Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
798a4eac
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
798a4eac
编写于
7月 28, 2022
作者:
X
Xiaoxu Chen
提交者:
GitHub
7月 28, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
migrate dirichlet kernel to phi (#44434)
* migrate dirichlet op kernel to phi * fix dirichlet sample memory leak
上级
2781740b
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
222 addition
and
155 deletion
+222
-155
paddle/fluid/operators/dirichlet_op.cc
paddle/fluid/operators/dirichlet_op.cc
+11
-93
paddle/phi/api/yaml/legacy_api.yaml
paddle/phi/api/yaml/legacy_api.yaml
+9
-0
paddle/phi/infermeta/unary.cc
paddle/phi/infermeta/unary.cc
+13
-0
paddle/phi/infermeta/unary.h
paddle/phi/infermeta/unary.h
+2
-1
paddle/phi/kernels/cpu/dirichlet_kernel.cc
paddle/phi/kernels/cpu/dirichlet_kernel.cc
+102
-0
paddle/phi/kernels/dirichlet_kernel.h
paddle/phi/kernels/dirichlet_kernel.h
+25
-0
paddle/phi/kernels/gpu/dirichlet_kernel.cu
paddle/phi/kernels/gpu/dirichlet_kernel.cu
+37
-37
paddle/phi/kernels/impl/dirichlet_kernel_impl.h
paddle/phi/kernels/impl/dirichlet_kernel_impl.h
+19
-21
python/paddle/distribution/dirichlet.py
python/paddle/distribution/dirichlet.py
+4
-3
未找到文件。
paddle/fluid/operators/dirichlet_op.cc
浏览文件 @
798a4eac
...
...
@@ -11,83 +11,14 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/dirichlet_op.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
typename
UniformSamplerT
,
typename
NormalSamplerT
>
struct
GammaCPUFunctor
{
GammaCPUFunctor
(
const
T
*
alpha
,
T
*
gamma
,
BaseSampler
<
T
,
UniformSamplerT
>
uniform
,
BaseSampler
<
T
,
NormalSamplerT
>
normal
)
:
alpha_
(
alpha
),
gamma_
(
gamma
),
uniform_
(
uniform
),
normal_
(
normal
)
{}
HOST
void
operator
()(
int64_t
index
)
{
auto
sample
=
sample_gamma
<
T
,
T
,
UniformSamplerT
,
NormalSamplerT
>
(
alpha_
[
index
],
uniform_
,
normal_
);
gamma_
[
index
]
=
std
::
max
(
std
::
numeric_limits
<
T
>::
min
(),
sample
);
}
const
T
*
alpha_
;
T
*
gamma_
;
BaseSampler
<
T
,
UniformSamplerT
>
uniform_
;
BaseSampler
<
T
,
NormalSamplerT
>
normal_
;
};
template
<
typename
T
>
struct
DirichletSampler
<
phi
::
CPUContext
,
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
*
alpha
,
Tensor
*
out
)
{
auto
&
dev_ctx
=
ctx
.
device_context
<
phi
::
CPUContext
>
();
auto
p_gen
=
framework
::
DefaultCPUGenerator
();
auto
generator
=
p_gen
->
GetCPUEngine
();
auto
uniform
=
[
&
generator
]()
->
T
{
std
::
uniform_real_distribution
<
T
>
u
(
0.0
,
1.0
);
return
u
(
*
generator
);
};
BaseSampler
<
T
,
decltype
(
uniform
)
>
standard_uniform
(
uniform
);
auto
normal
=
[
&
generator
]()
{
std
::
normal_distribution
<
T
>
n
(
0.0
,
1.0
);
return
n
(
*
generator
);
};
BaseSampler
<
T
,
decltype
(
normal
)
>
standard_normal
(
normal
);
// sample from K gamma distributions, where K=alpha.numel()
framework
::
Tensor
gamma_samples
;
gamma_samples
.
mutable_data
<
T
>
(
alpha
->
dims
(),
dev_ctx
.
GetPlace
());
GammaCPUFunctor
<
T
,
decltype
(
uniform
),
decltype
(
normal
)
>
gamma_functor
(
alpha
->
data
<
T
>
(),
gamma_samples
.
data
<
T
>
(),
standard_uniform
,
standard_normal
);
platform
::
ForRange
<
phi
::
CPUContext
>
for_range
(
dev_ctx
,
alpha
->
numel
());
for_range
(
gamma_functor
);
// normalize them into a simplex, along the last axis
framework
::
Tensor
gamma_sum
;
auto
new_shape
=
gamma_samples
.
dims
();
new_shape
[
new_shape
.
size
()
-
1
]
=
1
;
gamma_sum
.
mutable_data
<
T
>
(
new_shape
,
dev_ctx
.
GetPlace
());
ReduceKernelFunctor
<
phi
::
CPUContext
,
T
,
SumFunctor
>
(
&
gamma_samples
,
&
gamma_sum
,
{
new_shape
.
size
()
-
1
},
true
,
false
,
ctx
)
.
template
apply
<
T
>();
ElementwiseComputeEx
<
DivFunctor
<
T
>
,
phi
::
CPUContext
,
T
,
T
>
(
ctx
,
&
gamma_samples
,
&
gamma_sum
,
-
1
,
DivFunctor
<
T
>
(),
out
);
}
};
class
DirichletOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
...
...
@@ -100,29 +31,16 @@ class DirichletOpMaker : public framework::OpProtoAndCheckerMaker {
class
DirichletOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Alpha"
),
"Input"
,
"Alpha"
,
"dirichlet"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"dirichlet"
);
const
auto
alpha_dim
=
ctx
->
GetInputDim
(
"Alpha"
);
PADDLE_ENFORCE_GE
(
alpha_dim
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"ShapeError: The number of dimensions of 'Alpha' "
"must be greater than or euqal to 1. "
"But received Alpha's dimensions = %d,"
,
alpha_dim
.
size
()));
ctx
->
ShareDim
(
"Alpha"
,
/*->*/
"Out"
);
}
};
}
// namespace operators
}
// namespace paddle
DECLARE_INFER_SHAPE_FUNCTOR
(
dirichlet
,
DirichletInferShapeFunctor
,
PD_INFER_META
(
phi
::
DirichletInferMeta
));
REGISTER_OP_WITHOUT_GRADIENT
(
dirichlet
,
paddle
::
operators
::
DirichletOp
,
paddle
::
operators
::
DirichletOpMaker
);
REGISTER_OP_CPU_KERNEL
(
dirichlet
,
paddle
::
operators
::
DirichletKernel
<
phi
::
CPUContext
,
float
>
,
paddle
::
operators
::
DirichletKernel
<
phi
::
CPUContext
,
double
>
);
paddle
::
operators
::
DirichletOpMaker
,
DirichletInferShapeFunctor
);
paddle/phi/api/yaml/legacy_api.yaml
浏览文件 @
798a4eac
...
...
@@ -2531,6 +2531,15 @@
kernel
:
func
:
broadcast_tensors
backward
:
broadcast_tensors_grad
# dirichlet
-
api
:
dirichlet
args
:
(Tensor alpha)
output
:
Tensor
infer_meta
:
func
:
DirichletInferMeta
kernel
:
func
:
dirichlet
# eig
-
api
:
eig
...
...
paddle/phi/infermeta/unary.cc
浏览文件 @
798a4eac
...
...
@@ -518,6 +518,19 @@ void DiagonalInferMeta(const MetaTensor& input,
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
}
void
DirichletInferMeta
(
const
MetaTensor
&
alpha
,
MetaTensor
*
out
)
{
const
auto
alpha_dim
=
alpha
.
dims
();
PADDLE_ENFORCE_GE
(
alpha_dim
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"ShapeError: The number of dimensions of 'Alpha' "
"must be greater than or euqal to 1. "
"But received Alpha's dimensions = %d,"
,
alpha_dim
.
size
()));
out
->
set_dims
(
alpha_dim
);
out
->
set_dtype
(
alpha
.
dtype
());
}
void
EigInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out_w
,
MetaTensor
*
out_v
)
{
auto
x_dims
=
x
.
dims
();
int
rank
=
x_dims
.
size
();
...
...
paddle/phi/infermeta/unary.h
浏览文件 @
798a4eac
...
...
@@ -90,6 +90,8 @@ void DiagInferMeta(const MetaTensor& x,
void
DiagonalInferMeta
(
const
MetaTensor
&
input
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
);
void
DirichletInferMeta
(
const
MetaTensor
&
alpha
,
MetaTensor
*
out
);
void
EigInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out_w
,
MetaTensor
*
out_v
);
void
EighInferMeta
(
const
MetaTensor
&
x
,
...
...
@@ -534,5 +536,4 @@ void ChannelShuffleInferMeta(const MetaTensor& x,
MetaTensor
*
out
);
void
IdentityLossInferMeta
(
const
MetaTensor
&
x
,
int
reduction
,
MetaTensor
*
out
);
}
// namespace phi
paddle/phi/kernels/cpu/dirichlet_kernel.cc
0 → 100644
浏览文件 @
798a4eac
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/elementwise.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/for_range.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/dirichlet_kernel_impl.h"
namespace
phi
{
template
<
typename
T
,
typename
UniformSamplerT
,
typename
NormalSamplerT
>
struct
GammaCPUFunctor
{
GammaCPUFunctor
(
const
T
*
alpha
,
T
*
gamma
,
BaseSampler
<
T
,
UniformSamplerT
>
uniform
,
BaseSampler
<
T
,
NormalSamplerT
>
normal
)
:
alpha_
(
alpha
),
gamma_
(
gamma
),
uniform_
(
uniform
),
normal_
(
normal
)
{}
HOST
void
operator
()(
int64_t
index
)
{
auto
sample
=
sample_gamma
<
T
,
T
,
UniformSamplerT
,
NormalSamplerT
>
(
alpha_
[
index
],
uniform_
,
normal_
);
gamma_
[
index
]
=
std
::
max
(
std
::
numeric_limits
<
T
>::
min
(),
sample
);
}
const
T
*
alpha_
;
T
*
gamma_
;
BaseSampler
<
T
,
UniformSamplerT
>
uniform_
;
BaseSampler
<
T
,
NormalSamplerT
>
normal_
;
};
template
<
typename
T
>
struct
DirichletSampler
<
CPUContext
,
T
>
{
void
operator
()(
const
CPUContext
&
dev_ctx
,
const
DenseTensor
&
alpha
,
DenseTensor
*
out
)
{
auto
generator
=
dev_ctx
.
GetGenerator
()
->
GetCPUEngine
();
auto
uniform
=
[
&
generator
]()
->
T
{
std
::
uniform_real_distribution
<
T
>
u
(
0.0
,
1.0
);
return
u
(
*
generator
);
};
BaseSampler
<
T
,
decltype
(
uniform
)
>
standard_uniform
(
uniform
);
auto
normal
=
[
&
generator
]()
{
std
::
normal_distribution
<
T
>
n
(
0.0
,
1.0
);
return
n
(
*
generator
);
};
BaseSampler
<
T
,
decltype
(
normal
)
>
standard_normal
(
normal
);
// sample from K gamma distributions, where K=alpha.numel()
DenseTensor
gamma_samples
;
gamma_samples
.
Resize
(
alpha
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
&
gamma_samples
);
GammaCPUFunctor
<
T
,
decltype
(
uniform
),
decltype
(
normal
)
>
gamma_functor
(
alpha
.
data
<
T
>
(),
gamma_samples
.
data
<
T
>
(),
standard_uniform
,
standard_normal
);
funcs
::
ForRange
<
CPUContext
>
for_range
(
dev_ctx
,
alpha
.
numel
());
for_range
(
gamma_functor
);
// normalize them into a simplex, along the last axis
DenseTensor
gamma_sum
;
auto
new_shape
=
gamma_samples
.
dims
();
new_shape
[
new_shape
.
size
()
-
1
]
=
1
;
gamma_sum
.
Resize
(
new_shape
);
dev_ctx
.
template
Alloc
<
T
>(
&
gamma_sum
);
ReduceKernelImpl
<
CPUContext
,
T
,
T
,
funcs
::
SumFunctor
>
(
dev_ctx
,
gamma_samples
,
&
gamma_sum
,
{
new_shape
.
size
()
-
1
},
true
,
false
);
funcs
::
ElementwiseCompute
<
funcs
::
DivideFunctor
<
T
>
,
T
,
T
>
(
dev_ctx
,
gamma_samples
,
gamma_sum
,
-
1
,
funcs
::
DivideFunctor
<
T
>
(),
out
);
}
};
}
// namespace phi
PD_REGISTER_KERNEL
(
dirichlet
,
CPU
,
ALL_LAYOUT
,
phi
::
Dirichletkernel
,
float
,
double
)
{}
paddle/phi/kernels/dirichlet_kernel.h
0 → 100644
浏览文件 @
798a4eac
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
Dirichletkernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
alpha
,
DenseTensor
*
out
);
}
// namespace phi
paddle/
fluid/operators/dirichlet_op
.cu
→
paddle/
phi/kernels/gpu/dirichlet_kernel
.cu
浏览文件 @
798a4eac
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
...
...
@@ -12,12 +14,14 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/dirichlet_op.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/for_range.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/dirichlet_kernel_impl.h"
#ifdef PADDLE_WITH_CUDA
#include <curand_kernel.h>
...
...
@@ -38,8 +42,7 @@ using COMPAT_RANDSTATEPHILOX4_32_10_T = hiprandStatePhilox4_32_10_t;
#define COMPAT_RAND_NORMAL hiprand_normal
#endif
namespace
paddle
{
namespace
operators
{
namespace
phi
{
template
<
typename
T
>
struct
GammaCUDAFunctor
{
GammaCUDAFunctor
(
const
T
*
alpha
,
T
*
gamma
,
uint64_t
seed
,
uint64_t
offset
)
...
...
@@ -70,47 +73,44 @@ struct GammaCUDAFunctor {
};
template
<
typename
T
>
struct
DirichletSampler
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
alpha
,
framework
::
Tensor
*
out
)
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CUDADeviceContext
>
();
// init state, seed & offset for all threads
int
device_id
=
ctx
.
GetPlace
().
GetDeviceId
();
auto
p_gen
=
framework
::
DefaultCUDAGenerator
(
device_id
);
struct
DirichletSampler
<
GPUContext
,
T
>
{
void
operator
()(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
alpha
,
DenseTensor
*
out
)
{
auto
p_gen
=
dev_ctx
.
GetGenerator
();
auto
seed_and_offset
=
p_gen
->
IncrementOffset
(
10
);
// hard-coded offset
auto
seed
=
seed_and_offset
.
first
;
auto
offset
=
seed_and_offset
.
second
;
// sample from K gamma distributions, where K=alpha.numel()
framework
::
Tensor
gamma_samples
;
gamma_samples
.
mutable_data
<
T
>
(
alpha
->
dims
(),
dev_ctx
.
GetPlace
());
DenseTensor
gamma_samples
;
gamma_samples
.
Resize
(
alpha
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
&
gamma_samples
);
GammaCUDAFunctor
<
T
>
gamma_functor
(
alpha
->
data
<
T
>
(),
gamma_samples
.
data
<
T
>
(),
seed
,
offset
);
platform
::
ForRange
<
platform
::
CUDADeviceContext
>
for_range
(
dev_ctx
,
out
->
numel
());
alpha
.
data
<
T
>
(),
gamma_samples
.
data
<
T
>
(),
seed
,
offset
);
funcs
::
ForRange
<
GPUContext
>
for_range
(
dev_ctx
,
out
->
numel
());
for_range
(
gamma_functor
);
// normalize them into a simplex, along the last axis
framework
::
Tensor
gamma_sum
;
Dense
Tensor
gamma_sum
;
auto
new_shape
=
gamma_samples
.
dims
();
new_shape
[
new_shape
.
size
()
-
1
]
=
1
;
gamma_sum
.
mutable_data
<
T
>
(
new_shape
,
dev_ctx
.
GetPlace
());
gamma_sum
.
Resize
(
new_shape
);
dev_ctx
.
template
Alloc
<
T
>(
&
gamma_sum
);
ReduceKernelFunctor
<
platform
::
CUDADeviceContext
,
T
,
SumFunctor
>
(
&
gamma_samples
,
&
gamma_sum
,
{
new_shape
.
size
()
-
1
},
true
,
false
,
ctx
)
.
template
apply
<
T
>();
ElementwiseComputeEx
<
DivFunctor
<
T
>
,
platform
::
CUDADeviceContext
,
T
,
T
>
(
ctx
,
&
gamma_samples
,
&
gamma_sum
,
-
1
,
DivFunctor
<
T
>
(),
out
);
ReduceKernelImpl
<
GPUContext
,
T
,
T
,
funcs
::
SumFunctor
>
(
dev_ctx
,
gamma_samples
,
&
gamma_sum
,
{
new_shape
.
size
()
-
1
},
true
,
false
);
funcs
::
ElementwiseCompute
<
funcs
::
DivideFunctor
<
T
>
,
T
,
T
>
(
dev_ctx
,
gamma_samples
,
gamma_sum
,
-
1
,
funcs
::
DivideFunctor
<
T
>
(),
out
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
}
// namespace phi
REGISTER_OP_CUDA_KERNEL
(
dirichlet
,
ops
::
DirichletKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
DirichletKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
PD_REGISTER_KERNEL
(
dirichlet
,
GPU
,
ALL_LAYOUT
,
phi
::
Dirichletkernel
,
float
,
double
)
{}
paddle/
fluid/operators/dirichlet_op
.h
→
paddle/
phi/kernels/impl/dirichlet_kernel_impl
.h
浏览文件 @
798a4eac
// Copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
...
...
@@ -13,11 +13,10 @@
// limitations under the License.
#pragma once
#include <cmath>
#include <random>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/phi/kernels/dirichlet_kernel.h"
// ROCM hcc doesn't work well with using std:: in kernel functions
#if defined(PADDLE_WITH_CUDA)
...
...
@@ -42,10 +41,7 @@
#define COMPAT_LOG1P std::log1p
#endif
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
struct
DirichletSampler
;
namespace
phi
{
template
<
typename
ScalarT
,
typename
SamplerT
>
struct
BaseSampler
{
...
...
@@ -117,17 +113,19 @@ sample_gamma(ScalarT alpha,
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
DirichletKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
alpha
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Alpha"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
DirichletSampler
<
DeviceContext
,
T
>
sampler
;
sampler
(
ctx
,
alpha
,
out
);
}
template
<
typename
Context
,
typename
T
>
struct
DirichletSampler
{
void
operator
()(
const
Context
&
dev_ctx
,
const
DenseTensor
&
alpha
,
DenseTensor
*
out
);
};
}
// namespace operators
}
// namespace paddle
template
<
typename
T
,
typename
Context
>
void
Dirichletkernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
alpha
,
DenseTensor
*
out
)
{
dev_ctx
.
template
Alloc
<
T
>(
out
);
DirichletSampler
<
Context
,
T
>
sampler
;
sampler
(
dev_ctx
,
alpha
,
out
);
}
}
// namespace phi
python/paddle/distribution/dirichlet.py
浏览文件 @
798a4eac
...
...
@@ -15,7 +15,7 @@
import
paddle
from
paddle.distribution
import
exponential_family
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
from
paddle.fluid.framework
import
_non_static_mode
,
in_dygraph_mode
from
paddle.fluid.framework
import
in_dygraph_mode
,
_in_legacy_dygraph
from
paddle.fluid.layer_helper
import
LayerHelper
...
...
@@ -157,9 +157,10 @@ def _dirichlet(concentration, name=None):
check_variable_and_dtype
(
concentration
,
'concentration'
,
[
'float32'
,
'float64'
],
op_type
)
if
_non_static_mode
():
if
in_dygraph_mode
():
return
paddle
.
_C_ops
.
final_state_dirichlet
(
concentration
)
elif
_in_legacy_dygraph
():
return
paddle
.
_C_ops
.
dirichlet
(
concentration
)
else
:
helper
=
LayerHelper
(
op_type
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录