Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7613129e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7613129e
编写于
1月 25, 2022
作者:
Y
YuanRisheng
提交者:
GitHub
1月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
change infermeta and remove makePtenTenosr in reshape (#39186)
上级
09104d02
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
81 addition
and
111 deletion
+81
-111
paddle/fluid/operators/reduce_ops/reduce_op.h
paddle/fluid/operators/reduce_ops/reduce_op.h
+1
-1
paddle/fluid/operators/reshape_op.cc
paddle/fluid/operators/reshape_op.cc
+17
-85
paddle/pten/api/include/kernel_signature.h
paddle/pten/api/include/kernel_signature.h
+1
-1
paddle/pten/core/dense_tensor.cc
paddle/pten/core/dense_tensor.cc
+13
-0
paddle/pten/core/dense_tensor.h
paddle/pten/core/dense_tensor.h
+2
-0
paddle/pten/infermeta/binary.cc
paddle/pten/infermeta/binary.cc
+7
-2
paddle/pten/infermeta/binary.h
paddle/pten/infermeta/binary.h
+6
-2
paddle/pten/infermeta/unary.cc
paddle/pten/infermeta/unary.cc
+10
-0
paddle/pten/infermeta/unary.h
paddle/pten/infermeta/unary.h
+5
-0
paddle/pten/kernels/math_kernel.cc
paddle/pten/kernels/math_kernel.cc
+1
-1
paddle/pten/kernels/math_kernel.h
paddle/pten/kernels/math_kernel.h
+7
-7
paddle/pten/kernels/reshape_kernel.cc
paddle/pten/kernels/reshape_kernel.cc
+2
-3
python/paddle/utils/code_gen/api.yaml
python/paddle/utils/code_gen/api.yaml
+9
-9
未找到文件。
paddle/fluid/operators/reduce_ops/reduce_op.h
浏览文件 @
7613129e
...
@@ -557,7 +557,7 @@ class ReduceOp : public framework::OperatorWithKernel {
...
@@ -557,7 +557,7 @@ class ReduceOp : public framework::OperatorWithKernel {
if
(
ctx
.
InputVar
(
"X"
)
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
ctx
.
InputVar
(
"X"
)
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
!
reduce_all
)
{
if
(
!
reduce_all
)
{
return
framework
::
KernelSignature
(
return
framework
::
KernelSignature
(
"sum"
,
{
"X"
},
{
"dim"
,
"
keep_dim"
,
"out_dtype
"
},
{
"Out"
});
"sum"
,
{
"X"
},
{
"dim"
,
"
out_dtype"
,
"keep_dim
"
},
{
"Out"
});
}
}
return
framework
::
KernelSignature
(
return
framework
::
KernelSignature
(
"sum_raw"
,
{
"X"
},
{
"dim"
,
"keep_dim"
,
"reduce_all"
,
"out_dtype"
},
"sum_raw"
,
{
"X"
},
{
"dim"
,
"keep_dim"
,
"reduce_all"
,
"out_dtype"
},
...
...
paddle/fluid/operators/reshape_op.cc
浏览文件 @
7613129e
...
@@ -38,33 +38,6 @@ namespace operators {
...
@@ -38,33 +38,6 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
inline
std
::
vector
<
int
>
get_new_shape
(
const
std
::
vector
<
const
Tensor
*>
&
list_new_shape_tensor
)
{
// get tensor from
std
::
vector
<
int
>
vec_new_shape
;
for
(
size_t
i
=
0
;
i
<
list_new_shape_tensor
.
size
();
++
i
)
{
auto
tensor
=
list_new_shape_tensor
[
i
];
PADDLE_ENFORCE_EQ
(
tensor
->
dims
(),
framework
::
make_ddim
({
1
}),
platform
::
errors
::
InvalidArgument
(
"If the element type of 'shape' in ReshapeOp is Tensor, "
"the element's shape must be [1]. But received the element's shape "
"is [%s]"
,
tensor
->
dims
()));
if
(
platform
::
is_gpu_place
(
tensor
->
place
())
||
platform
::
is_xpu_place
(
tensor
->
place
()))
{
framework
::
Tensor
temp
;
paddle
::
framework
::
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
temp
);
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
temp
.
data
<
int32_t
>
()));
}
else
{
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
tensor
->
data
<
int32_t
>
()));
}
}
return
vec_new_shape
;
}
class
ReshapeOp
:
public
framework
::
OperatorWithKernel
{
class
ReshapeOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
ReshapeOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
ReshapeOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
...
@@ -370,30 +343,6 @@ class ReshapeKernel {
...
@@ -370,30 +343,6 @@ class ReshapeKernel {
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
in
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
in
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
// framework::DDim out_dims = out->dims();
auto
pt_x
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
in
);
// we can't MakePtenDenseTensor by out, because the out of reshape may have
// multiple states, some can MakePtenDenseTensor but other's cannot:
// 1. out tensor is not initialized
// 2. out tensor is input (complete inplace)
// 3. out tensor is view of input
// We can't MakePtenDenseTensor for case 2, so we solve this case by
// creating a temporary tensor here:
pten
::
DenseTensorMeta
meta
{
pten
::
TransToPtenDataType
(
in
->
type
()),
in
->
dims
(),
in
->
layout
()};
auto
pt_out_tmp
=
std
::
make_shared
<
pten
::
DenseTensor
>
(
pten
::
make_intrusive
<
paddle
::
experimental
::
SharedStorage
>
(
ctx
.
GetPlace
()),
std
::
move
(
meta
));
pten
::
DenseTensor
*
pt_out
=
nullptr
;
if
(
in
!=
nullptr
&&
out
!=
nullptr
&&
in
->
Holder
()
!=
nullptr
&&
out
->
Holder
()
!=
nullptr
&&
in
->
Holder
()
->
ptr
()
==
out
->
Holder
()
->
ptr
())
{
pt_out
=
pt_x
.
get
();
}
else
{
pt_out
=
pt_out_tmp
.
get
();
}
auto
list_new_shape_tensor
=
auto
list_new_shape_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"ShapeTensor"
);
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"ShapeTensor"
);
...
@@ -410,55 +359,46 @@ class ReshapeKernel {
...
@@ -410,55 +359,46 @@ class ReshapeKernel {
framework
::
Tensor
temp
;
framework
::
Tensor
temp
;
paddle
::
framework
::
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
paddle
::
framework
::
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
temp
);
&
temp
);
pt_vec_shape
.
push_back
(
pt_vec_shape
.
push_back
(
std
::
move
(
temp
));
std
::
move
(
*
(
paddle
::
experimental
::
MakePtenDenseTensor
(
temp
))));
}
else
{
}
else
{
pt_vec_shape
.
push_back
(
pt_vec_shape
.
push_back
(
*
tensor
);
std
::
move
(
*
(
paddle
::
experimental
::
MakePtenDenseTensor
(
*
tensor
))));
}
}
}
}
pt_scalar_shape
=
pten
::
ScalarArray
(
pt_vec_shape
);
pt_scalar_shape
=
pten
::
ScalarArray
(
pt_vec_shape
);
}
else
if
(
shape_tensor
)
{
}
else
if
(
shape_tensor
)
{
std
::
unique_ptr
<
pten
::
DenseTensor
>
pt_shape
;
pten
::
DenseTensor
pt_shape
;
if
(
platform
::
is_gpu_place
(
shape_tensor
->
place
())
||
if
(
platform
::
is_gpu_place
(
shape_tensor
->
place
())
||
platform
::
is_xpu_place
(
shape_tensor
->
place
()))
{
platform
::
is_xpu_place
(
shape_tensor
->
place
()))
{
framework
::
Tensor
temp
;
framework
::
Tensor
temp
;
paddle
::
framework
::
TensorCopySync
(
*
shape_tensor
,
platform
::
CPUPlace
(),
paddle
::
framework
::
TensorCopySync
(
*
shape_tensor
,
platform
::
CPUPlace
(),
&
temp
);
&
temp
);
pt_shape
=
paddle
::
experimental
::
MakePtenDenseTensor
(
temp
);
pt_shape
=
std
::
move
(
temp
);
}
else
{
}
else
{
pt_shape
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
shape_tensor
)
;
pt_shape
=
*
shape_tensor
;
}
}
pt_scalar_shape
=
pten
::
ScalarArray
(
*
pt_shape
.
get
()
);
pt_scalar_shape
=
pten
::
ScalarArray
(
pt_shape
);
}
else
{
}
else
{
auto
&
shape_attr
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
auto
&
shape_attr
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
pt_scalar_shape
=
pten
::
ScalarArray
(
shape_attr
);
pt_scalar_shape
=
pten
::
ScalarArray
(
shape_attr
);
}
}
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CPUDeviceContext
>
();
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CPUDeviceContext
>
();
pten
::
ReshapeKernel
(
static_cast
<
const
pten
::
CPUContext
&>
(
dev_ctx
),
pten
::
ReshapeKernel
(
static_cast
<
const
pten
::
CPUContext
&>
(
dev_ctx
),
*
in
,
*
pt_x
.
get
(),
pt_scalar_shape
,
pt_
out
);
pt_scalar_shape
,
out
);
}
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CUDADeviceContext
>
();
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CUDADeviceContext
>
();
pten
::
ReshapeKernel
(
dev_ctx
,
*
pt_x
.
get
(),
pt_scalar_shape
,
pt_
out
);
pten
::
ReshapeKernel
(
dev_ctx
,
*
in
,
pt_scalar_shape
,
out
);
}
}
#endif
#endif
#ifdef PADDLE_WITH_XPU
#ifdef PADDLE_WITH_XPU
if
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()))
{
if
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
XPUDeviceContext
>
();
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
XPUDeviceContext
>
();
pten
::
ReshapeKernel
(
static_cast
<
const
pten
::
XPUContext
&>
(
dev_ctx
),
pten
::
ReshapeKernel
(
static_cast
<
const
pten
::
XPUContext
&>
(
dev_ctx
),
*
in
,
*
pt_x
.
get
(),
pt_scalar_shape
,
pt_
out
);
pt_scalar_shape
,
out
);
}
}
#endif
#endif
// non-inplace need move all result from pt_out to out, inplace need set
// result dims.
if
(
in
!=
out
)
{
paddle
::
experimental
::
SharesStorage
(
pt_out
,
static_cast
<
Tensor
*>
(
out
));
}
else
{
out
->
Resize
(
pt_out
->
dims
());
}
}
}
};
};
...
@@ -469,25 +409,22 @@ class ReshapeGradKernel {
...
@@ -469,25 +409,22 @@ class ReshapeGradKernel {
auto
*
d_x
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_x
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
d_x
->
mutable_data
(
ctx
.
GetPlace
(),
d_out
->
type
());
d_x
->
mutable_data
(
ctx
.
GetPlace
(),
d_out
->
type
());
auto
pt_d_x
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
d_x
);
auto
pt_d_out
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
d_out
);
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CPUDeviceContext
>
();
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CPUDeviceContext
>
();
pten
::
ReshapeGradKernel
(
static_cast
<
const
pten
::
CPUContext
&>
(
dev_ctx
),
pten
::
ReshapeGradKernel
(
static_cast
<
const
pten
::
CPUContext
&>
(
dev_ctx
),
*
pt_d_out
.
get
(),
pt_d_x
.
get
()
);
*
d_out
,
d_x
);
}
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CUDADeviceContext
>
();
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CUDADeviceContext
>
();
pten
::
ReshapeGradKernel
(
dev_ctx
,
*
pt_d_out
.
get
(),
pt_d_x
.
get
()
);
pten
::
ReshapeGradKernel
(
dev_ctx
,
*
d_out
,
d_x
);
}
}
#endif
#endif
#ifdef PADDLE_WITH_XPU
#ifdef PADDLE_WITH_XPU
if
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()))
{
if
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
XPUDeviceContext
>
();
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
XPUDeviceContext
>
();
pten
::
ReshapeGradKernel
(
static_cast
<
const
pten
::
XPUContext
&>
(
dev_ctx
),
pten
::
ReshapeGradKernel
(
static_cast
<
const
pten
::
XPUContext
&>
(
dev_ctx
),
*
pt_d_out
.
get
(),
pt_d_x
.
get
()
);
*
d_out
,
d_x
);
}
}
#endif
#endif
}
}
...
@@ -500,27 +437,22 @@ class ReshapeDoubleGradKernel {
...
@@ -500,27 +437,22 @@ class ReshapeDoubleGradKernel {
auto
*
dd_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"DDOut"
);
auto
*
dd_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"DDOut"
);
dd_out
->
mutable_data
(
ctx
.
GetPlace
(),
dd_x
->
type
());
dd_out
->
mutable_data
(
ctx
.
GetPlace
(),
dd_x
->
type
());
auto
pt_dd_x
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
dd_x
);
auto
pt_dd_out
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
dd_out
);
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CPUDeviceContext
>
();
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CPUDeviceContext
>
();
pten
::
ReshapeDoubleGradKernel
(
pten
::
ReshapeDoubleGradKernel
(
static_cast
<
const
pten
::
CPUContext
&>
(
dev_ctx
),
*
pt_dd_x
.
get
(),
static_cast
<
const
pten
::
CPUContext
&>
(
dev_ctx
),
*
dd_x
,
dd_out
);
pt_dd_out
.
get
());
}
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CUDADeviceContext
>
();
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CUDADeviceContext
>
();
pten
::
ReshapeDoubleGradKernel
(
dev_ctx
,
*
pt_dd_x
.
get
(),
pt_dd_out
.
get
()
);
pten
::
ReshapeDoubleGradKernel
(
dev_ctx
,
*
dd_x
,
dd_out
);
}
}
#endif
#endif
#ifdef PADDLE_WITH_XPU
#ifdef PADDLE_WITH_XPU
if
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()))
{
if
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
XPUDeviceContext
>
();
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
XPUDeviceContext
>
();
pten
::
ReshapeDoubleGradKernel
(
pten
::
ReshapeDoubleGradKernel
(
static_cast
<
const
pten
::
XPUContext
&>
(
dev_ctx
),
*
pt_dd_x
.
get
(),
static_cast
<
const
pten
::
XPUContext
&>
(
dev_ctx
),
*
dd_x
,
dd_out
);
pt_dd_out
.
get
());
}
}
#endif
#endif
}
}
...
...
paddle/pten/api/include/kernel_signature.h
浏览文件 @
7613129e
...
@@ -102,8 +102,8 @@ using scale_kernel = void (*)(const DeviceContext&,
...
@@ -102,8 +102,8 @@ using scale_kernel = void (*)(const DeviceContext&,
using
sum_kernel
=
void
(
*
)(
const
DeviceContext
&
,
using
sum_kernel
=
void
(
*
)(
const
DeviceContext
&
,
const
DenseTensor
&
,
const
DenseTensor
&
,
const
std
::
vector
<
int64_t
>&
,
const
std
::
vector
<
int64_t
>&
,
bool
,
DataType
,
DataType
,
bool
,
DenseTensor
*
);
DenseTensor
*
);
using
subtract_kernel
=
void
(
*
)(
const
DeviceContext
&
,
using
subtract_kernel
=
void
(
*
)(
const
DeviceContext
&
,
...
...
paddle/pten/core/dense_tensor.cc
浏览文件 @
7613129e
...
@@ -126,6 +126,19 @@ void DenseTensor::set_meta(DenseTensorMeta&& meta) {
...
@@ -126,6 +126,19 @@ void DenseTensor::set_meta(DenseTensorMeta&& meta) {
meta_
=
std
::
move
(
meta
);
meta_
=
std
::
move
(
meta
);
}
}
void
DenseTensor
::
set_meta
(
const
DenseTensorMeta
&
meta
)
{
PADDLE_ENFORCE
(
meta
.
valid
(),
paddle
::
platform
::
errors
::
InvalidArgument
(
"Input meta is invalid, please check the meta attribute."
));
meta_
.
dims
=
meta
.
dims
;
meta_
.
dtype
=
meta
.
dtype
;
meta_
.
is_scalar
=
meta
.
is_scalar
;
meta_
.
layout
=
meta
.
layout
;
meta_
.
lod
=
meta
.
lod
;
meta_
.
offset
=
meta
.
offset
;
}
/* @jim19930609: This interface will be further modified util we finalized the
/* @jim19930609: This interface will be further modified util we finalized the
design for Allocator - Allocation
design for Allocator - Allocation
For now, we have to temporarily accommodate two independent use cases:
For now, we have to temporarily accommodate two independent use cases:
...
...
paddle/pten/core/dense_tensor.h
浏览文件 @
7613129e
...
@@ -131,6 +131,8 @@ class DenseTensor : public TensorBase,
...
@@ -131,6 +131,8 @@ class DenseTensor : public TensorBase,
/// \param meta The meta information of the tensor.
/// \param meta The meta information of the tensor.
void
set_meta
(
DenseTensorMeta
&&
meta
);
void
set_meta
(
DenseTensorMeta
&&
meta
);
void
set_meta
(
const
DenseTensorMeta
&
meta
);
/// \brief Test whether the metadata is valid.
/// \brief Test whether the metadata is valid.
/// \return Whether the metadata is valid.
/// \return Whether the metadata is valid.
bool
valid
()
const
noexcept
override
{
return
meta_
.
valid
();
}
bool
valid
()
const
noexcept
override
{
return
meta_
.
valid
();
}
...
...
paddle/pten/infermeta/binary.cc
浏览文件 @
7613129e
...
@@ -131,8 +131,13 @@ DenseTensorMeta MatmulInferMeta(const DenseTensorMeta& x_meta,
...
@@ -131,8 +131,13 @@ DenseTensorMeta MatmulInferMeta(const DenseTensorMeta& x_meta,
}
}
DenseTensorMeta
ElementwiseInferMeta
(
const
DenseTensorMeta
&
x_meta
,
DenseTensorMeta
ElementwiseInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
DenseTensorMeta
&
y_meta
,
const
DenseTensorMeta
&
y_meta
)
{
int
axis
)
{
return
ElementwiseRawInferMeta
(
x_meta
,
y_meta
,
-
1
);
}
DenseTensorMeta
ElementwiseRawInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
DenseTensorMeta
&
y_meta
,
int
axis
)
{
DenseTensorMeta
return_meta
(
x_meta
.
dtype
,
x_meta
.
dims
,
x_meta
.
layout
);
DenseTensorMeta
return_meta
(
x_meta
.
dtype
,
x_meta
.
dims
,
x_meta
.
layout
);
if
(
x_meta
.
dims
!=
y_meta
.
dims
)
{
if
(
x_meta
.
dims
!=
y_meta
.
dims
)
{
auto
x_dims
=
x_meta
.
dims
;
auto
x_dims
=
x_meta
.
dims
;
...
...
paddle/pten/infermeta/binary.h
浏览文件 @
7613129e
...
@@ -42,6 +42,10 @@ DenseTensorMeta MatmulInferMeta(const DenseTensorMeta& x_meta,
...
@@ -42,6 +42,10 @@ DenseTensorMeta MatmulInferMeta(const DenseTensorMeta& x_meta,
bool
trans_y
);
bool
trans_y
);
DenseTensorMeta
ElementwiseInferMeta
(
const
DenseTensorMeta
&
x_meta
,
DenseTensorMeta
ElementwiseInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
DenseTensorMeta
&
y_meta
,
const
DenseTensorMeta
&
y_meta
);
int
axis
);
DenseTensorMeta
ElementwiseRawInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
DenseTensorMeta
&
y_meta
,
int
axis
);
}
// namespace pten
}
// namespace pten
paddle/pten/infermeta/unary.cc
浏览文件 @
7613129e
...
@@ -232,6 +232,16 @@ DenseTensorMeta ReshapeInferMeta(const DenseTensorMeta& x_meta,
...
@@ -232,6 +232,16 @@ DenseTensorMeta ReshapeInferMeta(const DenseTensorMeta& x_meta,
return
InferMetaFromVecValue
(
x_meta
,
shape
.
GetData
());
return
InferMetaFromVecValue
(
x_meta
,
shape
.
GetData
());
}
}
/* Why not use ReduceInferMeta directly?
Because we need make InferMetaFunction's args follow the design of api.yaml
*/
DenseTensorMeta
SumInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
std
::
vector
<
int64_t
>&
axis
,
DataType
dtype
,
bool
keep_dim
)
{
return
ReduceInferMeta
(
x_meta
,
axis
,
keep_dim
,
dtype
);
}
DenseTensorMeta
ReduceInferMeta
(
const
DenseTensorMeta
&
x_meta
,
DenseTensorMeta
ReduceInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
std
::
vector
<
int64_t
>&
axis
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
keep_dim
,
...
...
paddle/pten/infermeta/unary.h
浏览文件 @
7613129e
...
@@ -58,4 +58,9 @@ DenseTensorMeta ReduceInferMeta(const DenseTensorMeta& x_meta,
...
@@ -58,4 +58,9 @@ DenseTensorMeta ReduceInferMeta(const DenseTensorMeta& x_meta,
const
std
::
vector
<
int64_t
>&
axis
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
keep_dim
,
DataType
dtype
=
DataType
::
UNDEFINED
);
DataType
dtype
=
DataType
::
UNDEFINED
);
DenseTensorMeta
SumInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
std
::
vector
<
int64_t
>&
axis
,
DataType
dtype
,
bool
keep_dim
);
}
// namespace pten
}
// namespace pten
paddle/pten/kernels/math_kernel.cc
浏览文件 @
7613129e
...
@@ -33,8 +33,8 @@ template <typename T, typename Context>
...
@@ -33,8 +33,8 @@ template <typename T, typename Context>
void
SumKernel
(
const
Context
&
dev_ctx
,
void
SumKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
DataType
out_dtype
,
DataType
out_dtype
,
bool
keep_dim
,
DenseTensor
*
out
)
{
DenseTensor
*
out
)
{
bool
reduce_all
=
false
;
bool
reduce_all
=
false
;
SumRawKernel
<
T
>
(
dev_ctx
,
x
,
dims
,
keep_dim
,
reduce_all
,
out_dtype
,
out
);
SumRawKernel
<
T
>
(
dev_ctx
,
x
,
dims
,
keep_dim
,
reduce_all
,
out_dtype
,
out
);
...
...
paddle/pten/kernels/math_kernel.h
浏览文件 @
7613129e
...
@@ -50,8 +50,8 @@ template <typename T, typename Context>
...
@@ -50,8 +50,8 @@ template <typename T, typename Context>
void
SumKernel
(
const
Context
&
dev_ctx
,
void
SumKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
DataType
out_dtype
,
DataType
out_dtype
,
bool
keep_dim
,
DenseTensor
*
out
);
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
template
<
typename
T
,
typename
Context
>
...
@@ -110,7 +110,7 @@ template <typename T, typename Context>
...
@@ -110,7 +110,7 @@ template <typename T, typename Context>
DenseTensor
Add
(
const
Context
&
dev_ctx
,
DenseTensor
Add
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
)
{
const
DenseTensor
&
y
)
{
auto
out_meta
=
ElementwiseInferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
out_meta
=
Elementwise
Raw
InferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
AddKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
AddKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
return
dense_out
;
return
dense_out
;
...
@@ -120,7 +120,7 @@ template <typename T, typename Context>
...
@@ -120,7 +120,7 @@ template <typename T, typename Context>
DenseTensor
Subtract
(
const
Context
&
dev_ctx
,
DenseTensor
Subtract
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
)
{
const
DenseTensor
&
y
)
{
auto
out_meta
=
ElementwiseInferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
out_meta
=
Elementwise
Raw
InferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
SubtractKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
SubtractKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
return
dense_out
;
return
dense_out
;
...
@@ -130,7 +130,7 @@ template <typename T, typename Context>
...
@@ -130,7 +130,7 @@ template <typename T, typename Context>
DenseTensor
Divide
(
const
Context
&
dev_ctx
,
DenseTensor
Divide
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
)
{
const
DenseTensor
&
y
)
{
auto
out_meta
=
ElementwiseInferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
out_meta
=
Elementwise
Raw
InferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
DivideKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
DivideKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
return
dense_out
;
return
dense_out
;
...
@@ -140,7 +140,7 @@ template <typename T, typename Context>
...
@@ -140,7 +140,7 @@ template <typename T, typename Context>
DenseTensor
Multiply
(
const
Context
&
dev_ctx
,
DenseTensor
Multiply
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
)
{
const
DenseTensor
&
y
)
{
auto
out_meta
=
ElementwiseInferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
out_meta
=
Elementwise
Raw
InferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
MultiplyKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
MultiplyKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
return
dense_out
;
return
dense_out
;
...
@@ -163,10 +163,10 @@ DenseTensor Sum(const Context& dev_ctx,
...
@@ -163,10 +163,10 @@ DenseTensor Sum(const Context& dev_ctx,
const
std
::
vector
<
int64_t
>&
axis
,
const
std
::
vector
<
int64_t
>&
axis
,
DataType
dtype
,
DataType
dtype
,
bool
keep_dim
)
{
bool
keep_dim
)
{
auto
out_meta
=
ReduceInferMeta
(
x
.
meta
(),
axis
,
keep_dim
,
dtype
);
auto
out_meta
=
SumInferMeta
(
x
.
meta
(),
axis
,
dtype
,
keep_dim
);
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
SumKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
axis
,
keep_dim
,
dtype
,
&
dense_out
);
SumKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
axis
,
dtype
,
keep_dim
,
&
dense_out
);
return
dense_out
;
return
dense_out
;
}
}
...
...
paddle/pten/kernels/reshape_kernel.cc
浏览文件 @
7613129e
...
@@ -31,9 +31,8 @@ void ReshapeKernel(const Context& dev_ctx,
...
@@ -31,9 +31,8 @@ void ReshapeKernel(const Context& dev_ctx,
out
->
ResizeAndAllocate
(
out_meta
.
dims
);
out
->
ResizeAndAllocate
(
out_meta
.
dims
);
return
;
return
;
}
}
out
->
set_meta
(
out_meta
);
out
->
Resize
(
x
.
dims
());
out
->
mutable_data
(
dev_ctx
.
GetPlace
());
out
->
mutable_data
(
x
.
place
());
pten
::
Copy
(
dev_ctx
,
x
,
false
,
out
);
pten
::
Copy
(
dev_ctx
,
x
,
false
,
out
);
out
->
Resize
(
out_meta
.
dims
);
out
->
Resize
(
out_meta
.
dims
);
out
->
ResetLoD
(
x
.
lod
());
out
->
ResetLoD
(
x
.
lod
());
...
...
python/paddle/utils/code_gen/api.yaml
浏览文件 @
7613129e
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
output
:
Tensor
output
:
Tensor
infer_meta
:
infer_meta
:
func
:
ElementwiseInferMeta
func
:
ElementwiseInferMeta
param
:
[
x
,
y
,
-1
]
param
:
[
x
,
y
]
kernel
:
kernel
:
func
:
add
func
:
add
...
@@ -40,7 +40,7 @@
...
@@ -40,7 +40,7 @@
output
:
Tensor
output
:
Tensor
infer_meta
:
infer_meta
:
func
:
ElementwiseInferMeta
func
:
ElementwiseInferMeta
param
:
[
x
,
y
,
-1
]
param
:
[
x
,
y
]
kernel
:
kernel
:
func
:
divide
func
:
divide
...
@@ -135,7 +135,7 @@
...
@@ -135,7 +135,7 @@
output
:
Tensor
output
:
Tensor
infer_meta
:
infer_meta
:
func
:
ElementwiseInferMeta
func
:
ElementwiseInferMeta
param
:
[
x
,
y
,
-1
]
param
:
[
x
,
y
]
kernel
:
kernel
:
func
:
multiply
func
:
multiply
...
@@ -166,19 +166,19 @@
...
@@ -166,19 +166,19 @@
output
:
Tensor
output
:
Tensor
infer_meta
:
infer_meta
:
func
:
ElementwiseInferMeta
func
:
ElementwiseInferMeta
param
:
[
x
,
y
,
-1
]
param
:
[
x
,
y
]
kernel
:
kernel
:
func
:
subtract
func
:
subtract
-
api
:
sum
-
api
:
sum
args
:
(const Tensor& x, const std::vector<int64_t>& axis={}, DataType dtype=DataType::UNDEFINED, bool keep_dim=false)
args
:
(const Tensor& x, const std::vector<int64_t>& axis={}, DataType dtype=DataType::UNDEFINED, bool keep_dim=false)
output
:
Tensor
output
:
Tensor
infer_meta
:
infer_meta
:
func
:
Reduce
InferMeta
func
:
Sum
InferMeta
param
:
[
x
,
axis
,
keep_dim
,
dtype
]
param
:
[
x
,
axis
,
dtype
,
keep_dim
]
kernel
:
kernel
:
func
:
sum
func
:
sum
param
:
[
x
,
axis
,
keep_dim
,
dtype
]
param
:
[
x
,
axis
,
dtype
,
keep_dim
]
data_type
:
x
data_type
:
x
-
api
:
zeros_like
-
api
:
zeros_like
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录