Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
736a7388
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
736a7388
编写于
9月 22, 2021
作者:
Z
Zhang Zheng
提交者:
GitHub
9月 22, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ResnetUnitOp implemented by cuDNN fused op(backend code) (#35557)
上级
482f062d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
602 addition
and
10 deletion
+602
-10
paddle/fluid/operators/fused/CMakeLists.txt
paddle/fluid/operators/fused/CMakeLists.txt
+3
-0
paddle/fluid/operators/fused/cudnn_fusion_helper.h
paddle/fluid/operators/fused/cudnn_fusion_helper.h
+162
-0
paddle/fluid/operators/fused/cudnn_norm_conv.cu.h
paddle/fluid/operators/fused/cudnn_norm_conv.cu.h
+139
-0
paddle/fluid/operators/fused/cudnn_norm_conv_test.cc
paddle/fluid/operators/fused/cudnn_norm_conv_test.cc
+262
-0
paddle/fluid/platform/cudnn_desc.h
paddle/fluid/platform/cudnn_desc.h
+24
-9
paddle/fluid/platform/dynload/cudnn.h
paddle/fluid/platform/dynload/cudnn.h
+12
-1
未找到文件。
paddle/fluid/operators/fused/CMakeLists.txt
浏览文件 @
736a7388
...
@@ -78,4 +78,7 @@ if (WITH_GPU OR WITH_ROCM)
...
@@ -78,4 +78,7 @@ if (WITH_GPU OR WITH_ROCM)
nv_test
(
test_fused_dropout_act_bias SRCS fused_dropout_act_bias_test.cu DEPS tensor op_registry dropout_op layer_norm_op device_context generator memory
)
nv_test
(
test_fused_dropout_act_bias SRCS fused_dropout_act_bias_test.cu DEPS tensor op_registry dropout_op layer_norm_op device_context generator memory
)
nv_test
(
test_fused_layernorm_residual_dropout_bias SRCS fused_layernorm_residual_dropout_bias_test.cu DEPS tensor op_registry dropout_op layer_norm_op device_context generator memory
)
nv_test
(
test_fused_layernorm_residual_dropout_bias SRCS fused_layernorm_residual_dropout_bias_test.cu DEPS tensor op_registry dropout_op layer_norm_op device_context generator memory
)
endif
()
endif
()
if
((
NOT WITH_ROCM
)
AND
(
NOT
${
CUDNN_VERSION
}
VERSION_LESS 8000
))
cc_test
(
test_cudnn_norm_conv SRCS cudnn_norm_conv_test.cc DEPS conv_op blas im2col vol2col depthwise_conv eigen_function tensor op_registry device_context generator memory
)
endif
()
endif
()
endif
()
paddle/fluid/operators/fused/cudnn_fusion_helper.h
0 → 100644
浏览文件 @
736a7388
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/platform/cudnn_desc.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
operators
{
namespace
dynload
=
platform
::
dynload
;
#if CUDNN_VERSION >= 8000
// A wrapper for cuDNN fused_op API.
class
CudnnFusionOp
{
public:
explicit
CudnnFusionOp
(
cudnnFusedOps_t
op_id
)
:
plan_created_
(
false
)
{
// New 'fused op' descriptor creation
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnCreateFusedOpsPlan
(
&
op_
,
op_id
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnCreateFusedOpsConstParamPack
(
&
op_const_params_
,
op_id
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnCreateFusedOpsVariantParamPack
(
&
op_variant_params_
,
op_id
));
}
~
CudnnFusionOp
()
{
// New 'fused op' descriptor destruction
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnDestroyFusedOpsVariantParamPack
(
op_variant_params_
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnDestroyFusedOpsConstParamPack
(
op_const_params_
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnDestroyFusedOpsPlan
(
op_
));
}
// Execute fused op
void
Execute
(
cudnnHandle_t
cudnn_handle
)
{
PADDLE_ENFORCE_EQ
(
plan_created_
,
true
,
platform
::
errors
::
Fatal
(
"CudnnFusionOp exec requested without a valid 'plan', need: "
"<set const params>, GetWorkspaceSizeBytes(), Execute()."
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnFusedOpsExecute
(
cudnn_handle
,
op_
,
op_variant_params_
));
}
// Set const param pack attribute given a descriptor.
template
<
typename
T
>
void
SetOpConstParamDesc
(
cudnnFusedOpsConstParamLabel_t
param_label
,
T
*
param_ptr
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnSetFusedOpsConstParamPackAttribute
(
op_const_params_
,
param_label
,
param_ptr
));
plan_created_
=
false
;
}
// Set multiple const param pack attribute given a descriptor.
template
<
typename
T
>
void
SetOpConstParamDesc
(
const
std
::
vector
<
cudnnFusedOpsConstParamLabel_t
>
&
param_labels
,
T
*
param_ptr
)
{
for
(
auto
param_label
:
param_labels
)
{
SetOpConstParamDesc
(
param_label
,
param_ptr
);
}
}
// Set const param pack attribute given a value of param.
template
<
typename
T
>
void
SetOpConstParamAttr
(
cudnnFusedOpsConstParamLabel_t
param_label
,
T
param
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnSetFusedOpsConstParamPackAttribute
(
op_const_params_
,
param_label
,
&
param
));
plan_created_
=
false
;
}
// Set multiple const param pack attribute given a value of param.
template
<
typename
T
>
void
SetOpConstParamAttr
(
const
std
::
vector
<
cudnnFusedOpsConstParamLabel_t
>
&
param_labels
,
T
param
)
{
for
(
auto
param_label
:
param_labels
)
{
SetOpConstParamAttr
(
param_label
,
param
);
}
}
// Set a variant param pack attribute given a reference to a param.
template
<
typename
T
>
void
SetOpVariantParamAttrPtr
(
cudnnFusedOpsVariantParamLabel_t
param_label
,
T
*
param_ptr
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnSetFusedOpsVariantParamPackAttribute
(
op_variant_params_
,
param_label
,
param_ptr
));
}
// Set multiple const param pack attributes given a reference to a param.
template
<
typename
T
>
void
SetOpVariantParamAttrPtr
(
const
std
::
vector
<
cudnnFusedOpsVariantParamLabel_t
>
&
param_labels
,
const
T
*
param_ptr
)
{
for
(
auto
param_label
:
param_labels
)
{
SetOpVariantParamAttrPtr
(
param_label
,
param_ptr
);
}
}
// Get the workspace, which is required before Execute().
size_t
GetWorkspaceSizeInBytes
(
cudnnHandle_t
cudnn_handle
)
{
size_t
workspace_bytes
=
0U
;
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnMakeFusedOpsPlan
(
cudnn_handle
,
op_
,
op_const_params_
,
&
workspace_bytes
));
plan_created_
=
true
;
return
workspace_bytes
;
}
private:
bool
plan_created_
;
cudnnFusedOpsPlan_t
op_
;
cudnnFusedOpsConstParamPack_t
op_const_params_
;
cudnnFusedOpsVariantParamPack_t
op_variant_params_
;
};
static
inline
std
::
vector
<
int
>
GetStrides
(
const
std
::
vector
<
int
>
&
shape
)
{
if
(
shape
.
size
()
<
1
)
{
return
{};
}
int
dim
=
static_cast
<
int
>
(
shape
.
size
());
std
::
vector
<
int
>
pro_shape
(
shape
);
std
::
vector
<
int
>
strides
(
dim
);
int
temp
=
pro_shape
[
1
];
pro_shape
.
erase
(
pro_shape
.
begin
()
+
1
);
pro_shape
.
push_back
(
temp
);
strides
.
back
()
=
1
;
for
(
int
i
=
dim
-
2
;
i
>=
0
;
--
i
)
{
strides
[
i
]
=
strides
[
i
+
1
]
*
pro_shape
[
i
+
1
];
}
strides
.
pop_back
();
strides
.
insert
(
strides
.
begin
()
+
1
,
1
);
return
strides
;
}
static
inline
int64_t
AlignUp
(
int64_t
a
,
int64_t
b
)
{
return
(
a
+
b
-
1
)
/
b
;
}
#endif // CUDNN_VERSION >= 8000
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/fused/cudnn_norm_conv.cu.h
0 → 100644
浏览文件 @
736a7388
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/operators/fused/cudnn_fusion_helper.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
namespace
dynload
=
platform
::
dynload
;
#if CUDNN_VERSION >= 8000
template
<
typename
T
>
class
CudnnNormConvolutionOp
{
public:
CudnnNormConvolutionOp
()
:
fwd_op_
(
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS
)
{}
~
CudnnNormConvolutionOp
()
{}
void
Init
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
std
::
vector
<
int
>
&
input_shape
,
const
std
::
vector
<
int
>
&
filter_shape
,
const
std
::
vector
<
int
>
&
output_shape
,
const
int
&
pad
,
const
int
&
stride
,
const
int
&
dilate
,
const
int
&
group
)
{
cudnn_fwd_compute_type_
=
platform
::
CudnnDataType
<
float
>::
type
;
dtype_
=
platform
::
CudnnDataType
<
T
>::
type
;
format_
=
CUDNN_TENSOR_NHWC
;
InitDescriptors
(
ctx
,
input_shape
,
filter_shape
,
output_shape
,
pad
,
stride
,
dilate
,
group
);
GetWorkspaceSize
(
ctx
);
}
void
Forward
(
const
platform
::
CUDADeviceContext
&
ctx
,
T
*
input_ptr
,
T
*
filter_ptr
,
T
*
output_ptr
,
float
*
sum_ptr
,
float
*
sum_of_squares_ptr
)
{
auto
handle
=
ctx
.
cudnn_handle
();
auto
workspace_handle
=
ctx
.
cudnn_workspace_handle
();
// Set variant_param
// input ptr
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_XDATA
,
input_ptr
);
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_WDATA
,
filter_ptr
);
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_SCALAR_SIZE_T_WORKSPACE_SIZE_IN_BYTES
,
&
fwd_workspace_byte_
);
// output ptr
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_YDATA
,
output_ptr
);
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_YSUM
,
sum_ptr
);
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_YSQSUM
,
sum_of_squares_ptr
);
workspace_handle
.
RunFunc
(
[
&
](
void
*
workspace_ptr
)
{
// workspace ptr
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_WORKSPACE
,
workspace_ptr
);
// fused op execute
fwd_op_
.
Execute
(
handle
);
},
fwd_workspace_byte_
);
}
// TBD
void
Backward
(
const
platform
::
CUDADeviceContext
&
ctx
)
{}
private:
void
InitDescriptors
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
std
::
vector
<
int
>
&
input_shape
,
const
std
::
vector
<
int
>
&
filter_shape
,
const
std
::
vector
<
int
>
&
output_shape
,
const
int
&
pad
,
const
int
&
stride
,
const
int
&
dilate
,
const
int
&
group
)
{
// Set constant_param
fwd_op_
.
SetOpConstParamAttr
(
{
CUDNN_PARAM_XDATA_PLACEHOLDER
,
CUDNN_PARAM_WDATA_PLACEHOLDER
,
CUDNN_PARAM_YDATA_PLACEHOLDER
},
CUDNN_PTR_16B_ALIGNED
);
fwd_op_
.
SetOpConstParamAttr
(
{
CUDNN_PARAM_YSUM_PLACEHOLDER
,
CUDNN_PARAM_YSQSUM_PLACEHOLDER
},
CUDNN_PTR_16B_ALIGNED
);
std
::
vector
<
int
>
pad_vec
=
{
pad
,
pad
};
std
::
vector
<
int
>
stride_vec
=
{
stride
,
stride
};
std
::
vector
<
int
>
dilate_vec
=
{
dilate
,
dilate
};
int
output_channel
=
filter_shape
[
0
];
std
::
vector
<
int
>
stats_shape
=
{
1
,
1
,
1
,
output_channel
};
// set conv desc
conv_desc_
.
set
(
dtype_
,
pad_vec
,
stride_vec
,
dilate_vec
,
false
,
group
);
fwd_op_
.
SetOpConstParamDesc
(
CUDNN_PARAM_CONV_DESC
,
conv_desc_
.
desc
());
// set input desc
in_desc_
.
set
(
input_shape
,
format_
,
dtype_
);
fwd_op_
.
SetOpConstParamDesc
(
CUDNN_PARAM_XDESC
,
in_desc_
.
desc
());
// set filter desc
filter_desc_
.
set
(
filter_shape
,
format_
,
dtype_
,
group
);
fwd_op_
.
SetOpConstParamDesc
(
CUDNN_PARAM_WDESC
,
filter_desc_
.
desc
());
// set output desc
out_desc_
.
set
(
output_shape
,
format_
,
dtype_
);
fwd_op_
.
SetOpConstParamDesc
(
CUDNN_PARAM_YDESC
,
out_desc_
.
desc
());
// set output_stats desc
out_stats_desc_
.
set
(
stats_shape
,
format_
,
cudnn_fwd_compute_type_
);
fwd_op_
.
SetOpConstParamDesc
(
CUDNN_PARAM_YSTATS_DESC
,
out_stats_desc_
.
desc
());
fwd_op_
.
SetOpConstParamAttr
(
CUDNN_PARAM_BN_MODE
,
CUDNN_BATCHNORM_SPATIAL
);
}
void
GetWorkspaceSize
(
const
platform
::
CUDADeviceContext
&
ctx
)
{
auto
handle
=
ctx
.
cudnn_handle
();
fwd_workspace_byte_
=
fwd_op_
.
GetWorkspaceSizeInBytes
(
handle
);
}
size_t
fwd_workspace_byte_
=
0
;
cudnnDataType_t
dtype_
;
cudnnDataType_t
cudnn_fwd_compute_type_
;
platform
::
TensorDescriptor
in_desc_
;
platform
::
FilterDescriptor
filter_desc_
;
platform
::
TensorDescriptor
out_desc_
;
platform
::
TensorDescriptor
out_stats_desc_
;
platform
::
ConvolutionDescriptor
conv_desc_
;
cudnnTensorFormat_t
format_
;
CudnnFusionOp
fwd_op_
;
};
#endif
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/fused/cudnn_norm_conv_test.cc
0 → 100644
浏览文件 @
736a7388
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <random>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/fused/cudnn_norm_conv.cu.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/float16.h"
namespace
framework
=
paddle
::
framework
;
namespace
platform
=
paddle
::
platform
;
namespace
op
=
paddle
::
operators
;
using
Tensor
=
paddle
::
framework
::
Tensor
;
USE_OP
(
conv2d
);
USE_OP_DEVICE_KERNEL
(
conv2d
,
CUDNN
);
// get paddle conv2d op results as baseline
template
<
typename
T
>
void
Conv2DForwardCompute
(
const
Tensor
&
x
,
const
Tensor
&
w
,
Tensor
*
y
,
const
platform
::
CUDADeviceContext
&
ctx
)
{
framework
::
Scope
scope
;
auto
var_x
=
scope
.
Var
(
"Input"
);
auto
tensor_x
=
var_x
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
var_w
=
scope
.
Var
(
"Filter"
);
auto
tensor_w
=
var_w
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
var_y
=
scope
.
Var
(
"Output"
);
auto
tensor_y
=
var_y
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
place
=
ctx
.
GetPlace
();
TensorCopySync
(
x
,
place
,
tensor_x
);
TensorCopySync
(
w
,
place
,
tensor_w
);
framework
::
AttributeMap
attrs
;
bool
use_cudnn
=
true
;
std
::
string
data_format
=
"NHWC"
;
std
::
string
padding_algorithm
=
"SAME"
;
attrs
.
insert
({
"use_cudnn"
,
use_cudnn
});
attrs
.
insert
({
"data_format"
,
data_format
});
attrs
.
insert
({
"padding_algorithm"
,
padding_algorithm
});
auto
op
=
framework
::
OpRegistry
::
CreateOp
(
"conv2d"
,
{{
"Input"
,
{
"Input"
}},
{
"Filter"
,
{
"Filter"
}}},
{{
"Output"
,
{
"Output"
}}},
attrs
);
op
->
Run
(
scope
,
ctx
.
GetPlace
());
TensorCopySync
(
*
tensor_y
,
place
,
y
);
ctx
.
Wait
();
}
template
<
typename
T
>
class
TestCudnnNormConvOpForward
{
public:
TestCudnnNormConvOpForward
()
{
batch_size_
=
2
;
height_
=
8
;
width_
=
8
;
input_channels_
=
8
;
output_channels_
=
32
;
kernel_size_
=
1
;
stride_
=
1
;
pad_
=
0
;
}
TestCudnnNormConvOpForward
(
int
batch_size
,
int
height
,
int
width
,
int
input_channels
,
int
output_channels
,
int
kernel_size
,
int
stride
)
{
batch_size_
=
batch_size
;
height_
=
height
;
width_
=
width
;
input_channels_
=
input_channels
;
output_channels_
=
output_channels
;
kernel_size_
=
kernel_size
;
stride_
=
stride
;
pad_
=
(
kernel_size_
-
1
)
/
2
;
}
~
TestCudnnNormConvOpForward
()
{}
void
SetUp
()
{
input_size_
=
batch_size_
*
height_
*
width_
*
input_channels_
;
filter_size_
=
output_channels_
*
input_channels_
*
kernel_size_
*
kernel_size_
;
output_size_
=
batch_size_
*
height_
*
width_
*
output_channels_
;
param_size_
=
output_channels_
;
input_vec_
.
resize
(
input_size_
);
filter_raw_vec_
.
resize
(
filter_size_
);
filter_pro_vec_
.
resize
(
filter_size_
);
std
::
default_random_engine
random
(
0
);
std
::
uniform_real_distribution
<
float
>
dis
(
0.0
,
1.0
);
for
(
int
i
=
0
;
i
<
input_size_
;
++
i
)
{
input_vec_
[
i
]
=
static_cast
<
T
>
(
dis
(
random
));
}
for
(
int
i
=
0
;
i
<
filter_size_
;
++
i
)
{
filter_raw_vec_
[
i
]
=
static_cast
<
T
>
(
dis
(
random
));
}
// transpoes for filter
// NCHW->NHWC
for
(
int
oc
=
0
;
oc
<
output_channels_
;
++
oc
)
{
for
(
int
kh
=
0
;
kh
<
kernel_size_
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
kernel_size_
;
++
kw
)
{
for
(
int
ic
=
0
;
ic
<
input_channels_
;
++
ic
)
{
int
dst_idx
=
oc
*
kernel_size_
*
kernel_size_
*
input_channels_
+
kh
*
kernel_size_
*
input_channels_
+
kw
*
input_channels_
+
ic
;
int
src_idx
=
oc
*
kernel_size_
*
kernel_size_
*
input_channels_
+
ic
*
kernel_size_
*
kernel_size_
+
kh
*
kernel_size_
+
kw
;
filter_pro_vec_
[
dst_idx
]
=
filter_raw_vec_
[
src_idx
];
}
}
}
}
framework
::
TensorFromVector
<
T
>
(
input_vec_
,
*
ctx_
,
&
input_
);
input_
.
Resize
({
batch_size_
,
height_
,
width_
,
input_channels_
});
framework
::
TensorFromVector
<
T
>
(
filter_raw_vec_
,
*
ctx_
,
&
filter_raw_
);
filter_raw_
.
Resize
(
{
output_channels_
,
input_channels_
,
kernel_size_
,
kernel_size_
});
framework
::
TensorFromVector
<
T
>
(
filter_pro_vec_
,
*
ctx_
,
&
filter_pro_
);
filter_pro_
.
Resize
(
{
output_channels_
,
kernel_size_
,
kernel_size_
,
input_channels_
});
output_
.
Resize
({
batch_size_
,
height_
,
width_
,
output_channels_
});
base_output_
.
Resize
({
batch_size_
,
height_
,
width_
,
output_channels_
});
sum_
.
Resize
({
1
,
1
,
1
,
output_channels_
});
sum_of_squares_
.
Resize
({
1
,
1
,
1
,
output_channels_
});
ctx_
->
Wait
();
}
void
BaselineForward
()
{
Conv2DForwardCompute
<
T
>
(
input_
,
filter_raw_
,
&
base_output_
,
*
ctx_
);
ctx_
->
Wait
();
}
// get forward results of cudnn_norm_conv
void
FusedForward
()
{
auto
input_shape
=
framework
::
vectorize
<
int
>
(
input_
.
dims
());
auto
filter_shape
=
framework
::
vectorize
<
int
>
(
filter_pro_
.
dims
());
auto
output_shape
=
framework
::
vectorize
<
int
>
(
output_
.
dims
());
T
*
input_ptr
=
input_
.
data
<
T
>
();
T
*
filter_ptr
=
filter_pro_
.
data
<
T
>
();
T
*
output_ptr
=
output_
.
mutable_data
<
T
>
(
place_
);
float
*
sum_ptr
=
sum_
.
mutable_data
<
float
>
(
place_
);
float
*
sum_of_squares_ptr
=
sum_of_squares_
.
mutable_data
<
float
>
(
place_
);
std
::
shared_ptr
<
op
::
CudnnNormConvolutionOp
<
T
>>
conv_op
(
new
op
::
CudnnNormConvolutionOp
<
T
>
());
conv_op
->
Init
(
*
ctx_
,
input_shape
,
filter_shape
,
output_shape
,
pad_
,
stride_
,
dilate_
,
group_
);
conv_op
->
Forward
(
*
ctx_
,
input_ptr
,
filter_ptr
,
output_ptr
,
sum_ptr
,
sum_of_squares_ptr
);
ctx_
->
Wait
();
}
void
Run
()
{
SetUp
();
BaselineForward
();
FusedForward
();
}
// check forward correctness between baseline and results of normconv.
void
CheckOut
(
const
T
diff
,
bool
is_relative_atol
=
false
)
{
std
::
vector
<
T
>
base_output_vec
,
output_vec
;
output_vec
.
resize
(
output_size_
);
base_output_vec
.
resize
(
output_size_
);
TensorToVector
(
base_output_
,
*
ctx_
,
&
base_output_vec
);
TensorToVector
(
output_
,
*
ctx_
,
&
output_vec
);
ctx_
->
Wait
();
for
(
int
i
=
0
;
i
<
output_size_
;
++
i
)
{
if
(
is_relative_atol
)
{
EXPECT_LT
(
std
::
abs
((
output_vec
[
i
]
-
base_output_vec
[
i
])
/
base_output_vec
[
i
]),
diff
);
}
else
{
EXPECT_LT
(
std
::
abs
(
output_vec
[
i
]
-
base_output_vec
[
i
]),
diff
);
}
}
}
private:
int
batch_size_
,
height_
,
width_
,
input_channels_
,
output_channels_
;
int
kernel_size_
,
stride_
,
pad_
;
const
int
dilate_
=
1
;
const
int
group_
=
1
;
int
input_size_
,
filter_size_
,
output_size_
,
param_size_
;
framework
::
Tensor
input_
,
filter_raw_
,
filter_pro_
,
output_
,
base_output_
;
framework
::
Tensor
sum_
,
sum_of_squares_
;
std
::
vector
<
T
>
input_vec_
,
filter_raw_vec_
,
filter_pro_vec_
;
platform
::
CUDAPlace
place_
=
platform
::
CUDAPlace
(
0
);
platform
::
CUDADeviceContext
*
ctx_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
));
};
// test for fp16, kernel = 1, output_channels = input_channels
TEST
(
CudnnNormConvForward
,
GPUCudnnNormConvForward1Fp16
)
{
int
batch_size
=
4
;
int
height
=
56
;
int
width
=
56
;
int
input_channels
=
32
;
int
output_channels
=
32
;
int
kernel_size
=
1
;
int
stride
=
1
;
TestCudnnNormConvOpForward
<
paddle
::
platform
::
float16
>
test
(
batch_size
,
height
,
width
,
input_channels
,
output_channels
,
kernel_size
,
stride
);
test
.
Run
();
test
.
CheckOut
(
static_cast
<
paddle
::
platform
::
float16
>
(
1e-3
),
true
);
}
// test for fp16, kernel = 3, output_channels = input_channels
TEST
(
CudnnNormConvForward
,
GPUCudnnNormConvForward2Fp16
)
{
int
batch_size
=
4
;
int
height
=
56
;
int
width
=
56
;
int
input_channels
=
32
;
int
output_channels
=
32
;
int
kernel_size
=
3
;
int
stride
=
1
;
TestCudnnNormConvOpForward
<
paddle
::
platform
::
float16
>
test
(
batch_size
,
height
,
width
,
input_channels
,
output_channels
,
kernel_size
,
stride
);
test
.
Run
();
test
.
CheckOut
(
static_cast
<
paddle
::
platform
::
float16
>
(
1e-3
),
true
);
}
// test for fp16, kernel = 1, output_channels = input_channels * 4
TEST
(
CudnnNormConvForward
,
GPUCudnnNormConvForward3Fp16
)
{
int
batch_size
=
4
;
int
height
=
56
;
int
width
=
56
;
int
input_channels
=
32
;
int
output_channels
=
128
;
int
kernel_size
=
1
;
int
stride
=
1
;
TestCudnnNormConvOpForward
<
paddle
::
platform
::
float16
>
test
(
batch_size
,
height
,
width
,
input_channels
,
output_channels
,
kernel_size
,
stride
);
test
.
Run
();
test
.
CheckOut
(
static_cast
<
paddle
::
platform
::
float16
>
(
1e-3
),
true
);
}
paddle/fluid/platform/cudnn_desc.h
浏览文件 @
736a7388
...
@@ -44,6 +44,9 @@ inline cudnnDataType_t ToCudnnDataType(const T& t) {
...
@@ -44,6 +44,9 @@ inline cudnnDataType_t ToCudnnDataType(const T& t) {
inline
std
::
vector
<
int
>
TransformDimOrder
(
const
std
::
vector
<
int
>&
dims
)
{
inline
std
::
vector
<
int
>
TransformDimOrder
(
const
std
::
vector
<
int
>&
dims
)
{
std
::
vector
<
int
>
transformed_dims
(
dims
.
begin
(),
dims
.
end
());
std
::
vector
<
int
>
transformed_dims
(
dims
.
begin
(),
dims
.
end
());
if
(
dims
.
size
()
<
4
)
{
return
transformed_dims
;
}
int
H
,
W
,
D
,
C
;
int
H
,
W
,
D
,
C
;
if
(
dims
.
size
()
==
4
)
{
if
(
dims
.
size
()
==
4
)
{
H
=
dims
[
1
];
H
=
dims
[
1
];
...
@@ -155,8 +158,8 @@ class TensorDescriptor {
...
@@ -155,8 +158,8 @@ class TensorDescriptor {
dims_with_group
.
data
(),
strides
.
data
()));
dims_with_group
.
data
(),
strides
.
data
()));
}
}
void
set
(
const
Tensor
&
tensor
,
const
cudnnTensorFormat_t
format
)
{
void
set
(
const
std
::
vector
<
int
>&
dims
,
const
cudnnTensorFormat_t
format
,
auto
dims
=
framework
::
vectorize
<
int
>
(
tensor
.
dims
());
const
cudnnDataType_t
dtype
)
{
std
::
vector
<
int
>
transformed_dims
;
std
::
vector
<
int
>
transformed_dims
;
if
(
format
==
CUDNN_TENSOR_NHWC
)
{
if
(
format
==
CUDNN_TENSOR_NHWC
)
{
transformed_dims
=
TransformDimOrder
(
dims
);
transformed_dims
=
TransformDimOrder
(
dims
);
...
@@ -164,8 +167,14 @@ class TensorDescriptor {
...
@@ -164,8 +167,14 @@ class TensorDescriptor {
transformed_dims
=
dims
;
transformed_dims
=
dims
;
}
}
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnSetTensorNdDescriptorEx
(
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnSetTensorNdDescriptorEx
(
desc_
.
get
(),
format
,
ToCudnnDataType
(
tensor
.
type
()),
desc_
.
get
(),
format
,
dtype
,
transformed_dims
.
size
(),
transformed_dims
.
size
(),
transformed_dims
.
data
()));
transformed_dims
.
data
()));
}
void
set
(
const
Tensor
&
tensor
,
const
cudnnTensorFormat_t
format
)
{
auto
dims
=
framework
::
vectorize
<
int
>
(
tensor
.
dims
());
auto
dtype
=
ToCudnnDataType
(
tensor
.
type
());
set
(
dims
,
format
,
dtype
);
}
}
private:
private:
...
@@ -191,9 +200,8 @@ class FilterDescriptor {
...
@@ -191,9 +200,8 @@ class FilterDescriptor {
T
*
desc
()
{
return
desc_
.
get
();
}
T
*
desc
()
{
return
desc_
.
get
();
}
T
*
desc
()
const
{
return
desc_
.
get
();
}
T
*
desc
()
const
{
return
desc_
.
get
();
}
void
set
(
const
Tensor
&
tensor
,
const
cudnnTensorFormat_t
format
,
void
set
(
const
std
::
vector
<
int
>&
dims
,
const
cudnnTensorFormat_t
format
,
const
int
groups
=
1
)
{
const
cudnnDataType_t
dtype
,
const
int
groups
=
1
)
{
auto
dims
=
framework
::
vectorize
<
int
>
(
tensor
.
dims
());
std
::
vector
<
int
>
transformed_dims
;
std
::
vector
<
int
>
transformed_dims
;
if
(
format
==
CUDNN_TENSOR_NHWC
)
{
if
(
format
==
CUDNN_TENSOR_NHWC
)
{
transformed_dims
=
TransformDimOrder
(
dims
);
transformed_dims
=
TransformDimOrder
(
dims
);
...
@@ -204,8 +212,15 @@ class FilterDescriptor {
...
@@ -204,8 +212,15 @@ class FilterDescriptor {
transformed_dims
[
1
]
=
transformed_dims
[
1
]
/
groups
;
transformed_dims
[
1
]
=
transformed_dims
[
1
]
/
groups
;
}
}
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnSetFilterNdDescriptor
(
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnSetFilterNdDescriptor
(
desc_
.
get
(),
ToCudnnDataType
(
tensor
.
type
()),
format
,
desc_
.
get
(),
dtype
,
format
,
transformed_dims
.
size
(),
transformed_dims
.
size
(),
transformed_dims
.
data
()));
transformed_dims
.
data
()));
}
void
set
(
const
Tensor
&
tensor
,
const
cudnnTensorFormat_t
format
,
const
int
groups
=
1
)
{
auto
dims
=
framework
::
vectorize
<
int
>
(
tensor
.
dims
());
auto
dtype
=
ToCudnnDataType
(
tensor
.
type
());
set
(
dims
,
format
,
dtype
,
groups
);
}
}
private:
private:
...
...
paddle/fluid/platform/dynload/cudnn.h
浏览文件 @
736a7388
...
@@ -180,7 +180,18 @@ CUDNN_DNN_ROUTINE_EACH_AFTER_R7(DECLARE_DYNAMIC_LOAD_CUDNN_WRAP)
...
@@ -180,7 +180,18 @@ CUDNN_DNN_ROUTINE_EACH_AFTER_R7(DECLARE_DYNAMIC_LOAD_CUDNN_WRAP)
#endif
#endif
#if CUDNN_VERSION >= 8000
#if CUDNN_VERSION >= 8000
#define CUDNN_DNN_ROUTINE_EACH_R8(__macro) __macro(cudnnSetRNNDescriptor_v8);
#define CUDNN_DNN_ROUTINE_EACH_R8(__macro) \
__macro(cudnnSetRNNDescriptor_v8); \
__macro(cudnnCreateFusedOpsPlan); \
__macro(cudnnCreateFusedOpsConstParamPack); \
__macro(cudnnCreateFusedOpsVariantParamPack); \
__macro(cudnnDestroyFusedOpsPlan); \
__macro(cudnnDestroyFusedOpsConstParamPack); \
__macro(cudnnDestroyFusedOpsVariantParamPack); \
__macro(cudnnFusedOpsExecute); \
__macro(cudnnSetFusedOpsConstParamPackAttribute); \
__macro(cudnnSetFusedOpsVariantParamPackAttribute); \
__macro(cudnnMakeFusedOpsPlan);
CUDNN_DNN_ROUTINE_EACH_R8
(
DECLARE_DYNAMIC_LOAD_CUDNN_WRAP
)
CUDNN_DNN_ROUTINE_EACH_R8
(
DECLARE_DYNAMIC_LOAD_CUDNN_WRAP
)
#endif
#endif
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录