Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7a867063
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7a867063
编写于
9月 02, 2019
作者:
X
xiaoting
提交者:
lvmengsi
9月 02, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modified multiclass_nms example (#19553)
test=develop, test=document_preview
上级
57f0f0f2
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
24 addition
and
2 deletion
+24
-2
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+23
-1
未找到文件。
paddle/fluid/API.spec
浏览文件 @
7a867063
...
@@ -410,7 +410,7 @@ paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varar
...
@@ -410,7 +410,7 @@ paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varar
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', '400403175718d5a632402cdae88b01b8'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', '400403175718d5a632402cdae88b01b8'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ed56ff21536ca5c8ad418d0cfaf6a7b9'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ed56ff21536ca5c8ad418d0cfaf6a7b9'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '9ddee76cb808db83768bf68010e39b2b'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '9ddee76cb808db83768bf68010e39b2b'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', '
76d74056e9eedcacf013d8e3b115cbd3
'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', '
51a388c4d067ea93a6a60492db40c7af
'))
paddle.fluid.layers.retinanet_detection_output (ArgSpec(args=['bboxes', 'scores', 'anchors', 'im_info', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0.05, 1000, 100, 0.3, 1.0)), ('document', '078d28607ce261a0cba2b965a79f6bb8'))
paddle.fluid.layers.retinanet_detection_output (ArgSpec(args=['bboxes', 'scores', 'anchors', 'im_info', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0.05, 1000, 100, 0.3, 1.0)), ('document', '078d28607ce261a0cba2b965a79f6bb8'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6c023b9401214ae387a8b2d92638e5e4'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6c023b9401214ae387a8b2d92638e5e4'))
paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'box_score', 'box_clip', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '3619a7847709f5868f5e929065947b38'))
paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'box_score', 'box_clip', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '3619a7847709f5868f5e929065947b38'))
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
7a867063
...
@@ -2694,6 +2694,28 @@ def multiclass_nms(bboxes,
...
@@ -2694,6 +2694,28 @@ def multiclass_nms(bboxes,
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
per image if keep_top_k is larger than -1.
See below for an example:
.. code-block:: text
if:
box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
box1.scores = (0.7, 0.2, 0.4) which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)
box2.data = (3.0, 4.0, 8.0, 5.0)
box2.score = (0.3, 0.3, 0.1)
nms_threshold = 0.3
background_label = 0
score_threshold = 0
Then:
iou = 4/11 > 0.3
out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],
[2, 0.4, 2.0, 3.0, 7.0, 5.0]]
Out format is (label, confidence, xmin, ymin, xmax, ymax)
Args:
Args:
bboxes (Variable): Two types of bboxes are supported:
bboxes (Variable): Two types of bboxes are supported:
1. (Tensor) A 3-D Tensor with shape
1. (Tensor) A 3-D Tensor with shape
...
@@ -2734,7 +2756,7 @@ def multiclass_nms(bboxes,
...
@@ -2734,7 +2756,7 @@ def multiclass_nms(bboxes,
name(str): Name of the multiclass nms op. Default: None.
name(str): Name of the multiclass nms op. Default: None.
Returns:
Returns:
Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
Out
(Variable)
: A 2-D LoDTensor with shape [No, 6] represents the detections.
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
or A 2-D LoDTensor with shape [No, 10] represents the detections.
or A 2-D LoDTensor with shape [No, 10] represents the detections.
Each row has 10 values:
Each row has 10 values:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录