_infinity = true;
static const bool has_quiet_NaN = true;
static const bool has_signaling_NaN = true;
static const float_denorm_style has_denorm = denorm_present;
static const bool has_denorm_loss = false;
static const std::float_round_style round_style = std::round_to_nearest;
static const bool is_iec559 = false;
static const bool is_bounded = false;
static const bool is_modulo = false;
static const int digits = 11;
static const int digits10 = 3;
static const int max_digits10 = 5;
static const int radix = 2;
static const int min_exponent = -13;
static const int min_exponent10 = -4;
static const int max_exponent = 16;
static const int max_exponent10 = 4;
static const bool traps = true;
static const bool tinyness_before = false;
static paddle::platform::float16(min)() {
return paddle::platform::raw_uint16_to_float16(0x400);
}
static paddle::platform::float16 lowest() {
return paddle::platform::raw_uint16_to_float16(0xfbff);
}
static paddle::platform::float16(max)() {
return paddle::platform::raw_uint16_to_float16(0x7bff);
}
static paddle::platform::float16 epsilon() {
return paddle::platform::raw_uint16_to_float16(0x0800);
}
static paddle::platform::float16 round_error() {
return paddle::platform::float16(0.5);
}
static paddle::platform::float16 infinity() {
return paddle::platform::raw_uint16_to_float16(0x7c00);
}
static paddle::platform::float16 quiet_NaN() {
return paddle::platform::raw_uint16_to_float16(0x7e00);
}
static paddle::platform::float16 signaling_NaN() {
return paddle::platform::raw_uint16_to_float16(0x7e00);
}
static paddle::platform::float16 denorm_min() {
return paddle::platform::raw_uint16_to_float16(0x1);
}
};
} // namespace std
namespace Eigen {
using float16 = paddle::platform::float16;
template <>
struct NumTraits<float16> : GenericNumTraits<float16> {
enum {
IsSigned = true,
IsInteger = false,
IsComplex = false,
RequireInitialization = false
};
HOSTDEVICE static inline float16 epsilon() {
return paddle::platform::raw_uint16_to_float16(0x0800);
}
HOSTDEVICE static inline float16 dummy_precision() { return float16(1e-2f); }
HOSTDEVICE static inline float16 highest() {
return paddle::platform::raw_uint16_to_float16(0x7bff);
}
HOSTDEVICE static inline float16 lowest() {
return paddle::platform::raw_uint16_to_float16(0xfbff);
}
HOSTDEVICE static inline float16 infinity() {
return paddle::platform::raw_uint16_to_float16(0x7c00);
}
HOSTDEVICE static inline float16 quiet_NaN() {
return paddle::platform::raw_uint16_to_float16(0x7c01);
}
};
namespace numext {
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isnan)(
const paddle::platform::float16& a) {
HOSTDEVICE inline bool(isnan)(const float16& a) {
return (paddle::platform::isnan)(a);
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isinf)(
const paddle::platform::float16& a) {
HOSTDEVICE inline bool(isinf)(const float16& a) {
return (paddle::platform::isinf)(a);
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isfinite)(
const paddle::platform::float16& a) {
HOSTDEVICE inline bool(isfinite)(const float16& a) {
return (paddle::platform::isfinite)(a);
}
template <>
HOSTDEVICE inline float16 exp(const float16& a) {
return float16(::expf(static_cast<float>(a)));
}
} // namespace numext
} // namespace Eigen
......@@ -14,8 +14,9 @@ limitations under the License. */
#include "paddle/fluid/platform/gpu_info.h"
#include "gflags/gflags.h"
#include <algorithm>
#include "gflags/gflags.h"
#include "paddle/fluid/platform/enforce.h"
DEFINE_double(fraction_of_gpu_memory_to_use, 0.92,
......@@ -77,8 +78,8 @@ void SetDeviceId(int id) {
"cudaSetDevice failed in paddle::platform::SetDeviceId");
}
void GpuMemoryUsage(size_t &available, size_t &total) {
PADDLE_ENFORCE(cudaMemGetInfo(&available, &total),
void GpuMemoryUsage(size_t *available, size_t *total) {
PADDLE_ENFORCE(cudaMemGetInfo(available, total),
"cudaMemGetInfo failed in paddle::platform::GetMemoryUsage");
}
......@@ -86,7 +87,7 @@ size_t GpuMaxAllocSize() {
size_t total = 0;
size_t available = 0;
GpuMemoryUsage(available, total);
GpuMemoryUsage(&available, &total);
// Reserve the rest for page tables, etc.
return static_cast<size_t>(total * FLAGS_fraction_of_gpu_memory_to_use);
......@@ -101,7 +102,7 @@ size_t GpuMaxChunkSize() {
size_t total = 0;
size_t available = 0;
GpuMemoryUsage(available, total);
GpuMemoryUsage(&available, &total);
VLOG(10) << "GPU Usage " << available / 1024 / 1024 << "M/"
<< total / 1024 / 1024 << "M";
size_t reserving = static_cast<size_t>(0.05 * total);
......
......@@ -23,10 +23,6 @@ limitations under the License. */
namespace paddle {
namespace platform {
//! Environment variable: fraction of GPU memory to use on each device.
const std::string kEnvFractionGpuMemoryToUse =
"PADDLE_FRACTION_GPU_MEMORY_TO_USE";
//! Get the total number of GPU devices in system.
int GetCUDADeviceCount();
......@@ -46,7 +42,7 @@ int GetCurrentDeviceId();
void SetDeviceId(int device_id);
//! Get the memory usage of current GPU device.
void GpuMemoryUsage(size_t &available, size_t &total);
void GpuMemoryUsage(size_t *available, size_t *total);
//! Get the maximum allocation size of current GPU device.
size_t GpuMaxAllocSize();
......
......@@ -11,10 +11,11 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <iostream>
#include <vector>
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/variant.h"
......
---
Language: Cpp
BasedOnStyle: Google
Standard: Cpp11
...
......@@ -15,4 +15,6 @@ if(WITH_PYTHON)
target_link_libraries(paddle_pybind rt)
endif(NOT APPLE AND NOT ANDROID)
endif(WITH_AMD_GPU)
cc_test(tensor_py_test SRCS tensor_py_test.cc DEPS python)
endif(WITH_PYTHON)
......@@ -12,17 +12,17 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "const_value.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/framework/operator.h"
namespace paddle {
namespace pybind {
void BindConstValue(pybind11::module& m) {
m.def("kEmptyVarName", [] { return framework::kEmptyVarName; });
m.def("kTempVarName", [] { return framework::kTempVarName; });
m.def("kGradVarSuffix", [] { return framework::kGradVarSuffix; });
m.def("kZeroVarSuffix", [] { return framework::kZeroVarSuffix; });
void BindConstValue(pybind11::module* m) {
m->def("kEmptyVarName", [] { return framework::kEmptyVarName; });
m->def("kTempVarName", [] { return framework::kTempVarName; });
m->def("kGradVarSuffix", [] { return framework::kGradVarSuffix; });
m->def("kZeroVarSuffix", [] { return framework::kZeroVarSuffix; });
}
} // namespace pybind
......
......@@ -11,16 +11,17 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <Python.h>
#include "paddle/fluid/platform/enforce.h"
#include "pybind11/pybind11.h"
namespace py = pybind11;
namespace paddle {
namespace pybind {
extern void BindConstValue(pybind11::module& m);
void BindConstValue(pybind11::module* m);
} // namespace pybind
} // namespace paddle
......@@ -17,8 +17,8 @@ limitations under the License. */
namespace paddle {
namespace pybind {
void BindException(pybind11::module& m) {
static pybind11::exception<platform::EnforceNotMet> exc(m, "EnforceNotMet");
void BindException(pybind11::module* m) {
static pybind11::exception<platform::EnforceNotMet> exc(*m, "EnforceNotMet");
pybind11::register_exception_translator([](std::exception_ptr p) {
try {
if (p) std::rethrow_exception(p);
......@@ -27,7 +27,8 @@ void BindException(pybind11::module& m) {
}
});
m.def("__unittest_throw_exception__", [] { PADDLE_THROW("test exception"); });
m->def("__unittest_throw_exception__",
[] { PADDLE_THROW("test exception"); });
}
} // namespace pybind
......
......@@ -11,14 +11,17 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <Python.h>
#include "paddle/fluid/platform/enforce.h"
#include "pybind11/pybind11.h"
namespace paddle {
namespace pybind {
extern void BindException(pybind11::module& m);
void BindException(pybind11::module* m);
} // namespace pybind
} // namespace paddle
......@@ -11,10 +11,13 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/pybind/protobuf.h"
#include <deque>
#include <iostream>
#include <string>
#include <tuple>
#include "paddle/fluid/framework/backward.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_desc.h"
......@@ -95,10 +98,11 @@ struct type_caster<boost::variant<Args...>>
namespace paddle {
namespace pybind {
using namespace paddle::framework; // NOLINT
namespace pd = paddle::framework;
template <typename T>
static py::bytes SerializeMessage(T &self) {
static pybind11::bytes SerializeMessage(
T &self) { // NOLINT due to pybind11 convention.
// Check IsInitialized in Python
std::string retv;
PADDLE_ENFORCE(self.Proto()->SerializePartialToString(&retv),
......@@ -107,24 +111,24 @@ static py::bytes SerializeMessage(T &self) {
}
// Bind Methods
void BindProgramDesc(py::module &m) {
py::class_<ProgramDesc>(m, "ProgramDesc", "")
.def(py::init<>())
void BindProgramDesc(pybind11::module *m) {
pybind11::class_<pd::ProgramDesc>(*m, "ProgramDesc", "")
.def(pybind11::init<>())
.def("__init__",
[](ProgramDesc &self, const ProgramDesc &other) {
new (&self) ProgramDesc(other);
[](pd::ProgramDesc &self, const pd::ProgramDesc &other) {
new (&self) pd::ProgramDesc(other);
})
.def("__init__",
[](ProgramDesc &self, const py::bytes &binary_str) {
[](pd::ProgramDesc &self, const pybind11::bytes &binary_str) {
std::string str(binary_str);
new (&self) ProgramDesc(str);
new (&self) pd::ProgramDesc(str);
})
.def("append_block", &ProgramDesc::AppendBlock,
py::return_value_policy::reference)
.def("append_block", &pd::ProgramDesc::AppendBlock,
pybind11::return_value_policy::reference)
.def("append_backward",
[](ProgramDesc &program_desc, const VarDesc &target,
[](pd::ProgramDesc &program_desc, const pd::VarDesc &target,
const std::unordered_set<std::string> &no_grad_vars) {
ParamGradInfoMap param_grad_map =
pd::ParamGradInfoMap param_grad_map =
AppendBackward(program_desc, target, no_grad_vars);
std::unordered_map<
std::string, std::tuple<std::string /* grad_var_name */,
......@@ -138,172 +142,184 @@ void BindProgramDesc(py::module &m) {
}
return retv;
})
.def("block", &ProgramDesc::MutableBlock,
py::return_value_policy::reference)
.def("num_blocks", &ProgramDesc::Size)
.def("serialize_to_string", SerializeMessage<ProgramDesc>)
.def("block", &pd::ProgramDesc::MutableBlock,
pybind11::return_value_policy::reference)
.def("num_blocks", &pd::ProgramDesc::Size)
.def("serialize_to_string", SerializeMessage<pd::ProgramDesc>)
.def("parse_from_string",
[](ProgramDesc &program_desc, const std::string &data) {
proto::ProgramDesc *desc = program_desc.Proto();
[](pd::ProgramDesc &program_desc, const std::string &data) {
pd::proto::ProgramDesc *desc = program_desc.Proto();
PADDLE_ENFORCE(desc->ParseFromString(data),
"Fail to parse ProgramDesc from string. This could "
"be a bug of Paddle.");
});
}
void BindBlockDesc(py::module &m) {
py::class_<BlockDesc>(m, "BlockDesc", "")
.def_property_readonly("id", &BlockDesc::ID)
.def_property_readonly("parent", &BlockDesc::Parent)
.def("get_forward_block_idx", &BlockDesc::ForwardBlockID)
.def("set_forward_block_idx", &BlockDesc::SetForwardBlockID)
.def("append_op", &BlockDesc::AppendOp,
py::return_value_policy::reference)
.def("prepend_op", &BlockDesc::PrependOp,
py::return_value_policy::reference)
.def("insert_op", &BlockDesc::InsertOp,
py::return_value_policy::reference)
.def("remove_op", &BlockDesc::RemoveOp)
void BindBlockDesc(pybind11::module *m) {
pybind11::class_<pd::BlockDesc>(*m, "BlockDesc", "")
.def_property_readonly("id", &pd::BlockDesc::ID)
.def_property_readonly("parent", &pd::BlockDesc::Parent)
.def("get_forward_block_idx", &pd::BlockDesc::ForwardBlockID)
.def("set_forward_block_idx", &pd::BlockDesc::SetForwardBlockID)
.def("append_op", &pd::BlockDesc::AppendOp,
pybind11::return_value_policy::reference)
.def("prepend_op", &pd::BlockDesc::PrependOp,
pybind11::return_value_policy::reference)
.def("insert_op", &pd::BlockDesc::InsertOp,
pybind11::return_value_policy::reference)
.def("remove_op", &pd::BlockDesc::RemoveOp)
.def("var",
[](BlockDesc &self, py::bytes byte_name) {
[](pd::BlockDesc &self, pybind11::bytes byte_name) {
std::string name = byte_name;
return self.Var(name);
},
py::return_value_policy::reference)
pybind11::return_value_policy::reference)
.def("has_var",
[](BlockDesc &self, py::bytes byte_name) {
[](pd::BlockDesc &self, pybind11::bytes byte_name) {
std::string name = byte_name;
return self.HasVar(name);
},
py::return_value_policy::reference)
pybind11::return_value_policy::reference)
.def("rename_var",
[](BlockDesc &self, const py::bytes &byte_name,
const py::bytes &byte_name_new) {
[](pd::BlockDesc &self, const pybind11::bytes &byte_name,
const pybind11::bytes &byte_name_new) {
std::string name = byte_name;
std::string new_name = byte_name_new;
self.RenameVar(name, new_name);
})
.def("has_var_recursive",
[](BlockDesc &self, py::bytes byte_name) {
[](pd::BlockDesc &self, pybind11::bytes byte_name) {
std::string name = byte_name;
return self.HasVarRecursive(name);
})
.def("find_var",
[](BlockDesc &self, py::bytes byte_name) {
[](pd::BlockDesc &self, pybind11::bytes byte_name) {
std::string name = byte_name;
return self.FindVar(name);
},
py::return_value_policy::reference)
pybind11::return_value_policy::reference)
.def("find_var_recursive",
[](BlockDesc &self, py::bytes byte_name) {
[](pd::BlockDesc &self, pybind11::bytes byte_name) {
std::string name = byte_name;
return self.FindVarRecursive(name);
},
py::return_value_policy::reference)
.def("all_vars", &BlockDesc::AllVars, py::return_value_policy::reference)
.def("op_size", &BlockDesc::OpSize)
.def("op", &BlockDesc::Op, py::return_value_policy::reference)
.def("serialize_to_string", SerializeMessage<BlockDesc>);
pybind11::return_value_policy::reference)
.def("remove_var",
[](pd::BlockDesc &self, pybind11::bytes byte_name) {
std::string name = byte_name;
return self.RemoveVar(name);
},
pybind11::return_value_policy::reference)
.def("all_vars", &pd::BlockDesc::AllVars,
pybind11::return_value_policy::reference)
.def("op_size", &pd::BlockDesc::OpSize)
.def("op", &pd::BlockDesc::Op, pybind11::return_value_policy::reference)
.def("serialize_to_string", SerializeMessage<pd::BlockDesc>);
}
void BindVarDsec(py::module &m) {
py::class_<VarDesc> var_desc(m, "VarDesc", "");
void BindVarDsec(pybind11::module *m) {
pybind11::class_<pd::VarDesc> var_desc(*m, "VarDesc", "");
var_desc
.def("name",
[](VarDesc &self) {
py::bytes name = self.Name();
[](pd::VarDesc &self) {
pybind11::bytes name = self.Name();
return name;
},
py::return_value_policy::reference)
.def("set_name", &VarDesc::SetName)
.def("set_shape", &VarDesc::SetShape)
.def("set_shapes", &VarDesc::SetShapes)
.def("set_dtype", &VarDesc::SetDataType)
.def("set_dtypes", &VarDesc::SetDataTypes)
.def("set_capacity", &VarDesc::SetCapacity)
.def("shape", &VarDesc::GetShape, py::return_value_policy::reference)
.def("shapes", &VarDesc::GetShapes, py::return_value_policy::reference)
.def("dtype", &VarDesc::GetDataType, py::return_value_policy::reference)
.def("dtypes", &VarDesc::GetDataTypes, py::return_value_policy::reference)
.def("lod_level", &VarDesc::GetLoDLevel)
.def("lod_levels", &VarDesc::GetLoDLevels,
py::return_value_policy::reference)
.def("set_lod_level", &VarDesc::SetLoDLevel)
.def("set_lod_levels", &VarDesc::SetLoDLevels)
.def("type", &VarDesc::GetType)
.def("set_type", &VarDesc::SetType)
.def("serialize_to_string", SerializeMessage<VarDesc>)
.def("persistable", &VarDesc::Persistable)
.def("set_persistable", &VarDesc::SetPersistable);
pybind11::return_value_policy::reference)
.def("set_name", &pd::VarDesc::SetName)
.def("set_shape", &pd::VarDesc::SetShape)
.def("set_shapes", &pd::VarDesc::SetShapes)
.def("set_dtype", &pd::VarDesc::SetDataType)
.def("set_dtypes", &pd::VarDesc::SetDataTypes)
.def("set_capacity", &pd::VarDesc::SetCapacity)
.def("shape", &pd::VarDesc::GetShape,
pybind11::return_value_policy::reference)
.def("shapes", &pd::VarDesc::GetShapes,
pybind11::return_value_policy::reference)
.def("dtype", &pd::VarDesc::GetDataType,
pybind11::return_value_policy::reference)
.def("dtypes", &pd::VarDesc::GetDataTypes,
pybind11::return_value_policy::reference)
.def("lod_level", &pd::VarDesc::GetLoDLevel)
.def("lod_levels", &pd::VarDesc::GetLoDLevels,
pybind11::return_value_policy::reference)
.def("set_lod_level", &pd::VarDesc::SetLoDLevel)
.def("set_lod_levels", &pd::VarDesc::SetLoDLevels)
.def("type", &pd::VarDesc::GetType)
.def("set_type", &pd::VarDesc::SetType)
.def("serialize_to_string", SerializeMessage<pd::VarDesc>)
.def("persistable", &pd::VarDesc::Persistable)
.def("set_persistable", &pd::VarDesc::SetPersistable);
py::enum_<proto::VarType::Type>(var_desc, "VarType", "")
.value("BOOL", proto::VarType::BOOL)
.value("INT16", proto::VarType::INT16)
.value("INT32", proto::VarType::INT32)
.value("INT64", proto::VarType::INT64)
.value("FP16", proto::VarType::FP16)
.value("FP32", proto::VarType::FP32)
.value("FP64", proto::VarType::FP64)
.value("LOD_TENSOR", proto::VarType::LOD_TENSOR)
.value("SELECTED_ROWS", proto::VarType::SELECTED_ROWS)
.value("FEED_MINIBATCH", proto::VarType::FEED_MINIBATCH)
.value("FETCH_LIST", proto::VarType::FETCH_LIST)
.value("STEP_SCOPES", proto::VarType::STEP_SCOPES)
.value("LOD_RANK_TABLE", proto::VarType::LOD_RANK_TABLE)
.value("LOD_TENSOR_ARRAY", proto::VarType::LOD_TENSOR_ARRAY)
.value("CHANNEL", proto::VarType::CHANNEL)
.value("PLACE_LIST", proto::VarType::PLACE_LIST)
.value("READER", proto::VarType::READER)
.value("RAW", proto::VarType::RAW);
pybind11::enum_<pd::proto::VarType::Type>(var_desc, "VarType", "")
.value("BOOL", pd::proto::VarType::BOOL)
.value("INT16", pd::proto::VarType::INT16)
.value("INT32", pd::proto::VarType::INT32)
.value("INT64", pd::proto::VarType::INT64)
.value("FP16", pd::proto::VarType::FP16)
.value("FP32", pd::proto::VarType::FP32)
.value("FP64", pd::proto::VarType::FP64)
.value("LOD_TENSOR", pd::proto::VarType::LOD_TENSOR)
.value("SELECTED_ROWS", pd::proto::VarType::SELECTED_ROWS)
.value("FEED_MINIBATCH", pd::proto::VarType::FEED_MINIBATCH)
.value("FETCH_LIST", pd::proto::VarType::FETCH_LIST)
.value("STEP_SCOPES", pd::proto::VarType::STEP_SCOPES)
.value("LOD_RANK_TABLE", pd::proto::VarType::LOD_RANK_TABLE)
.value("LOD_TENSOR_ARRAY", pd::proto::VarType::LOD_TENSOR_ARRAY)
.value("CHANNEL", pd::proto::VarType::CHANNEL)
.value("PLACE_LIST", pd::proto::VarType::PLACE_LIST)
.value("READER", pd::proto::VarType::READER)
.value("RAW", pd::proto::VarType::RAW);
}
void BindOpDesc(py::module &m) {
py::enum_<proto::AttrType>(m, "AttrType", "")
.value("INT", proto::AttrType::INT)
.value("INTS", proto::AttrType::INTS)
.value("FLOAT", proto::AttrType::FLOAT)
.value("FLOATS", proto::AttrType::FLOATS)
.value("STRING", proto::AttrType::STRING)
.value("STRINGS", proto::AttrType::STRINGS)
.value("BOOL", proto::AttrType::BOOLEAN)
.value("BOOLS", proto::AttrType::BOOLEANS)
.value("BLOCK", proto::AttrType::BLOCK);
void BindOpDesc(pybind11::module *m) {
pybind11::enum_<pd::proto::AttrType>(*m, "AttrType", "")
.value("INT", pd::proto::AttrType::INT)
.value("INTS", pd::proto::AttrType::INTS)
.value("FLOAT", pd::proto::AttrType::FLOAT)
.value("FLOATS", pd::proto::AttrType::FLOATS)
.value("STRING", pd::proto::AttrType::STRING)
.value("STRINGS", pd::proto::AttrType::STRINGS)
.value("BOOL", pd::proto::AttrType::BOOLEAN)
.value("BOOLS", pd::proto::AttrType::BOOLEANS)
.value("BLOCK", pd::proto::AttrType::BLOCK);
py::class_<OpDesc> op_desc(m, "OpDesc", "");
pybind11::class_<pd::OpDesc> op_desc(*m, "OpDesc", "");
op_desc
.def("__init__", [](OpDesc &self) { new (&self) OpDesc(); },
py::return_value_policy::reference)
.def("copy_from", &OpDesc::CopyFrom)
.def("type", &OpDesc::Type)
.def("set_type", &OpDesc::SetType)
.def("input", &OpDesc::Input)
.def("input_names", &OpDesc::InputNames)
.def("output", &OpDesc::Output)
.def("output_names", &OpDesc::OutputNames)
.def("set_input", &OpDesc::SetInput)
.def("set_output", &OpDesc::SetOutput)
.def("input_arg_names", &OpDesc::InputArgumentNames)
.def("output_arg_names", &OpDesc::OutputArgumentNames)
.def("rename_input", &OpDesc::RenameInput)
.def("rename_output", &OpDesc::RenameOutput)
.def("has_attr", &OpDesc::HasAttr)
.def("attr_type", &OpDesc::GetAttrType)
.def("attr_names", &OpDesc::AttrNames)
.def("set_attr", &OpDesc::SetAttr)
.def("attr", &OpDesc::GetAttr)
.def("set_block_attr", &OpDesc::SetBlockAttr)
.def("__init__", [](pd::OpDesc &self) { new (&self) pd::OpDesc(); },
pybind11::return_value_policy::reference)
.def("copy_from", &pd::OpDesc::CopyFrom)
.def("type", &pd::OpDesc::Type)
.def("set_type", &pd::OpDesc::SetType)
.def("input", &pd::OpDesc::Input)
.def("input_names", &pd::OpDesc::InputNames)
.def("output", &pd::OpDesc::Output)
.def("output_names", &pd::OpDesc::OutputNames)
.def("set_input", &pd::OpDesc::SetInput)
.def("set_output", &pd::OpDesc::SetOutput)
.def("input_arg_names", &pd::OpDesc::InputArgumentNames)
.def("output_arg_names", &pd::OpDesc::OutputArgumentNames)
.def("rename_input", &pd::OpDesc::RenameInput)
.def("rename_output", &pd::OpDesc::RenameOutput)
.def("has_attr", &pd::OpDesc::HasAttr)
.def("attr_type", &pd::OpDesc::GetAttrType)
.def("attr_names", &pd::OpDesc::AttrNames)
.def("set_attr", &pd::OpDesc::SetAttr)
.def("attr", &pd::OpDesc::GetAttr)
.def("set_block_attr", &pd::OpDesc::SetBlockAttr)
.def("set_serialized_attr",
[](OpDesc &self, const std::string &name,
const py::bytes &seriralized) {
[](pd::OpDesc &self, const std::string &name,
const pybind11::bytes &seriralized) {
std::string ser(seriralized);
self.SetAttr(name, ser);
})
.def("block_attr", &OpDesc::GetBlockAttr)
.def("check_attrs", &OpDesc::CheckAttrs)
.def("infer_shape", &OpDesc::InferShape)
.def("infer_var_type", &OpDesc::InferVarType)
.def("serialize_to_string", SerializeMessage<OpDesc>)
.def("block", &OpDesc::Block, py::return_value_policy::reference);
.def("block_attr", &pd::OpDesc::GetBlockAttr)
.def("check_attrs", &pd::OpDesc::CheckAttrs)
.def("infer_shape", &pd::OpDesc::InferShape)
.def("infer_var_type", &pd::OpDesc::InferVarType)
.def("serialize_to_string", SerializeMessage<pd::OpDesc>)
.def("block", &pd::OpDesc::Block,
pybind11::return_value_policy::reference);
}
} // namespace pybind
......
......@@ -11,25 +11,25 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <Python.h>
#include <fstream>
#include <vector>
#include "paddle/fluid/platform/variant.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
namespace py = pybind11;
namespace paddle {
namespace pybind {
void BindProgramDesc(py::module& m);
void BindBlockDesc(py::module& m);
void BindVarDsec(py::module& m);
void BindOpDesc(py::module& m);
void BindProgramDesc(pybind11::module* m);
void BindBlockDesc(pybind11::module* m);
void BindVarDsec(pybind11::module* m);
void BindOpDesc(pybind11::module* m);
} // namespace pybind
} // namespace paddle
......@@ -11,11 +11,17 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <Python.h>
#include <algorithm>
#include <map>
#include <mutex> // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/pybind/protobuf.h"
#include <mutex> // for call_once
#include <unordered_map>
#include "paddle/fluid/framework/backward.h"
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/executor.h"
......@@ -32,7 +38,6 @@ limitations under the License. */
#include "paddle/fluid/operators/cond_op.h"
#include "paddle/fluid/operators/net_op.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
......@@ -69,7 +74,7 @@ PYBIND11_PLUGIN(core) {
// not cause namespace pollution.
using namespace paddle::framework; // NOLINT
BindException(m);
BindException(&m);
py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
.def_buffer(
......@@ -100,6 +105,14 @@ PYBIND11_PLUGIN(core) {
[](Tensor &self, paddle::platform::CUDAPlace &place) {
self.mutable_data<int>(place);
})
.def("alloc_int",
[](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
self.mutable_data<int>(place);
})
.def("alloc_float",
[](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
self.mutable_data<float>(place);
})
.def("set", PyCPUTensorSetFromArray<float>)
.def("set", PyCPUTensorSetFromArray<int>)
.def("set", PyCPUTensorSetFromArray<double>)
......@@ -113,6 +126,12 @@ PYBIND11_PLUGIN(core) {
.def("set", PyCUDATensorSetFromArray<int64_t>)
.def("set", PyCUDATensorSetFromArray<bool>)
.def("set", PyCUDATensorSetFromArray<uint16_t>)
.def("set", PyCUDAPinnedTensorSetFromArray<float>)
.def("set", PyCUDAPinnedTensorSetFromArray<int>)
.def("set", PyCUDAPinnedTensorSetFromArray<double>)
.def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
.def("set", PyCUDAPinnedTensorSetFromArray<bool>)
.def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
#endif
.def("shape", [](Tensor &self) { return vectorize(self.dims()); })
.def("set_float_element", TensorSetElement<float>)
......@@ -317,7 +336,17 @@ All parameter, weight, gradient are variables in Paddle.
#else
return new paddle::platform::CUDADeviceContext(place);
#endif
});
})
.def_static("create",
[](paddle::platform::CUDAPinnedPlace& place)
-> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW(
"CUDAPinnedPlace is not supported in CPU device.");
#else
return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
});;
// clang-format on
#ifdef PADDLE_WITH_CUDA
py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
......@@ -330,6 +359,10 @@ All parameter, weight, gradient are variables in Paddle.
.def(py::init<>())
.def("__str__", string::to_string<const platform::CPUPlace &>);
py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
.def(py::init<>())
.def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);
py::class_<platform::Place>(m, "Place")
.def(py::init<>())
.def("set_place",
......@@ -339,7 +372,11 @@ All parameter, weight, gradient are variables in Paddle.
.def("set_place",
[](platform::Place &self, const platform::CUDAPlace &gpu_place) {
self = gpu_place;
});
})
.def("set_place", [](platform::Place &self,
const platform::CUDAPinnedPlace &cuda_pinned_place) {
self = cuda_pinned_place;
});
py::class_<OperatorBase>(m, "Operator")
.def_static("create",
......@@ -363,6 +400,11 @@ All parameter, weight, gradient are variables in Paddle.
.def("run",
[](OperatorBase &self, const Scope &scope,
const platform::CUDAPlace &place) { self.Run(scope, place); })
.def("run",
[](OperatorBase &self, const Scope &scope,
const platform::CUDAPinnedPlace &place) {
self.Run(scope, place);
})
.def("type",
[](const OperatorBase &op) -> std::string { return op.Type(); })
.def("outputs",
......@@ -436,11 +478,11 @@ All parameter, weight, gradient are variables in Paddle.
m.def("set_feed_variable", framework::SetFeedVariable);
m.def("get_fetch_variable", framework::GetFetchVariable);
BindProgramDesc(m);
BindBlockDesc(m);
BindVarDsec(m);
BindOpDesc(m);
BindConstValue(m);
BindProgramDesc(&m);
BindBlockDesc(&m);
BindVarDsec(&m);
BindOpDesc(&m);
BindConstValue(&m);
py::class_<framework::LoDRankTable>(m, "LodRankTable")
.def("items", [](framework::LoDRankTable &table) {
......@@ -511,7 +553,7 @@ All parameter, weight, gradient are variables in Paddle.
})
.def("run", &ParallelExecutor::Run);
BindRecordIOWriter(m);
BindRecordIOWriter(&m);
return m.ptr();
}
} // namespace pybind
......
......@@ -13,13 +13,19 @@
// limitations under the License.
#include "paddle/fluid/pybind/recordio.h"
#include <fstream>
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/recordio/writer.h"
namespace paddle {
namespace pybind {
namespace {
class RecordIOWriter {
public:
RecordIOWriter(const std::string& filename, recordio::Compressor compressor,
......@@ -49,8 +55,10 @@ class RecordIOWriter {
recordio::Writer writer_;
};
void BindRecordIOWriter(py::module& m) {
py::class_<RecordIOWriter> writer(m, "RecordIOWriter", "");
} // namespace
void BindRecordIOWriter(py::module* m) {
py::class_<RecordIOWriter> writer(*m, "RecordIOWriter", "");
py::enum_<recordio::Compressor>(writer, "Compressor", "")
.value("Snappy", recordio::Compressor::kSnappy)
.value("NoCompress", recordio::Compressor::kNoCompress);
......
......@@ -21,6 +21,7 @@ namespace py = pybind11;
namespace paddle {
namespace pybind {
extern void BindRecordIOWriter(py::module& m);
void BindRecordIOWriter(py::module* m);
} // namespace pybind
} // namespace paddle
......@@ -13,7 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <Python.h>
#include <string>
#include <tuple>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/device_context.h"
......@@ -21,12 +24,8 @@ limitations under the License. */
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
namespace py = pybind11;
namespace paddle {
namespace pybind {
namespace details {
template <bool less, size_t I, typename... ARGS>
......@@ -34,16 +33,16 @@ struct CastToPyBufferImpl;
template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<false, I, ARGS...> {
py::buffer_info operator()(framework::Tensor &tensor) {
pybind11::buffer_info operator()(const framework::Tensor &tensor) {
PADDLE_THROW("This type of tensor cannot be expose to Python");
return py::buffer_info();
return pybind11::buffer_info();
}
};
template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<true, I, ARGS...> {
using CUR_TYPE = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
py::buffer_info operator()(framework::Tensor &tensor) {
pybind11::buffer_info operator()(const framework::Tensor &tensor) {
if (std::type_index(typeid(CUR_TYPE)) == tensor.type()) {
auto dim_vec = framework::vectorize(tensor.dims());
std::vector<size_t> dims_outside;
......@@ -82,15 +81,15 @@ struct CastToPyBufferImpl<true, I, ARGS...> {
if (std::type_index(typeid(CUR_TYPE)) ==
std::type_index(typeid(platform::float16))) {
return py::buffer_info(dst_tensor.data<CUR_TYPE>(), sizeof(CUR_TYPE),
"e", /* np.dtype('e') == np.float16 */
(size_t)framework::arity(dst_tensor.dims()),
dims_outside, strides);
return pybind11::buffer_info(
dst_tensor.data<CUR_TYPE>(), sizeof(CUR_TYPE),
"e", /* np.dtype('e') == np.float16 */
(size_t)framework::arity(dst_tensor.dims()), dims_outside, strides);
} else {
return py::buffer_info(dst_tensor.data<CUR_TYPE>(), sizeof(CUR_TYPE),
py::format_descriptor<CUR_TYPE>::format(),
(size_t)framework::arity(dst_tensor.dims()),
dims_outside, strides);
return pybind11::buffer_info(
dst_tensor.data<CUR_TYPE>(), sizeof(CUR_TYPE),
pybind11::format_descriptor<CUR_TYPE>::format(),
(size_t)framework::arity(dst_tensor.dims()), dims_outside, strides);
}
} else {
constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
......@@ -101,7 +100,7 @@ struct CastToPyBufferImpl<true, I, ARGS...> {
} // namespace details
inline py::buffer_info CastToPyBuffer(framework::Tensor &tensor) {
inline pybind11::buffer_info CastToPyBuffer(const framework::Tensor &tensor) {
auto buffer_info =
details::CastToPyBufferImpl<true, 0, float, int, double, int64_t, bool,
platform::float16>()(tensor);
......@@ -109,7 +108,7 @@ inline py::buffer_info CastToPyBuffer(framework::Tensor &tensor) {
}
template <typename T>
T TensorGetElement(framework::Tensor &self, size_t offset) {
T TensorGetElement(const framework::Tensor &self, size_t offset) {
if (platform::is_cpu_place(self.place())) {
return self.data<T>()[offset];
} else {
......@@ -121,64 +120,70 @@ T TensorGetElement(framework::Tensor &self, size_t offset) {
// TODO(dzhwinter) : fix the redundent Tensor allocate and free
template <typename T>
void TensorSetElement(framework::Tensor &self, size_t offset, T elem) {
if (platform::is_gpu_place(self.place())) {
void TensorSetElement(framework::Tensor *self, size_t offset, T elem) {
if (platform::is_gpu_place(self->place())) {
std::shared_ptr<framework::Tensor> dst(new framework::Tensor);
framework::TensorCopy(self, platform::CPUPlace(), dst.get());
framework::TensorCopy(*self, platform::CPUPlace(), dst.get());
dst->data<T>()[offset] = elem;
framework::TensorCopy(*dst.get(), self.place(), &self);
framework::TensorCopy(*dst.get(), self->place(), self);
} else if (platform::is_cpu_place(self.place())) {
self.data<T>()[offset] = elem;
} else if (platform::is_cpu_place(self->place())) {
self->data<T>()[offset] = elem;
}
}
template <typename T>
void PyCPUTensorSetFromArray(
framework::Tensor &self,
py::array_t<T, py::array::c_style | py::array::forcecast> array,
paddle::platform::CPUPlace &place) {
framework::Tensor *self,
pybind11::array_t<T, pybind11::array::c_style | pybind11::array::forcecast>
array,
paddle::platform::CPUPlace place) {
std::vector<int64_t> dims;
dims.reserve(array.ndim());
for (size_t i = 0; i < array.ndim(); ++i) {
dims.push_back((int)array.shape()[i]);
dims.push_back(static_cast<int>(array.shape()[i]));
}
self.Resize(framework::make_ddim(dims));
auto *dst = self.mutable_data<T>(place);
self->Resize(framework::make_ddim(dims));
auto *dst = self->mutable_data<T>(place);
std::memcpy(dst, array.data(), sizeof(T) * array.size());
}
template <>
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
void PyCPUTensorSetFromArray(
framework::Tensor &self,
py::array_t<uint16_t, py::array::c_style | py::array::forcecast> array,
paddle::platform::CPUPlace &place) {
framework::Tensor *self,
pybind11::array_t<uint16_t,
pybind11::array::c_style | pybind11::array::forcecast>
array,
paddle::platform::CPUPlace place) {
std::vector<int64_t> dims;
dims.reserve(array.ndim());
for (size_t i = 0; i < array.ndim(); ++i) {
dims.push_back((int)array.shape()[i]);
dims.push_back(static_cast<int>(array.shape()[i]));
}
self.Resize(framework::make_ddim(dims));
auto *dst = self.mutable_data<platform::float16>(place);
self->Resize(framework::make_ddim(dims));
auto *dst = self->mutable_data<platform::float16>(place);
std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size());
}
#ifdef PADDLE_WITH_CUDA
template <typename T>
void PyCUDATensorSetFromArray(
framework::Tensor &self,
py::array_t<T, py::array::c_style | py::array::forcecast> array,
paddle::platform::CUDAPlace &place) {
framework::Tensor *self,
pybind11::array_t<T, pybind11::array::c_style | pybind11::array::forcecast>
array,
paddle::platform::CUDAPlace place) {
std::vector<int64_t> dims;
dims.reserve(array.ndim());
for (size_t i = 0; i < array.ndim(); ++i) {
dims.push_back((int)array.shape()[i]);
dims.push_back(static_cast<int>(array.shape()[i]));
}
self.Resize(framework::make_ddim(dims));
auto *dst = self.mutable_data<T>(place);
self->Resize(framework::make_ddim(dims));
auto *dst = self->mutable_data<T>(place);
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto dev_ctx =
......@@ -188,18 +193,22 @@ void PyCUDATensorSetFromArray(
}
template <>
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
void PyCUDATensorSetFromArray(
framework::Tensor &self,
py::array_t<uint16_t, py::array::c_style | py::array::forcecast> array,
paddle::platform::CUDAPlace &place) {
framework::Tensor *self,
pybind11::array_t<uint16_t,
pybind11::array::c_style | pybind11::array::forcecast>
array,
paddle::platform::CUDAPlace place) {
std::vector<int64_t> dims;
dims.reserve(array.ndim());
for (size_t i = 0; i < array.ndim(); ++i) {
dims.push_back((int)array.shape()[i]);
dims.push_back(static_cast<int>(array.shape()[i]));
}
self.Resize(framework::make_ddim(dims));
auto *dst = self.mutable_data<platform::float16>(place);
self->Resize(framework::make_ddim(dims));
auto *dst = self->mutable_data<platform::float16>(place);
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto dev_ctx =
......@@ -208,6 +217,43 @@ void PyCUDATensorSetFromArray(
sizeof(uint16_t) * array.size(),
cudaMemcpyHostToDevice, dev_ctx->stream());
}
template <typename T>
void PyCUDAPinnedTensorSetFromArray(
framework::Tensor *self,
pybind11::array_t<T, pybind11::array::c_style | pybind11::array::forcecast>
array,
const paddle::platform::CUDAPinnedPlace &place) {
std::vector<int64_t> dims;
dims.reserve(array.ndim());
for (size_t i = 0; i < array.ndim(); ++i) {
dims.push_back(static_cast<int>(array.shape()[i]));
}
self->Resize(framework::make_ddim(dims));
auto *dst = self->mutable_data<T>(place);
std::memcpy(dst, array.data(), sizeof(T) * array.size());
}
template <>
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
void PyCUDAPinnedTensorSetFromArray(
framework::Tensor *self,
pybind11::array_t<uint16_t,
pybind11::array::c_style | pybind11::array::forcecast>
array,
const paddle::platform::CUDAPinnedPlace &place) {
std::vector<int64_t> dims;
dims.reserve(array.ndim());
for (size_t i = 0; i < array.ndim(); ++i) {
dims.push_back(static_cast<int>(array.shape()[i]));
}
self->Resize(framework::make_ddim(dims));
auto *dst = self->mutable_data<platform::float16>(place);
std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size());
}
#endif
} // namespace pybind
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/pybind/tensor_py.h"
#include <iostream>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/tensor.h"
TEST(TensorPy, CastToPyBufferImpl) {
typedef int ElemType;
paddle::framework::Tensor t;
auto d = paddle::framework::make_ddim({1, 2, 3});
int* p = t.mutable_data<ElemType>(d, paddle::platform::CPUPlace());
for (int i = 0; i < paddle::framework::product(d); ++i) {
p[i] = i;
}
pybind11::buffer_info bi = paddle::pybind::CastToPyBuffer(t);
EXPECT_EQ(bi.itemsize, static_cast<size_t>(sizeof(ElemType)));
EXPECT_EQ(bi.size, static_cast<size_t>(paddle::framework::product(d)));
EXPECT_EQ(bi.ndim, static_cast<size_t>(3)); // 3-dimensional as d.
EXPECT_EQ(bi.shape.size(), 3U); // as Dim d.
EXPECT_EQ(bi.shape[0], static_cast<size_t>(1));
EXPECT_EQ(bi.shape[1], static_cast<size_t>(2));
EXPECT_EQ(bi.shape[2], static_cast<size_t>(3));
EXPECT_EQ(bi.strides.size(), 3U); // 3-dimensional as d.
EXPECT_EQ(bi.strides[2], static_cast<size_t>(sizeof(ElemType)));
EXPECT_EQ(bi.strides[1], static_cast<size_t>(sizeof(ElemType) * 3));
EXPECT_EQ(bi.strides[0], static_cast<size_t>(sizeof(ElemType) * 2 * 3));
}
......@@ -14,11 +14,13 @@
#include "paddle/fluid/recordio/chunk.h"
#include <algorithm>
#include <memory>
#include <sstream>
#include "paddle/fluid/platform/enforce.h"
#include "snappystream.hpp"
#include "zlib.h"
#include "snappy_stream/include/snappystream.hpp"
#include "zlib/include/zlib.h"
namespace paddle {
namespace recordio {
......@@ -58,8 +60,8 @@ static void ReadStreamByBuf(std::istream& in, size_t limit, Callback callback) {
* Copy stream in to another stream
*/
static void PipeStream(std::istream& in, std::ostream& os) {
ReadStreamByBuf(
in, 0, [&os](const char* buf, size_t len) { os.write(buf, len); });
ReadStreamByBuf(in, 0,
[&os](const char* buf, size_t len) { os.write(buf, len); });
}
/**
......@@ -68,8 +70,8 @@ static void PipeStream(std::istream& in, std::ostream& os) {
static uint32_t Crc32Stream(std::istream& in, size_t limit = 0) {
uint32_t crc = static_cast<uint32_t>(crc32(0, nullptr, 0));
ReadStreamByBuf(in, limit, [&crc](const char* buf, size_t len) {
crc = static_cast<uint32_t>(crc32(
crc, reinterpret_cast<const Bytef*>(buf), static_cast<uInt>(len)));
crc = static_cast<uint32_t>(crc32(crc, reinterpret_cast<const Bytef*>(buf),
static_cast<uInt>(len)));
});
return crc;
}
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册