Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7743cdf2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2323
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7743cdf2
编写于
9月 01, 2021
作者:
B
baoachun
提交者:
GitHub
9月 01, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add strided_slice_grad op for npu (#35204)
* add strided_slice_grad op for npu
上级
5fa7d9ce
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
265 addition
and
36 deletion
+265
-36
paddle/fluid/operators/strided_slice_op_npu.cc
paddle/fluid/operators/strided_slice_op_npu.cc
+196
-6
python/paddle/fluid/tests/unittests/npu/test_strided_slice_op_npu.py
...le/fluid/tests/unittests/npu/test_strided_slice_op_npu.py
+69
-30
未找到文件。
paddle/fluid/operators/strided_slice_op_npu.cc
100755 → 100644
浏览文件 @
7743cdf2
...
...
@@ -226,14 +226,204 @@ class StridedSliceNPUKernel : public framework::OpKernel<T> {
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
StridedSliceGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Variable
*
input_var
=
ctx
.
InputVar
(
"Input"
);
bool
is_tensor_array
=
input_var
->
IsType
<
LoDTensorArray
>
();
PADDLE_ENFORCE_EQ
(
is_tensor_array
,
false
,
platform
::
errors
::
InvalidArgument
(
"Tensor array as input is not supported."
));
int
rank
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Input"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
StridedSliceGradCompute
<
1
>
(
ctx
);
break
;
case
2
:
StridedSliceGradCompute
<
2
>
(
ctx
);
break
;
case
3
:
StridedSliceGradCompute
<
3
>
(
ctx
);
break
;
case
4
:
StridedSliceGradCompute
<
4
>
(
ctx
);
break
;
case
5
:
StridedSliceGradCompute
<
5
>
(
ctx
);
break
;
case
6
:
StridedSliceGradCompute
<
6
>
(
ctx
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The rank of input is supported up to 6."
));
break
;
}
}
private:
template
<
size_t
D
>
void
StridedSliceGradCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
place
=
ctx
.
GetPlace
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>();
auto
*
input
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Input"
);
auto
input_dims
=
input
->
dims
();
auto
*
dout
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
dx
->
mutable_data
<
T
>
(
input_dims
,
place
);
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
auto
strides_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int64_t
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
std
::
vector
<
int64_t
>
ends
(
ends_int
.
begin
(),
ends_int
.
end
());
std
::
vector
<
int64_t
>
strides
(
strides_int
.
begin
(),
strides_int
.
end
());
auto
axes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
infer_flags
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"infer_flags"
);
auto
decrease_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
auto
list_new_ends_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"EndsTensorList"
);
auto
list_new_starts_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"StartsTensorList"
);
auto
list_new_strides_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"StridesTensorList"
);
if
(
list_new_starts_tensor
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
list_new_starts_tensor
);
}
else
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
auto
*
starts_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"StartsTensor"
);
starts
=
GetDataFromTensor
<
int64_t
>
(
starts_tensor
);
}
if
(
list_new_ends_tensor
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int64_t
>
(
list_new_ends_tensor
);
}
else
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
auto
*
ends_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"EndsTensor"
);
ends
=
GetDataFromTensor
<
int64_t
>
(
ends_tensor
);
}
if
(
list_new_strides_tensor
.
size
()
>
0
)
{
strides
=
GetDataFromTensorList
<
int64_t
>
(
list_new_strides_tensor
);
}
else
if
(
ctx
.
HasInput
(
"StridesTensor"
))
{
auto
*
strides_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"StridesTensor"
);
strides
=
GetDataFromTensor
<
int64_t
>
(
strides_tensor
);
}
std
::
vector
<
int64_t
>
out_dims_vector
(
input_dims
.
size
(),
-
1
);
StridedSliceOutDims
(
starts
,
ends
,
strides
,
axes
,
infer_flags
,
input_dims
,
decrease_axis
,
out_dims_vector
.
data
(),
axes
.
size
(),
false
);
std
::
vector
<
int
>
reverse_vector
(
starts
.
size
(),
0
);
StridedSliceFunctor
(
starts
.
data
(),
ends
.
data
(),
strides
.
data
(),
axes
.
data
(),
reverse_vector
.
data
(),
input_dims
,
infer_flags
,
decrease_axis
,
starts
.
size
());
std
::
vector
<
int64_t
>
starts_indices_vector
(
D
,
0
);
std
::
vector
<
int64_t
>
ends_indices_vector
(
out_dims_vector
.
begin
(),
out_dims_vector
.
end
());
std
::
vector
<
int64_t
>
strides_indices_vector
(
D
,
1
);
for
(
size_t
axis
=
0
;
axis
<
axes
.
size
();
axis
++
)
{
int
axis_index
=
axes
[
axis
];
starts_indices_vector
[
axis_index
]
=
starts
[
axis
];
ends_indices_vector
[
axis_index
]
=
ends
[
axis
];
strides_indices_vector
[
axis_index
]
=
strides
[
axis
];
}
Tensor
starts_indices_tensor
;
Tensor
ends_indices_tensor
;
Tensor
strides_indices_tensor
;
starts_indices_tensor
.
mutable_data
<
int64_t
>
({
D
},
place
);
ends_indices_tensor
.
mutable_data
<
int64_t
>
({
D
},
place
);
strides_indices_tensor
.
mutable_data
<
int64_t
>
({
D
},
place
);
TensorFromVector
(
starts_indices_vector
,
dev_ctx
,
&
starts_indices_tensor
);
TensorFromVector
(
ends_indices_vector
,
dev_ctx
,
&
ends_indices_tensor
);
TensorFromVector
(
strides_indices_vector
,
dev_ctx
,
&
strides_indices_tensor
);
std
::
vector
<
int64_t
>
input_dims_vector
;
for
(
int
i
=
0
;
i
<
input_dims
.
size
();
i
++
)
{
input_dims_vector
.
push_back
(
input_dims
[
i
]);
}
Tensor
input_dims_tensor
;
TensorFromVector
(
input_dims_vector
,
dev_ctx
,
&
input_dims_tensor
);
bool
need_reverse
=
false
;
for
(
size_t
axis
=
0
;
axis
<
axes
.
size
();
axis
++
)
{
if
(
reverse_vector
[
axis
]
==
1
)
{
need_reverse
=
true
;
break
;
}
}
auto
stream
=
dev_ctx
.
stream
();
framework
::
NPUAttributeMap
attr_input
=
{{
"begin_mask"
,
0
},
{
"end_mask"
,
0
},
{
"ellipsis_mask"
,
0
},
{
"new_axis_mask"
,
0
},
{
"shrink_axis_mask"
,
0
}};
if
(
need_reverse
)
{
Tensor
reverse_axis
;
std
::
vector
<
int
>
reverse_axis_vector
;
for
(
size_t
axis
=
0
;
axis
<
axes
.
size
();
axis
++
)
{
if
(
reverse_vector
[
axis
]
==
1
)
{
reverse_axis_vector
.
push_back
(
axes
[
axis
]);
}
}
reverse_axis
.
mutable_data
<
int
>
(
{
static_cast
<
int
>
(
reverse_axis_vector
.
size
())},
place
);
TensorFromVector
(
reverse_axis_vector
,
dev_ctx
,
&
reverse_axis
);
Tensor
dout_tmp
;
dout_tmp
.
mutable_data
<
T
>
(
dout
->
dims
(),
place
);
const
auto
&
runner_reverse
=
NpuOpRunner
(
"ReverseV2"
,
{
*
dout
,
reverse_axis
},
{
dout_tmp
});
runner_reverse
.
Run
(
stream
);
const
auto
&
runner
=
NpuOpRunner
(
"StridedSliceGrad"
,
{
input_dims_tensor
,
starts_indices_tensor
,
ends_indices_tensor
,
strides_indices_tensor
,
dout_tmp
},
{
*
dx
},
attr_input
);
runner
.
Run
(
stream
);
}
else
{
const
auto
&
runner
=
NpuOpRunner
(
"StridedSliceGrad"
,
{
input_dims_tensor
,
starts_indices_tensor
,
ends_indices_tensor
,
strides_indices_tensor
,
*
dout
},
{
*
dx
},
attr_input
);
runner
.
Run
(
stream
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
strided_slice
,
ops
::
StridedSliceNPUKernel
<
plat
::
NPUDeviceContext
,
bool
>
,
ops
::
StridedSliceNPUKernel
<
plat
::
NPUDeviceContext
,
int
>
,
ops
::
StridedSliceNPUKernel
<
plat
::
NPUDeviceContext
,
int64_t
>
,
ops
::
StridedSliceNPUKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
StridedSliceNPUKernel
<
plat
::
NPUDeviceContext
,
double
>
);
REGISTER_OP_NPU_KERNEL
(
strided_slice
,
ops
::
StridedSlice
NPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
bool
>
,
ops
::
StridedSlice
NPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
in
t
>
,
ops
::
StridedSlice
NPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int64_t
>
,
ops
::
StridedSlice
NPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
floa
t
>
,
ops
::
StridedSlice
NPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
double
>
);
strided_slice
_grad
,
ops
::
StridedSlice
GradNPUKernel
<
plat
::
NPUDeviceContext
,
plat
::
float16
>
,
ops
::
StridedSlice
GradNPUKernel
<
plat
::
NPUDeviceContext
,
floa
t
>
,
ops
::
StridedSlice
GradNPUKernel
<
plat
::
NPUDeviceContext
,
double
>
,
ops
::
StridedSlice
GradNPUKernel
<
plat
::
NPUDeviceContext
,
in
t
>
,
ops
::
StridedSlice
GradNPUKernel
<
plat
::
NPUDeviceContext
,
int64_t
>
);
python/paddle/fluid/tests/unittests/npu/test_strided_slice_op_npu.py
浏览文件 @
7743cdf2
...
...
@@ -56,11 +56,11 @@ def strided_slice_native_forward(input, axes, starts, ends, strides):
return
result
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
set_npu
()
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
op_type
=
'strided_slice'
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
...
...
@@ -75,12 +75,17 @@ class TestStridedSliceOp(OpTest):
'infer_flags'
:
self
.
infer_flags
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
)
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
10
)
self
.
input
=
np
.
random
.
rand
(
10
0
)
self
.
axes
=
[
0
]
self
.
starts
=
[
2
]
self
.
ends
=
[
7
]
...
...
@@ -283,12 +288,12 @@ class TestStridedSliceOpBool6D(TestStridedSliceOpBool):
self
.
infer_flags
=
[
1
,
1
,
1
,
1
,
1
]
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp_starts_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
op_type
=
"strided_slice"
self
.
config
()
self
.
set_npu
()
starts_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
starts
):
...
...
@@ -305,6 +310,9 @@ class TestStridedSliceOp_starts_ListTensor(OpTest):
'infer_flags'
:
self
.
infer_flags
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
...
...
@@ -318,16 +326,18 @@ class TestStridedSliceOp_starts_ListTensor(OpTest):
self
.
starts_infer
=
[
1
,
10
,
2
]
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
)
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp_ends_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
op_type
=
"strided_slice"
self
.
config
()
self
.
set_npu
()
ends_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
...
...
@@ -344,6 +354,9 @@ class TestStridedSliceOp_ends_ListTensor(OpTest):
'infer_flags'
:
self
.
infer_flags
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
0
]
...
...
@@ -357,16 +370,19 @@ class TestStridedSliceOp_ends_ListTensor(OpTest):
self
.
ends_infer
=
[
3
,
1
,
4
]
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
)
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp_starts_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
op_type
=
"strided_slice"
self
.
config
()
self
.
set_npu
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
...
...
@@ -381,6 +397,9 @@ class TestStridedSliceOp_starts_Tensor(OpTest):
'infer_flags'
:
self
.
infer_flags
,
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
...
...
@@ -392,16 +411,19 @@ class TestStridedSliceOp_starts_Tensor(OpTest):
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
)
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp_ends_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
op_type
=
"strided_slice"
self
.
config
()
self
.
set_npu
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"EndsTensor"
:
np
.
array
(
...
...
@@ -416,6 +438,9 @@ class TestStridedSliceOp_ends_Tensor(OpTest):
'infer_flags'
:
self
.
infer_flags
,
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
...
...
@@ -427,20 +452,23 @@ class TestStridedSliceOp_ends_Tensor(OpTest):
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
)
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp_listTensor_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
op_type
=
"strided_slice"
self
.
set_npu
()
self
.
config
()
ends_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
ends_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
op_type
=
"strided_slice"
self
.
inputs
=
{
'Input'
:
self
.
input
,
...
...
@@ -457,6 +485,9 @@ class TestStridedSliceOp_listTensor_Tensor(OpTest):
'infer_flags'
:
self
.
infer_flags
,
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
...
...
@@ -468,16 +499,19 @@ class TestStridedSliceOp_listTensor_Tensor(OpTest):
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
)
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp_strides_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
op_type
=
"strided_slice"
self
.
set_npu
()
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StridesTensor"
:
np
.
array
(
...
...
@@ -492,6 +526,9 @@ class TestStridedSliceOp_strides_Tensor(OpTest):
'infer_flags'
:
self
.
infer_flags
,
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
-
1
,
2
]
...
...
@@ -503,8 +540,10 @@ class TestStridedSliceOp_strides_Tensor(OpTest):
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
)
# Test python API
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录