Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
750aff10
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
750aff10
编写于
3月 23, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
code refine
上级
9075049a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
74 addition
and
74 deletion
+74
-74
paddle/fluid/operators/math/concat.cu
paddle/fluid/operators/math/concat.cu
+74
-74
未找到文件。
paddle/fluid/operators/math/concat.cu
浏览文件 @
750aff10
...
@@ -66,60 +66,60 @@ __global__ void KernelConcat(T** inputs, const int* input_cols, int col_size,
...
@@ -66,60 +66,60 @@ __global__ void KernelConcat(T** inputs, const int* input_cols, int col_size,
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KernelConcat
(
T
**
inputs
,
const
int
input
_col
,
__global__
void
KernelConcat
(
T
**
inputs
_data
,
const
int
fixed_in
_col
,
const
int
out
put_rows
,
const
int
outp
ut_cols
,
const
int
out
_rows
,
const
int
o
ut_cols
,
T
*
output
)
{
T
*
output
_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(;
tid_x
<
out
put
_cols
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
for
(;
tid_x
<
out_cols
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
split
=
tid_x
*
1.0
/
input
_col
;
int
split
=
tid_x
*
1.0
/
fixed_in
_col
;
int
in_offset
=
tid_x
-
split
*
input
_col
;
int
in_offset
=
tid_x
-
split
*
fixed_in
_col
;
T
*
input_ptr
=
inputs
[
split
];
T
*
input_ptr
=
inputs
_data
[
split
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
out
put
_rows
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
{
for
(;
tid_y
<
out_rows
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
{
output
[
tid_y
*
outp
ut_cols
+
tid_x
]
=
output
_data
[
tid_y
*
o
ut_cols
+
tid_x
]
=
input_ptr
[
tid_y
*
input
_col
+
in_offset
];
input_ptr
[
tid_y
*
fixed_in
_col
+
in_offset
];
}
}
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KernelConcatGrad
(
const
T
*
input
,
const
int
input
_row
,
__global__
void
KernelConcatGrad
(
const
T
*
input
_data
,
const
int
in
_row
,
const
int
in
put_col
,
const
int
*
outp
ut_cols
,
const
int
in
_col
,
const
int
*
o
ut_cols
,
int
col_size
,
T
**
outputs
)
{
int
out_cols_size
,
T
**
outputs_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
segment
=
upper_bound
<
int
>
(
out
put_cols
,
col
_size
,
tid_x
)
-
1
;
int
segment
=
upper_bound
<
int
>
(
out
_cols
,
out_cols
_size
,
tid_x
)
-
1
;
int
curr_offset
=
out
put
_cols
[
segment
];
int
curr_offset
=
out_cols
[
segment
];
int
curr_segment
=
segment
;
int
curr_segment
=
segment
;
for
(;
tid_x
<
in
put
_col
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
for
(;
tid_x
<
in_col
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
curr_col_offset
;
T
curr_col_offset
;
while
((
curr_col_offset
=
out
put
_cols
[
curr_segment
+
1
])
<=
tid_x
)
{
while
((
curr_col_offset
=
out_cols
[
curr_segment
+
1
])
<=
tid_x
)
{
curr_offset
=
curr_col_offset
;
curr_offset
=
curr_col_offset
;
++
curr_segment
;
++
curr_segment
;
}
}
int
local_col
=
tid_x
-
curr_offset
;
int
local_col
=
tid_x
-
curr_offset
;
int
segment_width
=
curr_col_offset
-
curr_offset
;
int
segment_width
=
curr_col_offset
-
curr_offset
;
T
*
output_ptr
=
outputs
[
curr_segment
];
T
*
output_ptr
=
outputs
_data
[
curr_segment
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
in
put
_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
for
(;
tid_y
<
in_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output_ptr
[
tid_y
*
segment_width
+
local_col
]
=
output_ptr
[
tid_y
*
segment_width
+
local_col
]
=
input
[
tid_y
*
input
_col
+
tid_x
];
input
_data
[
tid_y
*
in
_col
+
tid_x
];
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KernelConcatGrad
(
const
T
*
input
,
const
int
input
_row
,
__global__
void
KernelConcatGrad
(
const
T
*
input
_data
,
const
int
in
_row
,
const
int
in
put_col
,
const
int
outp
ut_col
,
const
int
in
_col
,
const
int
fixed_o
ut_col
,
T
**
outputs
)
{
T
**
outputs
_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(;
tid_x
<
in
put
_col
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
for
(;
tid_x
<
in_col
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
split
=
tid_x
/
outp
ut_col
;
int
split
=
tid_x
/
fixed_o
ut_col
;
int
in_offset
=
tid_x
-
split
*
outp
ut_col
;
int
in_offset
=
tid_x
-
split
*
fixed_o
ut_col
;
T
*
output_ptr
=
outputs
[
split
];
T
*
output_ptr
=
outputs
_data
[
split
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
in
put
_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
for
(;
tid_y
<
in_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output_ptr
[
tid_y
*
outp
ut_col
+
in_offset
]
=
output_ptr
[
tid_y
*
fixed_o
ut_col
+
in_offset
]
=
input
[
tid_y
*
input
_col
+
tid_x
];
input
_data
[
tid_y
*
in
_col
+
tid_x
];
}
}
}
}
...
@@ -134,41 +134,40 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
...
@@ -134,41 +134,40 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
const
std
::
vector
<
framework
::
Tensor
>&
input
,
const
int
axis
,
const
std
::
vector
<
framework
::
Tensor
>&
input
,
const
int
axis
,
framework
::
Tensor
*
output
)
{
framework
::
Tensor
*
output
)
{
// TODO(zcd): Add input data validity checking
// TODO(zcd): Add input data validity checking
int
num
=
input
.
size
();
int
in_
num
=
input
.
size
();
int
rows
=
1
;
int
in_row
=
1
;
auto
dim_0
=
input
[
0
].
dims
();
auto
dim_0
=
input
[
0
].
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
rows
*=
dim_0
[
i
];
in_row
*=
dim_0
[
i
];
}
}
int
cols
=
input
[
0
].
numel
()
/
rows
;
int
in_col
=
input
[
0
].
numel
()
/
in_row
;
int
out_row
s
=
rows
,
out_cols
=
0
;
int
out_row
=
in_row
,
out_col
=
0
;
framework
::
Vector
<
int16_t
>
inputs_data
(
num
*
sizeof
(
T
*
)
/
2
);
framework
::
Vector
<
int16_t
>
inputs_data
(
in_num
*
sizeof
(
T
*
)
/
2
);
framework
::
Vector
<
int
>
inputs_cols
(
num
+
1
);
framework
::
Vector
<
int
>
inputs_col
(
in_num
+
1
);
inputs_cols
[
0
]
=
0
;
T
**
inputs_ptr
=
reinterpret_cast
<
T
**>
(
inputs_data
.
data
());
T
**
inputs_ptr
=
reinterpret_cast
<
T
**>
(
inputs_data
.
data
());
inputs_col
[
0
]
=
0
;
bool
sameShape
=
true
;
bool
sameShape
=
true
;
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
for
(
int
i
=
0
;
i
<
in_
num
;
++
i
)
{
int
t_cols
=
input
[
i
].
numel
()
/
rows
;
int
t_cols
=
input
[
i
].
numel
()
/
in_row
;
if
(
sameShape
)
{
if
(
sameShape
)
{
if
(
t_cols
!=
cols
)
sameShape
=
false
;
if
(
t_cols
!=
in_col
)
sameShape
=
false
;
}
}
out_col
s
+=
t_cols
;
out_col
+=
t_cols
;
inputs_col
s
[
i
+
1
]
=
out_cols
;
inputs_col
[
i
+
1
]
=
out_col
;
inputs_ptr
[
i
]
=
const_cast
<
T
*>
(
input
[
i
].
data
<
T
>
());
inputs_ptr
[
i
]
=
const_cast
<
T
*>
(
input
[
i
].
data
<
T
>
());
}
}
T
**
ins_gpu
=
T
**
dev_ins_data
=
reinterpret_cast
<
T
**>
(
inputs_data
.
CUDAMutableData
(
context
.
GetPlace
()));
reinterpret_cast
<
T
**>
(
inputs_data
.
CUDAMutableData
(
context
.
GetPlace
()));
const
int
*
ins_col_gpu
=
inputs_cols
.
CUDAData
(
context
.
GetPlace
());
// computation
// computation
// set the thread block and grid according to CurrentDeviceId
// set the thread block and grid according to CurrentDeviceId
const
int
kThreadsPerBlock
=
1024
;
const
int
kThreadsPerBlock
=
1024
;
int
block_cols
=
kThreadsPerBlock
;
int
block_cols
=
kThreadsPerBlock
;
if
(
out_col
s
<
kThreadsPerBlock
)
{
// block_cols is aligned by 32.
if
(
out_col
<
kThreadsPerBlock
)
{
// block_cols is aligned by 32.
block_cols
=
((
out_col
s
+
31
)
>>
5
)
<<
5
;
block_cols
=
((
out_col
+
31
)
>>
5
)
<<
5
;
}
}
int
block_rows
=
kThreadsPerBlock
/
block_cols
;
int
block_rows
=
kThreadsPerBlock
/
block_cols
;
dim3
block_size
=
dim3
(
block_cols
,
block_rows
,
1
);
dim3
block_size
=
dim3
(
block_cols
,
block_rows
,
1
);
...
@@ -177,18 +176,19 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
...
@@ -177,18 +176,19 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
int
max_blocks
=
std
::
max
(
max_threads
/
kThreadsPerBlock
,
1
);
int
max_blocks
=
std
::
max
(
max_threads
/
kThreadsPerBlock
,
1
);
int
grid_cols
=
int
grid_cols
=
std
::
min
((
out_col
s
+
block_cols
-
1
)
/
block_cols
,
max_blocks
);
std
::
min
((
out_col
+
block_cols
-
1
)
/
block_cols
,
max_blocks
);
int
grid_rows
=
int
grid_rows
=
std
::
min
(
max_blocks
/
grid_cols
,
std
::
max
(
out_row
s
/
block_rows
,
1
));
std
::
min
(
max_blocks
/
grid_cols
,
std
::
max
(
out_row
/
block_rows
,
1
));
dim3
grid_size
=
dim3
(
grid_cols
,
grid_rows
,
1
);
dim3
grid_size
=
dim3
(
grid_cols
,
grid_rows
,
1
);
if
(
sameShape
)
{
if
(
sameShape
)
{
KernelConcat
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
KernelConcat
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
ins_gpu
,
cols
,
out_rows
,
out_cols
,
output
->
data
<
T
>
());
dev_ins_data
,
in_col
,
out_row
,
out_col
,
output
->
data
<
T
>
());
}
else
{
}
else
{
const
int
*
dev_ins_col_data
=
inputs_col
.
CUDAData
(
context
.
GetPlace
());
KernelConcat
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
KernelConcat
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
ins_gpu
,
ins_col_gpu
,
static_cast
<
int
>
(
inputs_cols
.
size
()),
out_rows
,
dev_ins_data
,
dev_ins_col_data
,
static_cast
<
int
>
(
inputs_col
.
size
())
,
out_
cols
,
output
->
data
<
T
>
());
out_
row
,
out_col
,
output
->
data
<
T
>
());
}
}
}
}
};
};
...
@@ -204,41 +204,40 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
...
@@ -204,41 +204,40 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
const
framework
::
Tensor
&
input
,
const
int
axis
,
const
framework
::
Tensor
&
input
,
const
int
axis
,
std
::
vector
<
framework
::
Tensor
>&
outputs
)
{
std
::
vector
<
framework
::
Tensor
>&
outputs
)
{
// TODO(zcd): Add input data validity checking
// TODO(zcd): Add input data validity checking
int
num
=
outputs
.
size
();
int
o_
num
=
outputs
.
size
();
int
inp
ut_row
=
1
;
int
o
ut_row
=
1
;
auto
dim_0
=
outputs
[
0
].
dims
();
auto
dim_0
=
outputs
[
0
].
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
inp
ut_row
*=
dim_0
[
i
];
o
ut_row
*=
dim_0
[
i
];
}
}
int
out
put_col_0
=
outputs
[
0
].
numel
()
/
inp
ut_row
;
int
out
_col
=
outputs
[
0
].
numel
()
/
o
ut_row
;
int
in
put_col
=
0
;
int
in
_col
=
0
,
in_row
=
out_row
;
bool
sameShape
=
true
;
bool
sameShape
=
true
;
framework
::
Vector
<
int16_t
>
outputs_data
(
num
*
sizeof
(
T
*
)
/
2
);
framework
::
Vector
<
int16_t
>
outputs_data
(
o_num
*
sizeof
(
T
*
)
/
2
);
framework
::
Vector
<
int
>
outputs_cols
(
num
+
1
);
framework
::
Vector
<
int
>
outputs_cols
(
o_num
+
1
);
outputs_cols
[
0
]
=
0
;
T
**
outputs_ptr
=
reinterpret_cast
<
T
**>
(
outputs_data
.
data
());
T
**
outputs_ptr
=
reinterpret_cast
<
T
**>
(
outputs_data
.
data
());
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
outputs_cols
[
0
]
=
0
;
int
t_col
=
outputs
[
i
].
numel
()
/
input_row
;
for
(
int
i
=
0
;
i
<
o_num
;
++
i
)
{
int
t_col
=
outputs
[
i
].
numel
()
/
out_row
;
if
(
sameShape
)
{
if
(
sameShape
)
{
if
(
t_col
!=
out
put_col_0
)
sameShape
=
false
;
if
(
t_col
!=
out
_col
)
sameShape
=
false
;
}
}
in
put
_col
+=
t_col
;
in_col
+=
t_col
;
outputs_cols
[
i
+
1
]
=
in
put
_col
;
outputs_cols
[
i
+
1
]
=
in_col
;
outputs_ptr
[
i
]
=
outputs
[
i
].
data
<
T
>
();
outputs_ptr
[
i
]
=
outputs
[
i
].
data
<
T
>
();
}
}
T
**
outs_gpu
=
T
**
dev_out_gpu_data
=
reinterpret_cast
<
T
**>
(
outputs_data
.
CUDAMutableData
(
context
.
GetPlace
()));
reinterpret_cast
<
T
**>
(
outputs_data
.
CUDAMutableData
(
context
.
GetPlace
()));
const
int
*
outs_col_gpu
=
outputs_cols
.
CUDAData
(
context
.
GetPlace
());
// computation
// computation
const
int
kThreadsPerBlock
=
1024
;
const
int
kThreadsPerBlock
=
1024
;
int
block_cols
=
kThreadsPerBlock
;
int
block_cols
=
kThreadsPerBlock
;
if
(
in
put
_col
<
kThreadsPerBlock
)
{
// block_cols is aligned by 32.
if
(
in_col
<
kThreadsPerBlock
)
{
// block_cols is aligned by 32.
block_cols
=
((
in
put
_col
+
31
)
>>
5
)
<<
5
;
block_cols
=
((
in_col
+
31
)
>>
5
)
<<
5
;
}
}
int
block_rows
=
kThreadsPerBlock
/
block_cols
;
int
block_rows
=
kThreadsPerBlock
/
block_cols
;
dim3
block_size
=
dim3
(
block_cols
,
block_rows
,
1
);
dim3
block_size
=
dim3
(
block_cols
,
block_rows
,
1
);
...
@@ -247,18 +246,19 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
...
@@ -247,18 +246,19 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
int
max_blocks
=
std
::
max
(
max_threads
/
kThreadsPerBlock
,
1
);
int
max_blocks
=
std
::
max
(
max_threads
/
kThreadsPerBlock
,
1
);
int
grid_cols
=
int
grid_cols
=
std
::
min
((
in
put
_col
+
block_cols
-
1
)
/
block_cols
,
max_blocks
);
std
::
min
((
in_col
+
block_cols
-
1
)
/
block_cols
,
max_blocks
);
int
grid_rows
=
int
grid_rows
=
std
::
min
(
max_blocks
/
grid_cols
,
std
::
max
(
inp
ut_row
/
block_rows
,
1
));
std
::
min
(
max_blocks
/
grid_cols
,
std
::
max
(
o
ut_row
/
block_rows
,
1
));
dim3
grid_size
=
dim3
(
grid_cols
,
grid_rows
,
1
);
dim3
grid_size
=
dim3
(
grid_cols
,
grid_rows
,
1
);
if
(
sameShape
)
{
if
(
sameShape
)
{
KernelConcatGrad
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
KernelConcatGrad
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
input
.
data
<
T
>
(),
in
put_row
,
input_col
,
output_col_0
,
outs_gpu
);
input
.
data
<
T
>
(),
in
_row
,
in_col
,
out_col
,
dev_out_gpu_data
);
}
else
{
}
else
{
const
int
*
dev_outs_col_data
=
outputs_cols
.
CUDAData
(
context
.
GetPlace
());
KernelConcatGrad
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
KernelConcatGrad
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
input
.
data
<
T
>
(),
in
put_row
,
input_col
,
outs_col_gpu
,
input
.
data
<
T
>
(),
in
_row
,
in_col
,
dev_outs_col_data
,
static_cast
<
int
>
(
outputs_cols
.
size
()),
outs_gpu
);
static_cast
<
int
>
(
outputs_cols
.
size
()),
dev_out_gpu_data
);
}
}
}
}
};
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录