Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
735a2db0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
735a2db0
编写于
12月 03, 2019
作者:
K
Kaipeng Deng
提交者:
GitHub
12月 03, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] add Adam beta1/beta2 support Variable (#21433)
* add Adam beta1/beta2 support Variable. test=develop
上级
2660107c
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
402 addition
and
68 deletion
+402
-68
paddle/fluid/operators/optimizers/adam_op.cc
paddle/fluid/operators/optimizers/adam_op.cc
+55
-21
paddle/fluid/operators/optimizers/adam_op.h
paddle/fluid/operators/optimizers/adam_op.h
+21
-2
paddle/fluid/operators/scale_op.cc
paddle/fluid/operators/scale_op.cc
+18
-2
paddle/fluid/operators/scale_op.h
paddle/fluid/operators/scale_op.h
+17
-1
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+2
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+33
-9
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+114
-29
python/paddle/fluid/tests/unittests/test_adam_op.py
python/paddle/fluid/tests/unittests/test_adam_op.py
+97
-2
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+14
-0
python/paddle/fluid/tests/unittests/test_scale_op.py
python/paddle/fluid/tests/unittests/test_scale_op.py
+23
-0
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+8
-2
未找到文件。
paddle/fluid/operators/optimizers/adam_op.cc
浏览文件 @
735a2db0
...
...
@@ -20,27 +20,50 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
void
AdamOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(Param) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
"Input(Grad) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Moment1"
),
"Input(Moment1) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Moment2"
),
"Input(Moment2) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Beta1Pow"
),
"Input(Beta1Pow) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Beta2Pow"
),
"Input(Beta2Pow) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Moment1Out"
),
"Output(Moment1Out) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Moment2Out"
),
"Output(Moment2Out) of AdamOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Param"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Param) of AdamOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Grad"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Grad) of AdamOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Moment1"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Moment1) of AdamOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Moment2"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Moment2) of AdamOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"LearningRate"
),
true
,
platform
::
errors
::
NotFound
(
"Input(LearningRate) of AdamOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Beta1Pow"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Beta1Pow) of AdamOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Beta2Pow"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Beta2Pow) of AdamOp should not be null."
));
if
(
ctx
->
IsRuntime
()
&&
ctx
->
HasInput
(
"Beta1Tensor"
))
{
auto
beta1
=
ctx
->
Inputs
(
"Beta1Tensor"
);
PADDLE_ENFORCE_EQ
(
beta1
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(Beta1Tensor) size must be 1"
));
}
if
(
ctx
->
IsRuntime
()
&&
ctx
->
HasInput
(
"Beta2Tensor"
))
{
auto
beta2
=
ctx
->
Inputs
(
"Beta2Tensor"
);
PADDLE_ENFORCE_EQ
(
beta2
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(Beta2Tensor) size must be 1"
));
}
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"ParamOut"
),
true
,
platform
::
errors
::
NotFound
(
"Output(ParamOut) of AdamOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Moment1Out"
),
true
,
platform
::
errors
::
NotFound
(
"Output(Moment1Out) of AdamOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Moment2Out"
),
true
,
platform
::
errors
::
NotFound
(
"Output(Moment2Out) of AdamOp should not be null."
));
auto
lr_dims
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_NE
(
framework
::
product
(
lr_dims
),
0
,
...
...
@@ -93,6 +116,17 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Beta1Pow"
,
"(Tensor) Input beta1 power accumulator"
);
AddInput
(
"Beta2Pow"
,
"(Tensor) Input beta2 power accumulator"
);
AddInput
(
"Beta1Tensor"
,
"(Tensor<float32>, optional) If provided, Adam will use this "
"as beta1, this has a higher priority than attr(beta1), the "
"shape of this tensor MUST BE [1]."
)
.
AsDispensable
();
AddInput
(
"Beta2Tensor"
,
"(Tensor<float32>, optional) If provided, Adam will use this "
"as beta2, this has a higher priority than attr(beta2), the "
"shape of this tensor MUST BE [1]."
)
.
AsDispensable
();
AddOutput
(
"ParamOut"
,
"(Tensor) Output parameter"
);
AddOutput
(
"Moment1Out"
,
"(Tensor) Output first moment"
);
AddOutput
(
"Moment2Out"
,
"(Tensor) Output second moment"
);
...
...
paddle/fluid/operators/optimizers/adam_op.h
浏览文件 @
735a2db0
...
...
@@ -29,6 +29,16 @@ namespace operators {
namespace
scatter
=
paddle
::
operators
::
math
::
scatter
;
static
inline
float
GetAttrFromTensor
(
const
framework
::
Tensor
*
tensor
)
{
const
float
*
tensor_data
=
tensor
->
data
<
float
>
();
framework
::
Tensor
cpu_tensor
;
if
(
platform
::
is_gpu_place
(
tensor
->
place
()))
{
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
tensor_data
=
cpu_tensor
.
data
<
float
>
();
}
return
tensor_data
[
0
];
}
class
AdamOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -367,8 +377,6 @@ class AdamOpKernel : public framework::OpKernel<T> {
int64_t
min_row_size_to_use_multithread
=
ctx
.
Attr
<
int64_t
>
(
"min_row_size_to_use_multithread"
);
bool
lazy_mode
=
ctx
.
Attr
<
bool
>
(
"lazy_mode"
);
T
beta1
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta1"
));
T
beta2
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
&
param
=
Ref
(
ctx
.
Input
<
LoDTensor
>
(
"Param"
),
"Must set Param"
);
// auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
...
...
@@ -390,6 +398,17 @@ class AdamOpKernel : public framework::OpKernel<T> {
auto
&
mom2_out
=
Ref
(
ctx
.
Output
<
LoDTensor
>
(
"Moment2Out"
),
"Must set Moment1Out"
);
T
beta1
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta1"
));
if
(
ctx
.
HasInput
(
"Beta1Tensor"
))
{
auto
*
beta1_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta1Tensor"
);
beta1
=
static_cast
<
T
>
(
GetAttrFromTensor
(
beta1_tensor
));
}
T
beta2
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
if
(
ctx
.
HasInput
(
"Beta2Tensor"
))
{
auto
*
beta2_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta2Tensor"
);
beta2
=
static_cast
<
T
>
(
GetAttrFromTensor
(
beta2_tensor
));
}
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
grad
=
Ref
(
ctx
.
Input
<
LoDTensor
>
(
"Grad"
),
"Must set Grad"
);
...
...
paddle/fluid/operators/scale_op.cc
浏览文件 @
735a2db0
...
...
@@ -34,6 +34,14 @@ class ScaleOp : public framework::OperatorWithKernel {
"Input(X) of ScaleOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of ScaleOp should not be null."
);
if
(
ctx
->
IsRuntime
()
&&
ctx
->
HasInput
(
"ScaleTensor"
))
{
auto
scale
=
ctx
->
Inputs
(
"ScaleTensor"
);
PADDLE_ENFORCE_EQ
(
scale
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(ScaleTensor) size must be 1"
));
}
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
...
...
@@ -43,6 +51,11 @@ class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) Input tensor of scale operator."
);
AddInput
(
"ScaleTensor"
,
"(Tensor) If provided, use this as "
"scale factor, this has a higher priority than "
"attr(scale), the shape of this tensor MUST BE 1."
)
.
AsDispensable
();
AddOutput
(
"Out"
,
"(Tensor) Output tensor of scale operator."
);
AddComment
(
R"DOC(
**Scale operator**
...
...
@@ -89,6 +102,9 @@ class ScaleGradMaker : public framework::SingleGradOpDescMaker {
auto
*
grad_op
=
new
framework
::
OpDesc
();
grad_op
->
SetType
(
"scale"
);
grad_op
->
SetInput
(
"X"
,
OutputGrad
(
"Out"
));
if
(
ForwardOp
().
Inputs
().
count
(
"ScaleTensor"
)
>
0
)
{
grad_op
->
SetInput
(
"ScaleTensor"
,
Input
(
"ScaleTensor"
));
}
grad_op
->
SetOutput
(
"Out"
,
InputGrad
(
"X"
));
grad_op
->
SetAttr
(
"scale"
,
GetAttr
(
"scale"
));
grad_op
->
SetAttr
(
"bias"
,
0.0
f
);
...
...
@@ -97,14 +113,14 @@ class ScaleGradMaker : public framework::SingleGradOpDescMaker {
}
};
using
ScaleOpInplace
=
framework
::
SingleOpInplaceInToOut
;
DECLARE_INPLACE_OP_INFERER
(
ScaleOpInplaceInferer
,
{
"X"
,
"Out"
})
;
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
scale
,
ops
::
ScaleOp
,
ops
::
ScaleOpMaker
,
ops
::
ScaleGradMaker
,
ops
::
ScaleOpVarTypeInference
,
ops
::
ScaleOpInplace
);
ops
::
ScaleOpVarTypeInference
,
ops
::
ScaleOpInplace
Inferer
);
REGISTER_OP_CPU_KERNEL
(
scale
,
ops
::
ScaleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ScaleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
...
...
paddle/fluid/operators/scale_op.h
浏览文件 @
735a2db0
...
...
@@ -19,6 +19,17 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
static
inline
float
GetAttrFromTensor
(
const
framework
::
Tensor
*
tensor
)
{
const
float
*
tensor_data
=
tensor
->
data
<
float
>
();
framework
::
Tensor
cpu_tensor
;
if
(
platform
::
is_gpu_place
(
tensor
->
place
()))
{
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
tensor_data
=
cpu_tensor
.
data
<
float
>
();
}
return
tensor_data
[
0
];
}
template
<
typename
DeviceContext
,
typename
T
>
class
ScaleKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -26,10 +37,15 @@ class ScaleKernel : public framework::OpKernel<T> {
auto
*
in_var
=
ctx
.
InputVar
(
"X"
);
auto
*
in
=
framework
::
GetLoDTensorOrSelectedRowsValueFromVar
(
*
in_var
);
auto
scale
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"scale"
));
auto
bias
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"bias"
));
auto
bias_after_scale
=
ctx
.
Attr
<
bool
>
(
"bias_after_scale"
);
auto
scale
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"scale"
));
if
(
ctx
.
HasInput
(
"ScaleTensor"
))
{
auto
*
scale_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"ScaleTensor"
);
scale
=
GetAttrFromTensor
(
scale_tensor
);
}
auto
*
out_var
=
ctx
.
OutputVar
(
"Out"
);
if
(
in_var
->
IsType
<
framework
::
SelectedRows
>
()
&&
in_var
!=
out_var
)
{
auto
&
in_slr
=
in_var
->
Get
<
framework
::
SelectedRows
>
();
...
...
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
735a2db0
...
...
@@ -174,6 +174,8 @@ def generate_layer_fn(op_type):
if
not
isinstance
(
val
,
list
)
and
not
isinstance
(
val
,
tuple
):
val
=
[
val
]
if
len
(
val
)
==
0
:
if
len
(
args
)
==
0
:
continue
val
=
[
args
[
0
]]
args
=
args
[
1
:]
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
735a2db0
...
...
@@ -14074,7 +14074,7 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
Args:
x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
scale(float
): The scale factor of the input
.
scale(float
|Variable): The scale factor of the input, it should be a float number or a Variable with shape [1] and data type as float32
.
bias(float): The bias to be put on the input.
bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
...
...
@@ -14099,6 +14099,27 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
print(res) # [array([[ 3., 5., 7.], [ 9., 11., 13.]], dtype=float32)]
.. code-block:: python
# scale with parameter scale as Variable
import paddle.fluid as fluid
import numpy as np
inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
scale = fluid.layers.data(name="scale", shape=[1], dtype='float32',
append_batch_size=False)
output = fluid.layers.scale(inputs, scale = scale, bias = 1.0)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
scale_np = np.array([2.]).astype(np.float32)
res = exe.run(fluid.default_main_program(), feed={'x':img, 'scale':scale_np}, fetch_list=[output])
print(res) # [array([[ 3., 5., 7.], [ 9., 11., 13.]], dtype=float32)]
"""
helper = LayerHelper('scale', **locals())
...
...
@@ -14108,15 +14129,18 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
inputs = {'X': x}
attrs = {
'bias': float(bias),
'bias_after_scale': bias_after_scale,
}
if isinstance(scale, Variable):
inputs['ScaleTensor'] = scale
else:
attrs['scale'] = float(scale)
helper.append_op(
type='scale',
inputs={'X': x},
outputs={'Out': out},
attrs={
'scale': float(scale),
'bias': float(bias),
'bias_after_scale': bias_after_scale
})
type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
return helper.append_activation(out)
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
735a2db0
...
...
@@ -1484,9 +1484,11 @@ class AdamOptimizer(Optimizer):
Args:
learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
It should be a float number or a Variable with shape [1] and data type as float32.
The default value is 0.9.
beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
It should be a float number or a Variable with shape [1] and data type as float32.
The default value is 0.999.
epsilon (float, optional): A small float value for numerical stability.
The default value is 1e-08.
...
...
@@ -1530,6 +1532,64 @@ class AdamOptimizer(Optimizer):
for data in train_reader():
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
.. code-block:: python
# Adam with beta1/beta2 as Variable
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler
place = fluid.CPUPlace()
main = fluid.Program()
with fluid.program_guard(main):
x = fluid.data(name='x', shape=[None, 13], dtype='float32')
y = fluid.data(name='y', shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
# define beta decay variable
def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate):
global_step = lr_scheduler._decay_step_counter()
beta1 = fluid.layers.create_global_var(
shape=[1],
value=float(beta1_init),
dtype='float32',
# set persistable for save checkpoints and resume
persistable=True,
name="beta1")
beta2 = fluid.layers.create_global_var(
shape=[1],
value=float(beta2_init),
dtype='float32',
# set persistable for save checkpoints and resume
persistable=True,
name="beta2")
div_res = global_step / decay_steps
decayed_beta1 = beta1_init * (decay_rate**div_res)
decayed_beta2 = beta2_init * (decay_rate**div_res)
fluid.layers.assign(decayed_beta1, beta1)
fluid.layers.assign(decayed_beta2, beta2)
return beta1, beta2
beta1, beta2 = get_decayed_betas(0.9, 0.99, 1e5, 0.9)
adam_optimizer = fluid.optimizer.AdamOptimizer(
learning_rate=0.01,
beta1=beta1,
beta2=beta2)
adam_optimizer.minimize(avg_cost)
fetch_list = [avg_cost]
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=1)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in train_reader():
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
"""
_moment1_acc_str
=
"moment1"
_moment2_acc_str
=
"moment2"
...
...
@@ -1569,13 +1629,15 @@ class AdamOptimizer(Optimizer):
name
=
self
.
_beta1_pow_acc_str
,
param
=
p
,
dtype
=
'float32'
,
fill_value
=
self
.
_beta1
,
fill_value
=
0.9
if
isinstance
(
self
.
_beta1
,
Variable
)
\
else
self
.
_beta1
,
shape
=
[
1
])
self
.
_add_accumulator
(
name
=
self
.
_beta2_pow_acc_str
,
param
=
p
,
dtype
=
'float32'
,
fill_value
=
self
.
_beta2
,
fill_value
=
0.999
if
isinstance
(
self
.
_beta2
,
Variable
)
\
else
self
.
_beta2
,
shape
=
[
1
])
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
...
...
@@ -1591,29 +1653,40 @@ class AdamOptimizer(Optimizer):
param_and_grad
[
0
])
# create the adam optimize op
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
self
.
_create_param_lr
(
param_and_grad
),
"Moment1"
:
moment1
,
"Moment2"
:
moment2
,
"Beta1Pow"
:
beta1_pow_acc
,
"Beta2Pow"
:
beta2_pow_acc
}
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"Moment1Out"
:
moment1
,
"Moment2Out"
:
moment2
}
attrs
=
{
"epsilon"
:
self
.
_epsilon
,
"lazy_mode"
:
self
.
_lazy_mode
,
"min_row_size_to_use_multithread"
:
1000
}
if
isinstance
(
self
.
_beta1
,
Variable
):
inputs
[
'Beta1Tensor'
]
=
self
.
_beta1
else
:
attrs
[
'beta1'
]
=
self
.
_beta1
if
isinstance
(
self
.
_beta2
,
Variable
):
inputs
[
'Beta2Tensor'
]
=
self
.
_beta2
else
:
attrs
[
'beta2'
]
=
self
.
_beta2
adam_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
self
.
_create_param_lr
(
param_and_grad
),
"Moment1"
:
moment1
,
"Moment2"
:
moment2
,
"Beta1Pow"
:
beta1_pow_acc
,
"Beta2Pow"
:
beta2_pow_acc
},
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"Moment1Out"
:
moment1
,
"Moment2Out"
:
moment2
},
attrs
=
{
"beta1"
:
self
.
_beta1
,
"beta2"
:
self
.
_beta2
,
"epsilon"
:
self
.
_epsilon
,
"lazy_mode"
:
self
.
_lazy_mode
,
"min_row_size_to_use_multithread"
:
1000
},
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
stop_gradient
=
True
)
return
adam_op
...
...
@@ -1632,18 +1705,30 @@ class AdamOptimizer(Optimizer):
param
)
beta2_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta2_pow_acc_str
,
param
)
inputs
=
{
"X"
:
beta1_pow_acc
}
attrs
=
{}
if
isinstance
(
self
.
_beta1
,
Variable
):
inputs
[
'ScaleTensor'
]
=
self
.
_beta1
else
:
attrs
[
'scale'
]
=
self
.
_beta1
main_block
.
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
beta1_pow_acc
}
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
beta1_pow_acc
},
attrs
=
{
"scale"
:
self
.
_beta1
}
,
attrs
=
attrs
,
stop_gradient
=
True
)
inputs
=
{
"X"
:
beta2_pow_acc
}
attrs
=
{}
if
isinstance
(
self
.
_beta2
,
Variable
):
inputs
[
'ScaleTensor'
]
=
self
.
_beta2
else
:
attrs
[
'scale'
]
=
self
.
_beta2
main_block
.
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
beta2_pow_acc
}
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
beta2_pow_acc
},
attrs
=
{
"scale"
:
self
.
_beta2
}
,
attrs
=
attrs
,
stop_gradient
=
True
)
...
...
python/paddle/fluid/tests/unittests/test_adam_op.py
浏览文件 @
735a2db0
...
...
@@ -19,6 +19,7 @@ import numpy as np
from
op_test
import
OpTest
from
paddle.fluid
import
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
class
TestAdamOp1
(
OpTest
):
...
...
@@ -183,10 +184,17 @@ def adam_step(inputs, attributes):
beta1_pow
=
inputs
[
'Beta1Pow'
]
beta2_pow
=
inputs
[
'Beta2Pow'
]
beta1
=
attributes
[
'beta1'
]
beta2
=
attributes
[
'beta2'
]
epsilon
=
attributes
[
'epsilon'
]
if
'beta1'
in
attributes
:
beta1
=
attributes
[
'beta1'
]
else
:
beta1
=
inputs
[
'Beta1Tensor'
][
0
]
if
'beta2'
in
attributes
:
beta2
=
attributes
[
'beta2'
]
else
:
beta2
=
inputs
[
'Beta2Tensor'
][
0
]
moment1_out
=
beta1
*
moment1
+
(
1
-
beta1
)
*
grad
moment2_out
=
beta2
*
moment2
+
(
1
-
beta2
)
*
np
.
square
(
grad
)
lr_t
=
lr
*
np
.
sqrt
(
1
-
beta2_pow
)
/
(
1
-
beta1_pow
)
...
...
@@ -330,5 +338,92 @@ class TestSparseAdamOp(unittest.TestCase):
self
.
check_with_place
(
place
,
lazy_mode
)
class
TestAdamOpBetaVariable
(
OpTest
):
def
setUp
(
self
):
'''Test Adam Op with beta as Variable
'''
self
.
op_type
=
"adam"
param
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
grad
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
moment1
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
# The second moment is positive
moment2
=
np
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
beta1
=
0.85
beta2
=
0.95
learning_rate
=
0.001
epsilon
=
1e-8
beta1_pow
=
beta1
**
10
beta2_pow
=
beta2
**
10
self
.
inputs
=
{
'Param'
:
param
,
'Grad'
:
grad
,
'Moment1'
:
moment1
,
'Moment2'
:
moment2
,
'LearningRate'
:
np
.
array
([
learning_rate
]).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
),
"Beta1Tensor"
:
np
.
array
([
beta1
]).
astype
(
"float32"
),
"Beta2Tensor"
:
np
.
array
([
beta2
]).
astype
(
"float32"
),
}
attributes
=
{
'epsilon'
:
epsilon
}
param_out
,
moment1_out
,
\
moment2_out
=
adam_step
(
self
.
inputs
,
attributes
)
self
.
outputs
=
{
'Moment1Out'
:
moment1_out
,
'Moment2Out'
:
moment2_out
,
'ParamOut'
:
param_out
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestAdamOptimizerBetaVariable
(
unittest
.
TestCase
):
def
test_adam_optimizer
(
self
):
def
test_with_place
(
place
,
shape
):
exe
=
fluid
.
Executor
(
place
)
train_prog
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_prog
,
startup
):
with
fluid
.
unique_name
.
guard
():
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
shape
)
conv
=
fluid
.
layers
.
conv2d
(
data
,
8
,
3
)
loss
=
fluid
.
layers
.
reduce_mean
(
conv
)
beta1
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
],
value
=
0.85
,
dtype
=
'float32'
,
persistable
=
True
)
beta2
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
],
value
=
0.95
,
dtype
=
'float32'
,
persistable
=
True
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
1e-5
,
beta1
=
beta1
,
beta2
=
beta2
)
opt
.
minimize
(
loss
)
exe
.
run
(
startup
)
data_np
=
np
.
random
.
random
(
shape
).
astype
(
'float32'
)
rets
=
exe
.
run
(
train_prog
,
feed
=
{
"data"
:
data_np
},
fetch_list
=
[
loss
])
assert
rets
[
0
]
is
not
None
shape
=
[
2
,
3
,
8
,
8
]
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
test_with_place
(
place
,
shape
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
735a2db0
...
...
@@ -2425,6 +2425,20 @@ class TestBook(LayerTest):
out
=
layers
.
slice
(
input
,
axes
=
axes
,
starts
=
starts
,
ends
=
ends
)
return
out
def
make_scale_variable
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()):
input
=
self
.
_get_data
(
name
=
"input"
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
'float32'
)
scale_var
=
self
.
_get_data
(
name
=
"scale"
,
shape
=
[
1
],
dtype
=
'float32'
,
append_batch_size
=
False
)
out
=
layers
.
scale
(
input
,
scale
=
scale_var
)
return
out
def
make_softshrink
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()):
...
...
python/paddle/fluid/tests/unittests/test_scale_op.py
浏览文件 @
735a2db0
...
...
@@ -42,6 +42,29 @@ class TestScaleOp(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestScaleOpScaleVariable
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"scale"
self
.
dtype
=
np
.
float32
self
.
init_dtype_type
()
self
.
scale
=
-
2.3
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
10
)).
astype
(
self
.
dtype
),
'ScaleTensor'
:
np
.
array
([
self
.
scale
]).
astype
(
'float32'
)
}
self
.
attrs
=
{}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
dtype
(
self
.
scale
)}
def
init_dtype_type
(
self
):
pass
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestScaleOpSelectedRows
(
unittest
.
TestCase
):
def
init_dtype_type
(
self
):
pass
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
735a2db0
...
...
@@ -1440,7 +1440,10 @@ class DistributeTranspiler(object):
param_name
,
endpoint
)
break
for
key
in
opt_op
.
input_names
:
if
key
in
[
"Param"
,
"Grad"
,
"LearningRate"
]:
if
key
in
[
"Param"
,
"Grad"
,
"LearningRate"
,
"Beta1Tensor"
,
"Beta2Tensor"
]:
continue
origin_var
=
self
.
origin_program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
...
...
@@ -2204,7 +2207,10 @@ class DistributeTranspiler(object):
for
key
in
opt_op
.
input_names
:
new_shape
=
None
if
key
in
[
"Param"
,
"Grad"
,
"LearningRate"
]:
if
key
in
[
"Param"
,
"Grad"
,
"LearningRate"
,
"Beta1Tensor"
,
"Beta2Tensor"
]:
continue
var
=
self
.
origin_program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
param_var
=
new_inputs
[
"Param"
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录