未验证 提交 743cc9b2 编写于 作者: O OleNet 提交者: GitHub

[NPU] add Increment op (#31563)

* add increment

* fix

* update test increment op inplace

* update increment op

* increment b = 2
Co-authored-by: Noyjxer <1728722986@qq.com>
上级 1de6daff
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/increment_op.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace framework {
class OpDesc;
class Variable;
} // namespace framework
namespace imperative {
class OpBase;
} // namespace imperative
} // namespace paddle
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class IncrementalNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x_tensor = context.Input<framework::Tensor>("X");
auto* out_tensor = context.Output<framework::Tensor>("Out");
float step = context.Attr<float>("step");
out_tensor->mutable_data<T>(context.GetPlace());
Tensor step_tensor(x_tensor->type());
std::vector<T> step_vec;
step_vec.push_back(static_cast<T>(step));
framework::TensorFromVector(
step_vec,
context.device_context(),
&step_tensor);
auto runner = NpuOpRunner("Add",
{*x_tensor, step_tensor},
{*out_tensor},
{});
auto stream =
context.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};
} // namespace operators
} // namespace paddle
namespace plat = paddle::platform;
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
increment,
ops::IncrementalNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::IncrementalNPUKernel<paddle::platform::NPUDeviceContext, double>,
ops::IncrementalNPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::IncrementalNPUKernel<paddle::platform::NPUDeviceContext, int64_t>,
ops::IncrementalNPUKernel<paddle::platform::NPUDeviceContext, plat::float16>)
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef _WIN32
#include <unistd.h>
#endif
#include <string>
#include <thread> // NOLINT
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/string/printf.h"
namespace f = paddle::framework;
namespace p = paddle::platform;
namespace m = paddle::operators::math;
USE_OP(increment);
USE_OP_DEVICE_KERNEL(increment, NPU);
template <typename T>
void Compare(f::Scope* scope, const p::DeviceContext& ctx,
std::string op_type) {
// init
auto x = scope->Var("X");
auto tensor_x = x->GetMutable<f::LoDTensor>();
std::vector<T> init;
init.push_back(static_cast<T>(1.0));
TensorFromVector(init, ctx, tensor_x);
tensor_x->Resize({1});
ctx.Wait();
auto place = ctx.GetPlace();
auto out = scope->Var("Out");
auto tensor_out = out->GetMutable<f::LoDTensor>();
f::AttributeMap attr_input = { {"step", static_cast<float>(2.0)} };
auto op = f::OpRegistry::CreateOp("increment", {{"X", {"X"}}},
{{"Out", {"Out"}}},
attr_input);
op->Run(*scope, place);
std::vector<T> out_vec;
TensorToVector(*tensor_out, ctx, &out_vec);
ctx.Wait();
EXPECT_EQ((uint32_t)out_vec.size(), (uint32_t)1);
EXPECT_EQ(out_vec[0], static_cast<T>(3.0));
}
TEST(increment, NPU_fp32) {
f::Scope scope;
p::NPUDeviceContext ctx(p::NPUPlace(0));
Compare<float>(&scope, ctx, "increment");
}
TEST(increment, NPU_fp64) {
f::Scope scope;
p::NPUDeviceContext ctx(p::NPUPlace(0));
Compare<float>(&scope, ctx, "increment");
}
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
paddle.enable_static()
SEED = 2021
NPUPlace = 5
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestIncrement(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(NPUPlace)
self.op_type = "increment"
self.init_dtype()
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(np.array([1]).astype(self.dtype)), }
self.attrs = {"Step": 1}
self.outputs = {'Out': np.array([2])}
def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True
def init_dtype(self):
self.dtype = np.int64
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestIncrementFP16(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(NPUPlace)
self.op_type = "increment"
self.init_dtype()
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(np.array([1]).astype(self.dtype)), }
self.pre_input_id = id(self.inputs['X'])
self.attrs = {"Step": 1}
self.outputs = {'Out': np.array([2])}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestIncrementInplace(unittest.TestCase):
def test_npu(self):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.array([1]).astype('float32')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[1], dtype='float32')
b = fluid.layers.increment(a)
place = paddle.NPUPlace(NPUPlace)
exe = paddle.static.Executor(place)
exe.run(startup_prog)
b_value = exe.run(
main_prog,
feed={"a": a_np,},
fetch_list=[b])
print('input a id is : {}'.format(id(a)))
print('input b id is : {}'.format(id(b)))
self.assertEqual(id(a), id(b))
self.assertEqual(b_value[0], 2)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册