未验证 提交 7a38b769 编写于 作者: L Li Min 提交者: GitHub

[NPU] Support npu op index_select (#34611)

上级 e47d8a57
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/index_select_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class IndexSelectNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x = ctx.Input<Tensor>("X");
auto *index = ctx.Input<Tensor>("Index");
auto dim = ctx.Attr<int>("dim");
auto *out = ctx.Output<Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
NpuOpRunner runner;
runner.SetType("GatherV2")
.AddInput(*x)
.AddInput(*index)
.AddInput(std::vector<int32_t>{dim})
.AddOutput(*out);
runner.Run(stream);
}
};
// todo: add class 'IndexSelectGradNPUKernel' here.
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
index_select,
ops::IndexSelectNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::IndexSelectNPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::IndexSelectNPUKernel<paddle::platform::NPUDeviceContext, int64_t>);
// todo: register npu index_select_grad kernel here.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
from paddle.static import Program, program_guard
paddle.enable_static()
SEED = 2021
class TestNPUIndexSelect(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "index_select"
self.config()
x_np = np.random.random(self.x_shape).astype(self.x_type)
index_np = np.random.randint(
low=0, high=self.x_shape[self.dim], size=self.index_size)
# compute real output as baseline.
outer_loop = np.prod(self.x_shape[:self.dim])
outer_loop = outer_loop.astype(self.index_type)
x_reshape = [outer_loop] + list(self.x_shape[self.dim:])
x_np_reshape = np.reshape(x_np, tuple(x_reshape))
out_list = []
for i in range(outer_loop):
for j in range(self.index_size):
out_list.append(x_np_reshape[i, index_np[j]])
self.out_shape = list(self.x_shape)
self.out_shape[self.dim] = self.index_size
self.out_shape = tuple(self.out_shape)
out = np.reshape(out_list, self.out_shape)
self.inputs = {'X': x_np, 'Index': index_np}
self.attrs = {'dim': self.dim}
self.outputs = {'Out': out}
# todo: comment second line when index_select grad npu op is ready.
def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True
def test_check_output(self):
self.check_output_with_place(self.place)
# todo: replace first line with second line when index_select grad npu op is ready.
def test_check_grad(self):
pass
#self.check_grad_with_place(self.place, ['X'], 'Out')
def config(self):
self.x_shape = (100, 4, 5)
self.x_type = np.float32
self.dim = 1
self.index_size = 100
self.index_type = np.int64
class TestNPUIndexSelectCase2(TestNPUIndexSelect):
def config(self):
self.dim = -2
self.x_type = np.float32
self.index_type = np.int32
self.x_shape = (10, 10, 4, 10)
self.index_size = 10
class TestNPUIndexSelectAPI(unittest.TestCase):
def input_data(self):
self.data_x = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
[9.0, 10.0, 11.0, 12.0]]).astype('float32')
self.data_index = np.array([0, 1, 1]).astype('int32')
def test_index_select_api(self):
paddle.set_device("npu:0")
paddle.enable_static()
self.input_data()
# case 1:
with program_guard(Program(), Program()):
x = paddle.static.data(name='x', shape=[-1, 4], dtype='float32')
index = paddle.static.data(name='index', shape=[3], dtype='int32')
z = paddle.index_select(x, index, axis=1)
exe = paddle.static.Executor(paddle.NPUPlace(0))
res, = exe.run(feed={'x': self.data_x,
'index': self.data_index},
fetch_list=[z.name],
return_numpy=False)
expect_out = np.array([[1.0, 2.0, 2.0], [5.0, 6.0, 6.0],
[9.0, 10.0, 10.0]]).astype('float32')
self.assertTrue(np.allclose(expect_out, np.array(res)))
# case 2:
with program_guard(Program(), Program()):
x = paddle.static.data(name='x', shape=[-1, 4], dtype='float32')
index = paddle.static.data(name='index', shape=[3], dtype='int32')
z = paddle.index_select(x, index)
exe = paddle.static.Executor(paddle.NPUPlace(0))
res, = exe.run(feed={'x': self.data_x,
'index': self.data_index},
fetch_list=[z.name],
return_numpy=False)
expect_out = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
[5.0, 6.0, 7.0, 8.0]]).astype('float32')
self.assertTrue(np.allclose(expect_out, np.array(res)))
def test_dygraph_index_select_api(self):
paddle.set_device("npu:0")
paddle.disable_static()
self.input_data()
# case 1:
x = paddle.to_tensor(self.data_x)
index = paddle.to_tensor(self.data_index)
z = paddle.index_select(x, index)
np_z = z.numpy()
expect_out = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
[5.0, 6.0, 7.0, 8.0]]).astype('float32')
self.assertTrue(np.allclose(expect_out, np_z))
# case 2:
x = paddle.to_tensor(self.data_x)
index = paddle.to_tensor(self.data_index)
z = paddle.index_select(x, index, axis=1)
np_z = z.numpy()
expect_out = np.array([[1.0, 2.0, 2.0], [5.0, 6.0, 6.0],
[9.0, 10.0, 10.0]]).astype('float32')
self.assertTrue(np.allclose(expect_out, np_z))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册