Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
772be4f5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
772be4f5
编写于
2月 09, 2022
作者:
N
niuliling123
提交者:
GitHub
2月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Replace EigenBroadcast with ElementwiseBroadcast in ReduceGrad (#39255)
上级
b3e049f8
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
114 addition
and
19 deletion
+114
-19
paddle/fluid/operators/reduce_ops/reduce_mean_op.part.cu
paddle/fluid/operators/reduce_ops/reduce_mean_op.part.cu
+2
-8
paddle/fluid/operators/reduce_ops/reduce_op.h
paddle/fluid/operators/reduce_ops/reduce_op.h
+55
-4
paddle/fluid/operators/reduce_ops/reduce_sum_op.cc
paddle/fluid/operators/reduce_ops/reduce_sum_op.cc
+1
-1
paddle/fluid/operators/reduce_ops/reduce_sum_op.h
paddle/fluid/operators/reduce_ops/reduce_sum_op.h
+1
-1
paddle/fluid/operators/reduce_ops/reduce_sum_op.part.cu
paddle/fluid/operators/reduce_ops/reduce_sum_op.part.cu
+1
-2
paddle/pten/kernels/gpu/elementwise.h
paddle/pten/kernels/gpu/elementwise.h
+10
-3
paddle/pten/kernels/gpu/reduce_grad.h
paddle/pten/kernels/gpu/reduce_grad.h
+44
-0
未找到文件。
paddle/fluid/operators/reduce_ops/reduce_mean_op.part.cu
浏览文件 @
772be4f5
...
@@ -17,15 +17,9 @@
...
@@ -17,15 +17,9 @@
template
<
typename
T
>
template
<
typename
T
>
using
CUDAReduceMeanGradKernel
=
using
CUDAReduceMeanGradKernel
=
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
T
,
ops
::
ReduceCudaGradKernel
<
T
,
kps
::
DivideFunctor
>
;
ops
::
MeanGradFunctor
,
true
>
;
using
FP16CUDAReduceMeanGradKernel
=
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
,
ops
::
FP16MeanGradFunctor
,
true
>
;
REGISTER_OP_CUDA_KERNEL
(
reduce_mean_grad
,
CUDAReduceMeanGradKernel
<
bool
>
,
REGISTER_OP_CUDA_KERNEL
(
reduce_mean_grad
,
CUDAReduceMeanGradKernel
<
bool
>
,
FP16CUDAReduceMeanGradKernel
,
CUDAReduceMeanGradKernel
<
paddle
::
platform
::
float16
>
,
CUDAReduceMeanGradKernel
<
float
>
,
CUDAReduceMeanGradKernel
<
float
>
,
CUDAReduceMeanGradKernel
<
double
>
);
CUDAReduceMeanGradKernel
<
double
>
);
paddle/fluid/operators/reduce_ops/reduce_op.h
浏览文件 @
772be4f5
...
@@ -30,6 +30,7 @@ limitations under the License. */
...
@@ -30,6 +30,7 @@ limitations under the License. */
#if defined(__HIPCC__) || defined(__NVCC__)
#if defined(__HIPCC__) || defined(__NVCC__)
#include "paddle/pten/kernels/gpu/reduce.h"
#include "paddle/pten/kernels/gpu/reduce.h"
#include "paddle/pten/kernels/gpu/reduce_grad.h"
#endif
#endif
namespace
paddle
{
namespace
paddle
{
...
@@ -620,11 +621,12 @@ class ReduceGradOp : public framework::OperatorWithKernel {
...
@@ -620,11 +621,12 @@ class ReduceGradOp : public framework::OperatorWithKernel {
protected:
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
int
in_dtype
=
ctx
.
Attr
<
int
>
(
"in
_dtype"
);
int
out_dtype
=
ctx
.
Attr
<
int
>
(
"out
_dtype"
);
auto
input_data_type
=
auto
input_data_type
=
(
in_dtype
>=
0
)
?
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
in_dtype
)
(
out_dtype
>=
0
)
:
OperatorWithKernel
::
IndicateVarDataType
(
?
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
out_dtype
)
ctx
,
framework
::
GradVarName
(
"Out"
));
:
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
));
#ifdef PADDLE_WITH_MKLDNN
#ifdef PADDLE_WITH_MKLDNN
auto
CanMKLDNNReduceGradBeUsed
=
[
&
]()
{
auto
CanMKLDNNReduceGradBeUsed
=
[
&
]()
{
auto
dx_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
dx_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
...
@@ -730,6 +732,55 @@ class ReduceCudaKernel : public framework::OpKernel<T> {
...
@@ -730,6 +732,55 @@ class ReduceCudaKernel : public framework::OpKernel<T> {
dev_ctx
,
*
input
,
reduce_all
,
dims_int64
,
false
,
pt_out_dtype
,
output
);
dev_ctx
,
*
input
,
reduce_all
,
dims_int64
,
false
,
pt_out_dtype
,
output
);
}
}
};
};
template
<
typename
T
,
template
<
typename
,
typename
>
class
TransformOp
>
class
ReduceCudaGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
std
::
vector
<
int
>
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
d_out
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
out_dtype
=
context
.
Attr
<
int
>
(
"in_dtype"
);
// get reduce_dim and reduce_num for reduce_mean_grad
int
dim_size
=
in_x
->
dims
().
size
();
std
::
vector
<
int
>
reduce_dims
=
GetReduceDim
(
dims
,
dim_size
,
reduce_all
);
auto
update_dims
=
vectorize
(
d_x
->
dims
());
int
reduce_num
=
1
;
for
(
auto
i
:
reduce_dims
)
{
reduce_num
*=
(
in_x
->
dims
())[
i
];
update_dims
[
i
]
=
1
;
}
// make new tensor
framework
::
Tensor
new_d_out
(
d_out
->
type
());
new_d_out
.
ShareDataWith
(
*
d_out
);
new_d_out
.
Resize
(
paddle
::
framework
::
make_ddim
(
update_dims
));
auto
&
dev_ctx
=
context
.
cuda_device_context
();
if
(
out_dtype
>
0
)
{
d_x
->
mutable_data
(
dev_ctx
.
GetPlace
(),
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
out_dtype
));
}
else
{
d_x
->
mutable_data
(
dev_ctx
.
GetPlace
(),
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
d_out
->
type
()));
}
auto
pt_d_out
=
paddle
::
experimental
::
MakePtenDenseTensor
(
new_d_out
);
auto
pt_d_x
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
d_x
);
auto
pt_out_dtype
=
pten
::
TransToPtenDataType
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
out_dtype
));
if
(
out_dtype
<=
0
)
{
pt_out_dtype
=
pten
::
TransToPtenDataType
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
d_out
->
type
()));
}
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
pten
::
ReduceGrad
<
T
,
TransformOp
<
T
,
MPType
>>
(
dev_ctx
,
pt_d_out
.
get
(),
pt_d_x
.
get
(),
pt_out_dtype
,
TransformOp
<
T
,
MPType
>
(
reduce_num
));
}
};
#endif
#endif
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/reduce_ops/reduce_sum_op.cc
浏览文件 @
772be4f5
...
@@ -50,7 +50,7 @@ class ReduceSumOpGradMaker : public framework::SingleGradOpMaker<T> {
...
@@ -50,7 +50,7 @@ class ReduceSumOpGradMaker : public framework::SingleGradOpMaker<T> {
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
framework
::
ExecutionContext
&
ctx
)
const
{
int
in_dtype
=
ctx
.
Attr
<
int
>
(
"
in
_dtype"
);
int
in_dtype
=
ctx
.
Attr
<
int
>
(
"
out
_dtype"
);
if
(
in_dtype
>=
0
)
{
if
(
in_dtype
>=
0
)
{
return
framework
::
OpKernelType
(
return
framework
::
OpKernelType
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
in_dtype
),
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
in_dtype
),
...
...
paddle/fluid/operators/reduce_ops/reduce_sum_op.h
浏览文件 @
772be4f5
...
@@ -74,7 +74,7 @@ class ReduceSumGradKernel : public framework::OpKernel<T> {
...
@@ -74,7 +74,7 @@ class ReduceSumGradKernel : public framework::OpKernel<T> {
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
if
(
context
.
GetPlace
().
GetType
()
==
platform
::
CPUPlace
().
GetType
()
&&
if
(
context
.
GetPlace
().
GetType
()
==
platform
::
CPUPlace
().
GetType
()
&&
dims
.
size
()
==
1
)
{
dims
.
size
()
==
1
)
{
int
in_dtype
=
context
.
Attr
<
int
>
(
"
in
_dtype"
);
int
in_dtype
=
context
.
Attr
<
int
>
(
"
out
_dtype"
);
if
(
in_dtype
>=
0
)
{
if
(
in_dtype
>=
0
)
{
Tensor
tmp_tensor
;
Tensor
tmp_tensor
;
...
...
paddle/fluid/operators/reduce_ops/reduce_sum_op.part.cu
浏览文件 @
772be4f5
...
@@ -17,8 +17,7 @@
...
@@ -17,8 +17,7 @@
template
<
typename
T
>
template
<
typename
T
>
using
CUDAReduceSumGradKernel
=
using
CUDAReduceSumGradKernel
=
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
T
,
ops
::
ReduceCudaGradKernel
<
T
,
kps
::
IdentityFunctor
>
;
ops
::
SumGradFunctor
,
true
>
;
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
reduce_sum_grad
,
CUDAReduceSumGradKernel
<
bool
>
,
reduce_sum_grad
,
CUDAReduceSumGradKernel
<
bool
>
,
...
...
paddle/pten/kernels/gpu/elementwise.h
浏览文件 @
772be4f5
...
@@ -134,12 +134,19 @@ struct DimensionsTransform {
...
@@ -134,12 +134,19 @@ struct DimensionsTransform {
explicit
DimensionsTransform
(
const
std
::
vector
<
const
DenseTensor
*>
&
ins
,
explicit
DimensionsTransform
(
const
std
::
vector
<
const
DenseTensor
*>
&
ins
,
const
pten
::
framework
::
DDim
&
dims
,
const
pten
::
framework
::
DDim
&
dims
,
int
axis
)
{
int
axis
)
{
const
int
N
=
ins
.
size
(
);
const
int
N
=
max
(
static_cast
<
int
>
(
ins
.
size
()),
2
);
dim_size
=
dims
.
size
();
dim_size
=
dims
.
size
();
out_dims
=
pten
::
framework
::
vectorize
<
int64_t
>
(
dims
);
out_dims
=
pten
::
framework
::
vectorize
<
int64_t
>
(
dims
);
in_dims
.
resize
(
N
);
in_dims
.
resize
(
N
);
for
(
int
j
=
0
;
j
<
N
;
++
j
)
{
if
(
ins
.
size
()
==
1
)
{
in_dims
[
j
]
=
pten
::
framework
::
vectorize
<
int64_t
>
(
ins
[
j
]
->
dims
());
// when ins.size() = 1, broadcast input to output
in_dims
[
0
]
=
pten
::
framework
::
vectorize
<
int64_t
>
(
ins
[
0
]
->
dims
());
in_dims
[
1
]
=
out_dims
;
// Add out_dims to in_dims to avoid errors in dims merging
}
else
{
for
(
int
j
=
0
;
j
<
N
;
++
j
)
{
in_dims
[
j
]
=
pten
::
framework
::
vectorize
<
int64_t
>
(
ins
[
j
]
->
dims
());
}
}
}
InputDimensionsExtend
(
N
,
axis
);
InputDimensionsExtend
(
N
,
axis
);
...
...
paddle/pten/kernels/gpu/reduce_grad.h
0 → 100644
浏览文件 @
772be4f5
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
// CUDA and HIP use same api
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>
#include "paddle/pten/kernels/gpu/elementwise.h"
namespace
pten
{
template
<
typename
InT
,
typename
Functor
>
void
ReduceGrad
(
const
GPUContext
&
dev_ctx
,
DenseTensor
*
d_out
,
DenseTensor
*
d_x
,
DataType
out_dtype
,
Functor
functor
)
{
std
::
vector
<
const
DenseTensor
*>
inputs
=
{
d_out
};
std
::
vector
<
DenseTensor
*>
outputs
=
{
d_x
};
PD_VISIT_ALL_TYPES
(
out_dtype
,
"LaunchBroadcastElementwiseCudaKernel"
,
([
&
]
{
LaunchBroadcastElementwiseCudaKernel
<
pten
::
ElementwiseType
::
kUnary
,
InT
,
data_t
>
(
dev_ctx
,
inputs
,
&
outputs
,
0
,
functor
);
}));
}
}
// namespace pten
#endif
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录