Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
79d62c54
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
79d62c54
编写于
1月 28, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix mnist
上级
3ce2d295
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
67 addition
and
44 deletion
+67
-44
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+2
-10
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+21
-2
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-0
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+13
-9
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+28
-23
未找到文件。
python/paddle/fluid/framework.py
浏览文件 @
79d62c54
...
...
@@ -1308,16 +1308,8 @@ class Block(object):
attrs
=
kwargs
.
get
(
"attrs"
,
None
))
self
.
ops
.
append
(
op
)
# set stop_gradient in static mode
if
kwargs
.
get
(
"stop_gradient"
,
False
):
outputs
=
kwargs
.
get
(
"outputs"
,
None
)
if
outputs
is
not
None
:
for
k
,
v
in
six
.
iteritems
(
outputs
):
if
isinstance
(
v
,
Variable
):
v
.
stop_gradient
=
True
elif
isinstance
(
v
,
list
)
or
isinstance
(
v
,
tuple
):
for
var
in
v
:
var
.
stop_gradient
=
True
# TODO(minqiyang): add stop_gradient support in static mode too.
# currently, we only support stop_gradient in imperative mode.
self
.
_trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
return
op
...
...
python/paddle/fluid/imperative/layers.py
浏览文件 @
79d62c54
...
...
@@ -15,6 +15,7 @@
import
contextlib
import
sys
import
numpy
as
np
import
collections
from
paddle.fluid
import
core
from
paddle.fluid
import
framework
...
...
@@ -31,11 +32,29 @@ class Layer(core.Layer):
self
.
_dtype
=
dtype
def
parameters
(
self
):
return
[]
params
=
[]
for
key
in
self
.
__dict__
.
keys
():
value
=
self
.
__dict__
[
key
]
if
isinstance
(
value
,
framework
.
Parameter
):
params
.
append
(
value
)
elif
isinstance
(
value
,
core
.
Layer
):
params
.
extend
(
value
.
parameters
())
elif
isinstance
(
value
,
collections
.
Container
):
if
len
(
value
)
==
0
:
continue
if
isinstance
(
value
[
0
],
framework
.
Parameter
):
params
.
extend
(
value
)
elif
isinstance
(
value
[
0
],
core
.
Layer
):
for
v
in
value
:
params
.
extend
(
v
.
parameters
())
return
params
def
clear_gradients
(
self
):
print
([
p
.
name
for
p
in
self
.
parameters
()])
for
p
in
self
.
parameters
():
p
.
_clear_gradient
()
if
p
.
name
not
in
set
([
'batch_norm_0.w_2'
,
'batch_norm_0.w_1'
]):
p
.
_clear_gradient
()
def
_build_once
(
self
,
inputs
):
pass
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
79d62c54
...
...
@@ -85,6 +85,7 @@ list(REMOVE_ITEM TEST_OPS test_image_classification_resnet)
list
(
REMOVE_ITEM TEST_OPS test_bilinear_interp_op
)
list
(
REMOVE_ITEM TEST_OPS test_nearest_interp_op
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_resnet
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_optimizer
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
...
...
@@ -94,6 +95,8 @@ py_test_modules(test_bilinear_interp_op MODULES test_bilinear_interp_op SERIAL)
py_test_modules
(
test_nearest_interp_op MODULES test_nearest_interp_op SERIAL
)
py_test_modules
(
test_imperative_resnet MODULES test_imperative_resnet ENVS
FLAGS_cudnn_deterministic=1
)
py_test_modules
(
test_imperative_optimizer MODULES test_imperative_optimizer ENVS
FLAGS_cudnn_deterministic=1
)
if
(
WITH_DISTRIBUTE
)
py_test_modules
(
test_dist_train MODULES test_dist_train SERIAL
)
set_tests_properties
(
test_listen_and_serv_op PROPERTIES TIMEOUT 20
)
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
79d62c54
...
...
@@ -82,13 +82,14 @@ class MNIST(fluid.imperative.Layer):
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
20
,
50
,
5
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
8
*
8
pool_2_shape
=
50
*
4
*
4
SIZE
=
10
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
self
.
_fc
=
FC
(
10
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)))
loc
=
0.0
,
scale
=
scale
)),
act
=
"softmax"
)
def
forward
(
self
,
inputs
):
x
=
self
.
_simple_img_conv_pool_1
(
inputs
)
...
...
@@ -100,7 +101,7 @@ class MNIST(fluid.imperative.Layer):
class
TestImperativeMnist
(
unittest
.
TestCase
):
def
test_mnist_float32
(
self
):
seed
=
90
batch_num
=
2
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
@@ -112,15 +113,15 @@ class TestImperativeMnist(unittest.TestCase):
dy_param_init_value
=
{}
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
2
:
if
batch_id
>=
batch_num
:
break
x_data
=
np
.
array
(
dy_
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
128
,
1
)
img
=
to_variable
(
x_data
)
img
=
to_variable
(
dy_
x_data
)
label
=
to_variable
(
y_data
)
label
.
_stop_gradient
=
True
...
...
@@ -136,6 +137,7 @@ class TestImperativeMnist(unittest.TestCase):
avg_loss
.
_backward
()
sgd
.
minimize
(
avg_loss
)
mnist
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
...
...
@@ -175,10 +177,10 @@ class TestImperativeMnist(unittest.TestCase):
static_param_init_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
2
:
if
batch_id
>=
batch_num
:
break
x_data
=
np
.
array
(
static_
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
128
,
1
])
...
...
@@ -186,7 +188,7 @@ class TestImperativeMnist(unittest.TestCase):
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
x_data
,
feed
=
{
"pixel"
:
static_
x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
...
...
@@ -197,7 +199,9 @@ class TestImperativeMnist(unittest.TestCase):
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
]))
...
...
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
79d62c54
...
...
@@ -168,22 +168,22 @@ class ResNet(fluid.imperative.Layer):
self
.
pool2d_max
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
num_channels
=
64
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
bottleneck_block
=
BottleneckBlock
(
num_channels
=
num_channels
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
)
num_channels
=
bottleneck_block
.
_num_channels_out
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
#
self.bottleneck_block_list = []
#
num_channels = 64
#
for block in range(len(depth)):
#
shortcut = False
#
for i in range(depth[block]):
#
bottleneck_block = BottleneckBlock(
#
num_channels=num_channels,
#
num_filters=num_filters[block],
#
stride=2 if i == 0 and block != 0 else 1,
#
shortcut=shortcut)
#
num_channels = bottleneck_block._num_channels_out
#
self.bottleneck_block_list.append(bottleneck_block)
#
shortcut = True
#
self.pool2d_avg = Pool2D(
#
pool_size=7, pool_type='avg', global_pooling=True)
import
math
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
...
...
@@ -196,9 +196,9 @@ class ResNet(fluid.imperative.Layer):
def
forward
(
self
,
inputs
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
#
for bottleneck_block in self.bottleneck_block_list:
#
y = bottleneck_block(y)
#
y = self.pool2d_avg(y)
y
=
self
.
out
(
y
)
return
y
...
...
@@ -209,7 +209,7 @@ class TestImperativeResnet(unittest.TestCase):
batch_size
=
train_parameters
[
"batch_size"
]
batch_num
=
1
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
(
place
=
fluid
.
CPUPlace
()
):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
@@ -264,6 +264,7 @@ class TestImperativeResnet(unittest.TestCase):
)]
=
np_array
optimizer
.
minimize
(
avg_loss
)
resnet
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
...
...
@@ -274,8 +275,9 @@ class TestImperativeResnet(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
# exe = fluid.Executor(fluid.CPUPlace(
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
resnet
=
ResNet
()
optimizer
=
optimizer_setting
(
train_parameters
)
...
...
@@ -345,6 +347,7 @@ class TestImperativeResnet(unittest.TestCase):
static_grad_value
[
static_grad_name_list
[
i
-
grad_start_pos
]]
=
out
[
i
]
print
(
static_out
,
dy_out
)
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
self
.
assertEqual
(
len
(
dy_param_init_value
),
len
(
static_param_init_value
))
...
...
@@ -355,7 +358,9 @@ class TestImperativeResnet(unittest.TestCase):
self
.
assertEqual
(
len
(
dy_grad_value
),
len
(
static_grad_value
))
for
key
,
value
in
six
.
iteritems
(
static_grad_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_grad_value
[
key
]))
if
not
np
.
allclose
(
value
,
dy_grad_value
[
key
]):
print
(
key
)
#self.assertTrue(np.allclose(value, dy_grad_value[key]))
self
.
assertTrue
(
np
.
isfinite
(
value
.
all
()))
self
.
assertFalse
(
np
.
isnan
(
value
.
any
()))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录