未验证 提交 7905e367 编写于 作者: A Abhinav Arora 提交者: GitHub

Implement Book chapter 02 in distributed framework (#7629)

上级 2360dd20
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import print_function
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import os
BATCH_SIZE = 128
PASS_NUM = 100
images = fluid.layers.data(name='x', shape=[784], dtype='float32')
# TODO(aroraabhinav) Add regularization and error clipping after
# Issue 7432(https://github.com/PaddlePaddle/Paddle/issues/7432) is resolved.
hidden1 = fluid.layers.fc(input=images, size=128, act='relu')
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
optimize_ops, params_grads = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
t = fluid.DistributeTranspiler()
# all parameter server endpoints list for spliting parameters
pserver_endpoints = os.getenv("PSERVERS")
# server endpoint for current node
current_endpoint = os.getenv("SERVER_ENDPOINT")
# run as trainer or parameter server
training_role = os.getenv("TRAINING_ROLE",
"TRAINER") # get the training role: trainer/pserver
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
if training_role == "PSERVER":
if not current_endpoint:
print("need env SERVER_ENDPOINT")
exit(1)
pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops)
exe.run(fluid.default_startup_program())
exe.run(pserver_prog)
elif training_role == "TRAINER":
trainer_prog = t.get_trainer_program()
feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM):
accuracy.reset(exe)
batch_id = 0
for data in train_reader():
loss, acc = exe.run(trainer_prog,
feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics)
pass_acc = accuracy.eval(exe)
if batch_id % 100 == 0:
print("batch_id %d, loss: %f, acc: %f" %
(batch_id, loss, pass_acc))
batch_id += 1
pass_acc = accuracy.eval(exe)
print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc))
else:
print("environment var TRAINER_ROLE should be TRAINER os PSERVER")
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册