Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7aa0cc3c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7aa0cc3c
编写于
2月 07, 2021
作者:
S
sandyhouse
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
fa71ee87
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
78 addition
and
40 deletion
+78
-40
python/paddle/distributed/fleet/meta_optimizers/model_parallel_optimizer.py
...ributed/fleet/meta_optimizers/model_parallel_optimizer.py
+43
-24
python/paddle/distributed/fleet/meta_optimizers/sharding/fp16_helper.py
...distributed/fleet/meta_optimizers/sharding/fp16_helper.py
+35
-16
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/model_parallel_optimizer.py
浏览文件 @
7aa0cc3c
...
...
@@ -22,9 +22,10 @@ from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_u
class
ModelParallelHelper
(
object
):
def
__init__
(
self
,
role_maker
,
wait_port
=
True
):
def
__init__
(
self
,
role_maker
,
wait_port
=
True
,
megatron_dp
=
False
):
self
.
wait_port
=
wait_port
self
.
role_maker
=
role_maker
self
.
megatron_dp
=
megatron_dp
def
update_startup_program
(
self
,
startup_program
=
None
,
...
...
@@ -48,24 +49,29 @@ class ModelParallelHelper(object):
mp_endpoints
,
mp_rank
,
0
,
self
.
wait_port
)
self
.
_broadcast_params
(
0
,
broadcast_distributed_weight
=
False
)
mp_num
=
len
(
endpoints
)
//
inner_parallelism
if
mp_num
==
1
:
return
# Create rings for gpus as the same model parallel part
eps
=
[]
dp_rank
=
rank
//
inner_parallelism
dp_id
=
rank
%
inner_parallelism
#if dp_rank == 1: dp_rank =0
#if dp_rank == 0: dp_rank =1
ring_id
=
1
for
idx
,
ep
in
enumerate
(
endpoints
):
if
idx
%
inner_parallelism
==
dp_id
:
eps
.
append
(
ep
)
#ep = eps.pop(0)
#eps.insert(1, ep)
print
(
"data parallel eps:{}, rank{}"
.
format
(
eps
,
dp_rank
))
self
.
_init_communicator
(
self
.
startup_program
,
current_endpoint
,
eps
,
dp_rank
,
ring_id
,
self
.
wait_port
)
self
.
_broadcast_params
(
ring_id
,
broadcast_distributed_weight
=
True
)
print
(
"megatron group size: {}"
.
format
(
inner_parallelism
))
print
(
"megatron rank: {}"
.
format
(
mp_rank
))
print
(
"megatron endpoints: {}"
.
format
(
mp_endpoints
))
if
self
.
megatron_dp
:
mp_num
=
len
(
endpoints
)
//
inner_parallelism
if
mp_num
==
1
:
return
# Create rings for gpus as the same model parallel part
eps
=
[]
dp_rank
=
rank
//
inner_parallelism
dp_id
=
rank
%
inner_parallelism
#if dp_rank == 1: dp_rank =0
#if dp_rank == 0: dp_rank =1
ring_id
=
1
for
idx
,
ep
in
enumerate
(
endpoints
):
if
idx
%
inner_parallelism
==
dp_id
:
eps
.
append
(
ep
)
#ep = eps.pop(0)
#eps.insert(1, ep)
print
(
"data parallel eps:{}, rank{}"
.
format
(
eps
,
dp_rank
))
self
.
_init_communicator
(
self
.
startup_program
,
current_endpoint
,
eps
,
dp_rank
,
ring_id
,
self
.
wait_port
)
self
.
_broadcast_params
(
ring_id
,
broadcast_distributed_weight
=
True
)
def
_init_communicator
(
self
,
program
,
current_endpoint
,
endpoints
,
rank
,
ring_id
,
wait_port
):
...
...
@@ -129,9 +135,14 @@ class ModelParallelOptimizer(MetaOptimizerBase):
def
__init__
(
self
,
optimizer
):
super
(
ModelParallelOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
# we do not allow meta optimizer to be inner optimizer currently
self
.
meta_optimizers_white_list
=
[]
self
.
meta_optimizers_white_list
=
[
"RecomputeOptimizer"
,
"AMPOptimizer"
,
"LarsOptimizer"
,
"LambOptimizer"
,
]
self
.
meta_optimizers_black_list
=
[
"GraphExecutionOptimizer"
,
]
self
.
megatron_dp
=
False
def
_set_basic_info
(
self
,
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
):
...
...
@@ -156,6 +167,10 @@ class ModelParallelOptimizer(MetaOptimizerBase):
dist_strategy
.
model_parallel
=
True
dist_strategy
.
model_parallel_configs
=
{
"parallelism"
:
1
,
}
# the following function will be used by AMP if both Megatron and AMP are turn on together.
def
apply_gradients
(
self
,
params_grads
):
return
self
.
minimize_impl
(
params_grads
=
params_grads
)
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
...
...
@@ -167,6 +182,8 @@ class ModelParallelOptimizer(MetaOptimizerBase):
if
startup_program
is
None
:
self
.
startup_program
=
fluid
.
default_startup_program
()
# (TODO) check the order of metaoptimizer
# (TODO) check the params_grads
optimize_ops
,
params_grads
=
self
.
inner_opt
.
minimize
(
loss
,
self
.
startup_program
,
parameter_list
,
no_grad_set
)
...
...
@@ -179,10 +196,12 @@ class ModelParallelOptimizer(MetaOptimizerBase):
self
.
inner_parallelism
)
assert
self
.
nranks
%
self
.
inner_parallelism
==
0
# data parallelism
dp_parallelism
=
self
.
nranks
//
self
.
inner_parallelism
self
.
_transpile_main_program
(
loss
,
dp_parallelism
)
if
self
.
megatron_dp
:
# data parallelism
dp_parallelism
=
self
.
nranks
//
self
.
inner_parallelism
self
.
_transpile_main_program
(
loss
,
dp_parallelism
)
return
optimize_ops
,
params_grads
def
_transpile_main_program
(
self
,
loss
,
dp_parallelism
):
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding/fp16_helper.py
浏览文件 @
7aa0cc3c
...
...
@@ -73,7 +73,7 @@ class FP16Utils(object):
@
staticmethod
def
prune_fp16
(
block
,
shard
,
reduced_grads_to_param
,
ring_id
):
"""
1. prune all cast_fp
32_to_fp16
ops if the param not belongs to this shard
1. prune all cast_fp
16_to_fp32
ops if the param not belongs to this shard
2. revise amp inifine grad checking for sharding
"""
# remove cast
...
...
@@ -103,6 +103,7 @@ class FP16Utils(object):
op
.
_rename_input
(
inf_var_name
,
inf_var_name
+
"@sharding"
)
if
op
.
type
in
[
"check_finite_and_unscale"
,
"update_loss_scaling"
]:
reversed_x
=
[]
reversed_x_paramname
=
[]
for
input_name
in
op
.
desc
.
input
(
'X'
):
param_name
=
input_name
.
strip
(
"@GRAD"
)
if
param_name
not
in
shard
.
global_params
:
...
...
@@ -111,12 +112,26 @@ class FP16Utils(object):
"be grads, but {} is not a grad"
.
format
(
input_name
))
if
shard
.
has_param
(
param_name
):
reversed_x
.
append
(
input_name
)
reversed_x_paramname
.
append
(
param_name
)
op
.
desc
.
set_input
(
'X'
,
reversed_x
)
op
.
desc
.
set_output
(
'Out'
,
reversed_x
)
# the grad checking should take the all and only param in the current shard
to_check_param
=
set
(
reversed_x_paramname
)
should_check_param
=
set
(
shard
.
global_params
).
intersection
(
set
([
param
for
param
,
worker_idx
in
shard
.
global_param2device
.
items
()
if
worker_idx
==
shard
.
worker_idx
]))
assert
to_check_param
==
should_check_param
,
"amp check_finite_and_unscale checking miss [{}] and got unexpected [{}]"
.
format
(
should_check_param
-
to_check_param
,
to_check_param
-
should_check_param
)
if
update_loss_scaling_op_idx
==
-
1
:
return
inf_var
=
block
.
var
(
inf_var_name
)
inf_var_
fp
32
=
block
.
create_var
(
inf_var_
int
32
=
block
.
create_var
(
name
=
inf_var_name
+
"@cast_int32"
,
shape
=
inf_var
.
shape
,
dtype
=
core
.
VarDesc
.
VarType
.
INT32
)
...
...
@@ -128,32 +143,36 @@ class FP16Utils(object):
update_loss_scaling_op_idx
,
type
=
'cast'
,
inputs
=
{
'X'
:
inf_var
},
outputs
=
{
'Out'
:
inf_var_
fp
32
},
outputs
=
{
'Out'
:
inf_var_
int
32
},
attrs
=
{
"in_dtype"
:
inf_var
.
dtype
,
"out_dtype"
:
inf_var_
fp
32
.
dtype
,
"out_dtype"
:
inf_var_
int
32
.
dtype
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
insert_sync_calc_op
(
block
,
update_loss_scaling_op_idx
+
1
,
[
inf_var_fp32
])
# this allreduce communication should not overlap with calc
# insert_sync_calc_op(block, update_loss_scaling_op_idx + 1,
# [inf_var_int32])
block
.
_insert_op_without_sync
(
update_loss_scaling_op_idx
+
2
,
update_loss_scaling_op_idx
+
1
,
type
=
'c_allreduce_max'
,
inputs
=
{
'X'
:
inf_var_fp32
},
outputs
=
{
'Out'
:
inf_var_fp32
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
inputs
=
{
'X'
:
inf_var_int32
},
outputs
=
{
'Out'
:
inf_var_int32
},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
True
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
comm_op_num
=
insert_sync_comm_op
(
block
,
update_loss_scaling_op_idx
+
3
,
ring_id
,
[
inf_var_fp
32
])
#
comm_op_num = insert_sync_comm_op(block, update_loss_scaling_op_idx + 3,
# ring_id, [inf_var_int
32])
block
.
_insert_op_without_sync
(
update_loss_scaling_op_idx
+
3
+
comm_op_num
,
update_loss_scaling_op_idx
+
2
,
type
=
'cast'
,
inputs
=
{
'X'
:
inf_var_
fp
32
},
inputs
=
{
'X'
:
inf_var_
int
32
},
outputs
=
{
'Out'
:
inf_var_sharding
},
attrs
=
{
"in_dtype"
:
inf_var_
fp
32
.
dtype
,
"in_dtype"
:
inf_var_
int
32
.
dtype
,
"out_dtype"
:
inf_var_sharding
.
dtype
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录