Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
72a910e4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
72a910e4
编写于
7月 19, 2023
作者:
A
Aurelius84
提交者:
GitHub
7月 19, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NewIR]Replace frontend::Program & hlir::Graph with ::ir::Program in CINN (#55186)
上级
fd192303
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
494 addition
and
13 deletion
+494
-13
paddle/cinn/hlir/framework/new_ir_compiler.h
paddle/cinn/hlir/framework/new_ir_compiler.h
+295
-0
paddle/cinn/hlir/op/op_util.cc
paddle/cinn/hlir/op/op_util.cc
+39
-13
paddle/cinn/utils/attribute_util.h
paddle/cinn/utils/attribute_util.h
+77
-0
test/cpp/ir/CMakeLists.txt
test/cpp/ir/CMakeLists.txt
+1
-0
test/cpp/ir/cinn/CMakeLists.txt
test/cpp/ir/cinn/CMakeLists.txt
+15
-0
test/cpp/ir/cinn/graph_compiler_new_ir_test.cc
test/cpp/ir/cinn/graph_compiler_new_ir_test.cc
+67
-0
未找到文件。
paddle/cinn/hlir/framework/new_ir_compiler.h
0 → 100644
浏览文件 @
72a910e4
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <unordered_map>
#include "paddle/cinn/common/context.h"
#include "paddle/cinn/hlir/framework/op_strategy.h"
#include "paddle/cinn/lang/lower.h"
#include "paddle/cinn/lang/placeholder.h"
#include "paddle/cinn/utils/attribute_util.h"
#include "paddle/fluid/ir/dialect/pd_type.h"
#include "paddle/ir/core/builtin_type.h"
#include "paddle/ir/core/program.h"
#include "paddle/cinn/hlir/framework/graph_compiler.h"
namespace
cinn
{
namespace
hlir
{
namespace
framework
{
// TODO(Aurelius): Need add name mapping logic in REGISTER_CINN_OP
// macros or attempt to unify Op name with Paddle and CINN.
static
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
OP_NAMES
=
{
{
"pd.full"
,
"fill_constant"
},
{
"pd.matmul"
,
"matmul"
}};
// TODO(Aurelius84): Need abstract this logic to implement Proxy for
// the co-existance with GraphCompiler.
class
NewIRCompiler
final
{
public:
NewIRCompiler
(
const
::
ir
::
Program
&
prog
,
const
Target
&
target
,
const
std
::
shared_ptr
<
Scope
>&
scope
)
:
program_
(
prog
),
m_builder_
(
"NewIR"
,
target
),
// TODO(dev): need unique name
target_
(
target
),
scope_
(
scope
)
{}
std
::
unique_ptr
<
Program
>
Build
()
{
m_builder_
.
Clear
();
// NOTE(Aurelius84): Currently only support each op for one group
std
::
vector
<
std
::
vector
<::
ir
::
Operation
*>>
groups
;
for
(
auto
it
=
program_
.
block
()
->
begin
();
it
!=
program_
.
block
()
->
end
();
++
it
)
{
groups
.
push_back
({
*
it
});
}
VLOG
(
4
)
<<
"Groups size: "
<<
groups
.
size
();
std
::
vector
<
std
::
vector
<
ir
::
LoweredFunc
>>
lowered_funcs
;
for
(
int
i
=
0
;
i
<
groups
.
size
();
++
i
)
{
lowered_funcs
.
emplace_back
(
GetOpFunc
(
*
groups
[
i
][
0
],
i
));
}
for
(
auto
&&
lowered_func
:
lowered_funcs
)
{
ProcessFunction
(
lowered_func
);
}
compiler_
=
backends
::
Compiler
::
Create
(
target_
);
auto
build_module
=
m_builder_
.
Build
();
compiler_
->
Build
(
build_module
,
""
);
auto
instructions
=
BuildInstructions
(
groups
);
return
std
::
make_unique
<
Program
>
(
scope_
,
std
::
move
(
instructions
));
}
std
::
vector
<
ir
::
LoweredFunc
>
GetOpFunc
(
const
::
ir
::
Operation
&
op
,
int
idx
)
{
std
::
vector
<
ir
::
Tensor
>
inputs
;
std
::
vector
<
common
::
CINNValue
>
cinn_inputs
;
VLOG
(
4
)
<<
"GetOpFunc for op: "
<<
op
.
name
();
// step 1: Deal with Oprands
for
(
int
i
=
0
;
i
<
op
.
num_operands
();
++
i
)
{
auto
in_value
=
op
.
operand
(
i
);
// TODO(Aurelius84): For now, use addr as name but it's not wise.
std
::
string
input_id
=
std
::
to_string
(
std
::
hash
<::
ir
::
Value
>
()(
in_value
));
// NOTE(Aurelius84): whether need to support other Type?
auto
type_info
=
in_value
.
type
().
dyn_cast
<
paddle
::
dialect
::
DenseTensorType
>
();
auto
in_shape
=
phi
::
vectorize
<
int
>
(
type_info
.
dims
());
ir
::
Tensor
temp
;
auto
dtype
=
type_info
.
dtype
();
// TODO(Aurelius84): support more type
if
(
dtype
.
isa
<::
ir
::
Float32Type
>
())
{
temp
=
lang
::
Placeholder
<
float
>
(
input_id
,
in_shape
);
}
else
if
(
dtype
.
isa
<::
ir
::
Int32Type
>
())
{
temp
=
lang
::
Placeholder
<
int
>
(
input_id
,
in_shape
);
}
inputs
.
push_back
(
temp
);
cinn_inputs
.
push_back
(
common
::
CINNValue
(
temp
));
}
for
(
auto
out_name
:
OpGetOutputNames
(
op
))
{
cinn_inputs
.
push_back
(
common
::
CINNValue
(
op
.
name
().
substr
(
3
)
+
"_"
+
out_name
));
}
VLOG
(
4
)
<<
"inputs.size(): "
<<
inputs
.
size
();
// step 2: Deal with OpResult
std
::
vector
<
Type
>
out_types
;
std
::
vector
<
std
::
vector
<
int
>>
out_shapes
;
for
(
int
i
=
0
;
i
<
op
.
num_results
();
++
i
)
{
auto
out_value
=
op
.
result
(
i
);
auto
type_info
=
out_value
.
type
().
dyn_cast
<
paddle
::
dialect
::
DenseTensorType
>
();
// TODO(Aurelius84): need to support ::ir::Type -> common::Type
out_types
.
push_back
(
common
::
Float
(
32
));
auto
out_shape
=
phi
::
vectorize
<
int
>
(
type_info
.
dims
());
out_shapes
.
push_back
(
std
::
move
(
out_shape
));
}
VLOG
(
4
)
<<
"out_types.size(): "
<<
out_types
.
size
();
NodeAttr
node_attrs
;
{
VLOG
(
4
)
<<
"op.attributes():"
<<
op
.
attributes
().
size
();
auto
attrs
=
utils
::
ConvertAttributes
(
op
.
attributes
());
node_attrs
.
node_name
=
OP_NAMES
.
at
(
op
.
name
());
node_attrs
.
attr_store
=
std
::
move
(
attrs
);
}
auto
&
strategy
=
Operator
::
GetAttrs
<
StrategyFunction
>
(
"CINNStrategy"
);
// NOTE(Aurelius84): Do we need replace all hlir::framework Operator with
// ::ir::Program ?
const
hlir
::
framework
::
Operator
*
cinn_op
=
Operator
::
Get
(
OP_NAMES
.
at
(
op
.
name
()));
auto
impl
=
OpStrategy
::
SelectImpl
(
strategy
[
cinn_op
](
node_attrs
,
inputs
,
out_types
,
out_shapes
,
target_
));
common
::
CINNValuePack
C
=
impl
->
fcompute
(
common
::
CINNValuePack
{
cinn_inputs
});
poly
::
StageMap
stages
=
C
.
back
();
// make sure all the tensors in the stages before schedule launch.
for
(
int
i
=
0
;
i
<
C
->
size
()
-
1
;
i
++
)
{
ir
::
Expr
temp
=
C
[
i
];
stages
->
InsertLazily
(
temp
.
as_tensor_ref
());
}
C
=
impl
->
fschedule
(
C
);
for
(
int
i
=
0
;
i
<
C
->
size
()
-
1
;
i
++
)
{
ir
::
Expr
temp
=
C
[
i
];
// checkout whether the tensor is with buffer.
if
((
!
temp
.
as_tensor_ref
()
->
buffer
.
defined
()
||
this
->
target_
!=
common
::
DefaultNVGPUTarget
())
&&
!
stages
[
temp
.
as_tensor_ref
()]
->
inlined
())
{
inputs
.
push_back
(
temp
.
as_tensor_ref
());
}
}
auto
func
=
lang
::
LowerVec
(
GenOpFuncName
(
op
,
idx
),
stages
,
inputs
,
{},
{},
nullptr
,
target_
);
return
func
;
}
void
ProcessFunction
(
const
std
::
vector
<
ir
::
LoweredFunc
>&
lowered_funcs
)
{
for
(
auto
&&
func
:
lowered_funcs
)
{
for
(
auto
&&
arg
:
func
->
args
)
{
std
::
string
arg_name
=
arg
.
name
();
if
(
arg_name
[
0
]
==
'_'
)
arg_name
=
arg_name
.
substr
(
1
);
auto
*
var
=
scope_
->
FindVar
(
arg_name
);
// For argument buffer not in scope, create it.
if
(
!
var
&&
arg
.
is_buffer
())
{
auto
*
new_var
=
scope_
->
Var
<
Tensor
>
(
arg_name
);
auto
&
tensor
=
absl
::
get
<
Tensor
>
(
*
new_var
);
std
::
vector
<
Shape
::
dim_t
>
shape
;
for
(
auto
&
shape_dim
:
arg
.
buffer_arg
()
->
shape
)
{
CHECK
(
shape_dim
.
is_constant
());
shape
.
push_back
(
static_cast
<
int
>
(
shape_dim
.
get_constant
()));
}
tensor
->
Resize
(
Shape
{
shape
});
tensor
->
set_type
(
arg
.
buffer_arg
()
->
dtype
);
}
}
m_builder_
.
AddFunction
(
func
);
}
}
std
::
vector
<
std
::
unique_ptr
<
Instruction
>>
BuildInstructions
(
const
std
::
vector
<
std
::
vector
<::
ir
::
Operation
*>>&
groups
)
{
std
::
vector
<
std
::
unique_ptr
<
Instruction
>>
instructions
;
for
(
int
idx
=
0
;
idx
<
groups
.
size
();
++
idx
)
{
// TODO(Aurelius84): only support single op in groups
auto
&
op
=
*
groups
[
idx
][
0
];
auto
instr_name
=
op
.
name
();
auto
instr
=
std
::
unique_ptr
<
Instruction
>
(
new
Instruction
(
target_
,
scope_
.
get
(),
OpGetInputNames
(
op
),
OpGetOutputNames
(
op
),
instr_name
));
auto
&
op_func_name
=
GenOpFuncName
(
op
,
idx
);
auto
*
fn_ptr
=
compiler_
->
Lookup
(
op_func_name
);
CHECK
(
fn_ptr
);
instr
->
SetLoweredFunc
(
reinterpret_cast
<
void
*>
(
fn_ptr
),
op_func_name
);
// As some instruction like reduce, will generate more than one kernel.
// So try to find the rest kernel, if it exists.
// SetSubKernels(instr.get(), op_func_name);
instr
->
Finalize
();
instructions
.
push_back
(
std
::
move
(
instr
));
}
return
instructions
;
}
protected:
const
std
::
string
&
GenOpFuncName
(
const
::
ir
::
Operation
&
op
,
int
idx
)
{
// TODO(Aurelius84): . will raise compiler error in pd.xxx, need more
// elegant way to generate function name.
std
::
string
op_name
=
op
.
name
().
substr
(
3
)
+
"_"
+
std
::
to_string
(
idx
);
std
::
string
func_name
=
Context
::
Global
().
NewName
(
"fn_"
+
op_name
);
func_names_
.
try_emplace
(
op_name
,
func_name
);
return
func_names_
.
at
(
op_name
);
}
std
::
vector
<
std
::
string
>
OpGetInputNames
(
const
::
ir
::
Operation
&
op
)
{
std
::
vector
<
std
::
string
>
names
;
std
::
unordered_set
<
std
::
string
>
repeat
;
for
(
int
i
=
0
;
i
<
op
.
num_operands
();
++
i
)
{
auto
value
=
op
.
operand
(
i
);
std
::
string
name
=
std
::
to_string
(
std
::
hash
<::
ir
::
Value
>
()(
value
));
if
(
repeat
.
count
(
name
))
{
continue
;
}
repeat
.
insert
(
name
);
names
.
push_back
(
name
);
}
return
names
;
}
std
::
vector
<
std
::
string
>
OpGetOutputNames
(
const
::
ir
::
Operation
&
op
)
{
std
::
vector
<
std
::
string
>
names
;
for
(
int
i
=
0
;
i
<
op
.
num_results
();
++
i
)
{
auto
value
=
op
.
result
(
i
);
std
::
string
name
=
std
::
to_string
(
std
::
hash
<::
ir
::
Value
>
()(
value
));
names
.
push_back
(
std
::
move
(
name
));
}
return
names
;
}
private:
const
::
ir
::
Program
&
program_
;
ir
::
Module
::
Builder
m_builder_
;
std
::
unique_ptr
<
backends
::
Compiler
>
compiler_
;
Target
target_
;
std
::
shared_ptr
<
Scope
>
scope_
;
std
::
unordered_map
<
std
::
string
,
std
::
string
>
func_names_
;
};
std
::
shared_ptr
<
Scope
>
BuildScope
(
const
Target
&
target
,
const
::
ir
::
Program
&
program
)
{
std
::
unordered_set
<::
ir
::
Value
>
visited
;
auto
scope
=
std
::
make_shared
<
Scope
>
();
auto
create_var
=
[
&
](
::
ir
::
Value
value
)
{
if
(
visited
.
count
(
value
)
>
0
)
return
;
visited
.
emplace
(
value
);
std
::
string
name
=
std
::
to_string
(
std
::
hash
<::
ir
::
Value
>
()(
value
));
auto
type_info
=
value
.
type
().
dyn_cast
<
paddle
::
dialect
::
DenseTensorType
>
();
auto
*
var
=
scope
->
Var
<
Tensor
>
(
name
);
auto
&
tensor
=
absl
::
get
<
Tensor
>
(
*
var
);
// NOTE: can be replaced with phi::vectorized ?
std
::
vector
<
Shape
::
dim_t
>
shape
;
for
(
auto
i
=
0
;
i
<
type_info
.
dims
().
size
();
++
i
)
{
shape
.
push_back
(
Shape
::
dim_t
(
type_info
.
dims
()[
i
]));
}
tensor
->
Resize
(
Shape
{
shape
});
// TODO(Aurelius84): need convert this.
tensor
->
set_type
(
common
::
Float
(
32
));
};
for
(
auto
it
=
program
.
block
()
->
begin
();
it
!=
program
.
block
()
->
end
();
++
it
)
{
// visit OpOprands
for
(
auto
i
=
0
;
i
<
(
*
it
)
->
num_operands
();
++
i
)
{
auto
in_value
=
(
*
it
)
->
operand
(
i
);
create_var
(
in_value
);
}
for
(
auto
i
=
0
;
i
<
(
*
it
)
->
num_results
();
++
i
)
{
auto
out_value
=
(
*
it
)
->
result
(
i
);
create_var
(
out_value
);
}
}
return
scope
;
}
}
// namespace framework
}
// namespace hlir
}
// namespace cinn
paddle/cinn/hlir/op/op_util.cc
浏览文件 @
72a910e4
...
...
@@ -32,21 +32,47 @@ CINNSchedule GetElementwiseScheduleFunc(
CHECK
(
!
args
.
empty
())
<<
"The input argument of ElementwiseSchedule is "
"empty! Please check.
\n
"
;
common
::
CINNValuePack
arg_pack
=
args
[
0
];
std
::
vector
<
Expr
>
vec_ast
;
for
(
int
i
=
0
;
i
<
arg_pack
.
size
();
i
++
)
{
if
(
arg_pack
[
i
].
is_expr
())
{
Expr
temp
=
arg_pack
[
i
];
vec_ast
.
emplace_back
(
temp
);
CHECK_GT
(
arg_pack
.
size
(),
0U
)
<<
"arg_pack.size() must contains at least one element."
;
// TODO(Aurelius84): For NewIrCompiler, the outputs of Compute are
// tensor_ref and not Expr.
bool
is_tensor_stages
=
arg_pack
.
size
()
==
2U
&&
arg_pack
[
0
].
is_tensor
()
&&
arg_pack
[
1
].
is_stagemap
();
if
(
!
is_tensor_stages
)
{
std
::
vector
<
Expr
>
vec_ast
;
for
(
int
i
=
0
;
i
<
arg_pack
.
size
();
i
++
)
{
if
(
arg_pack
[
i
].
is_expr
())
{
Expr
temp
=
arg_pack
[
i
];
vec_ast
.
emplace_back
(
temp
);
}
}
CHECK
(
!
vec_ast
.
empty
());
ir
::
ModuleExpr
mod_expr
(
vec_ast
);
ir
::
IRSchedule
ir_sch
(
mod_expr
);
ir_sch
.
MergeExprs
();
pe
::
IRElementwiseSchedule
(
ir_sch
,
output_shapes
.
front
(),
target
);
std
::
vector
<
common
::
CINNValue
>
res
{
common
::
CINNValue
(
ir_sch
.
GetModule
().
GetExprs
().
at
(
0
))};
*
ret
=
common
::
CINNValuePack
{
res
};
}
else
{
CHECK
(
!
args
.
empty
())
<<
"The input argument of ElementwiseSchedule is "
"empty! Please check.
\n
"
;
common
::
CINNValuePack
arg_pack
=
args
[
0
];
Expr
out
=
arg_pack
[
0
];
poly
::
StageMap
stages
=
arg_pack
[
1
];
CHECK
(
out
.
as_tensor
());
CHECK_EQ
(
arg_pack
.
size
(),
2UL
);
if
(
target
.
arch
==
Target
::
Arch
::
NVGPU
)
{
pe
::
CudaScheduleInjective
(
stages
[
out
.
as_tensor_ref
()],
output_shapes
.
front
(),
target
);
}
else
if
(
target
.
arch
==
Target
::
Arch
::
X86
)
{
pe
::
ScheduleInjectiveCPU
(
stages
[
out
.
as_tensor_ref
()],
output_shapes
.
front
(),
target
,
vectorizable
);
}
*
ret
=
arg_pack
;
}
CHECK
(
!
vec_ast
.
empty
());
ir
::
ModuleExpr
mod_expr
(
vec_ast
);
ir
::
IRSchedule
ir_sch
(
mod_expr
);
ir_sch
.
MergeExprs
();
pe
::
IRElementwiseSchedule
(
ir_sch
,
output_shapes
.
front
(),
target
);
std
::
vector
<
common
::
CINNValue
>
res
{
common
::
CINNValue
(
ir_sch
.
GetModule
().
GetExprs
().
at
(
0
))};
*
ret
=
common
::
CINNValuePack
{
res
};
});
}
...
...
paddle/cinn/utils/attribute_util.h
0 → 100644
浏览文件 @
72a910e4
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <unordered_map>
#include "paddle/cinn/utils/type_defs.h"
#include "paddle/fluid/ir/dialect/pd_attribute.h"
#include "paddle/phi/common/data_type.h"
namespace
cinn
{
namespace
utils
{
using
NewIR_AttributeMap
=
std
::
unordered_map
<
std
::
string
,
::
ir
::
Attribute
>
;
Attribute
ConvertAttribute
(
const
::
ir
::
Attribute
&
src_attr
)
{
Attribute
dst_attr
;
if
(
src_attr
.
isa
<::
ir
::
BoolAttribute
>
())
{
dst_attr
=
src_attr
.
dyn_cast
<::
ir
::
BoolAttribute
>
().
data
();
}
else
if
(
src_attr
.
isa
<::
ir
::
FloatAttribute
>
())
{
dst_attr
=
src_attr
.
dyn_cast
<::
ir
::
FloatAttribute
>
().
data
();
}
else
if
(
src_attr
.
isa
<::
ir
::
Int32Attribute
>
())
{
dst_attr
=
src_attr
.
dyn_cast
<::
ir
::
Int32Attribute
>
().
data
();
}
else
if
(
src_attr
.
isa
<::
ir
::
StrAttribute
>
())
{
dst_attr
=
src_attr
.
dyn_cast
<::
ir
::
StrAttribute
>
().
AsString
();
}
else
if
(
src_attr
.
isa
<::
ir
::
Int64Attribute
>
())
{
dst_attr
=
src_attr
.
dyn_cast
<::
ir
::
Int64Attribute
>
().
data
();
}
else
if
(
src_attr
.
isa
<::
ir
::
DoubleAttribute
>
())
{
dst_attr
=
src_attr
.
dyn_cast
<::
ir
::
DoubleAttribute
>
().
data
();
}
else
if
(
src_attr
.
isa
<
paddle
::
dialect
::
IntArrayAttribute
>
())
{
auto
arr
=
src_attr
.
dyn_cast
<
paddle
::
dialect
::
IntArrayAttribute
>
().
data
();
std
::
vector
<
int
>
val
;
for
(
size_t
i
=
0
;
i
<
arr
.
size
();
++
i
)
{
val
.
push_back
(
arr
[
i
]);
}
dst_attr
=
val
;
}
else
if
(
src_attr
.
isa
<
paddle
::
dialect
::
DataTypeAttribute
>
())
{
// TODO(Aurelius84): Need add convert logic from phi::DataType into cinn
// String.
auto
dtype
=
src_attr
.
dyn_cast
<
paddle
::
dialect
::
DataTypeAttribute
>
().
data
();
dst_attr
=
phi
::
DataTypeToString
(
dtype
);
}
else
{
LOG
(
FATAL
)
<<
"unknown Attribute: "
<<
src_attr
;
}
return
dst_attr
;
}
AttributeMap
ConvertAttributes
(
const
NewIR_AttributeMap
&
src_attrs
)
{
AttributeMap
dst_attrs
;
for
(
auto
&
item
:
src_attrs
)
{
VLOG
(
4
)
<<
"deal with "
<<
item
.
first
;
if
(
!
item
.
second
.
isa
<
paddle
::
dialect
::
PlaceAttribute
>
())
{
dst_attrs
[
item
.
first
]
=
std
::
move
(
ConvertAttribute
(
item
.
second
));
}
else
{
// TODO(Aurelius84): support place attribute for special Op
dst_attrs
[
"force_cpu"
]
=
false
;
}
}
VLOG
(
4
)
<<
"dst_attrs.size(): "
<<
dst_attrs
.
size
();
return
dst_attrs
;
}
}
// namespace utils
}
// namespace cinn
test/cpp/ir/CMakeLists.txt
浏览文件 @
72a910e4
...
...
@@ -2,3 +2,4 @@ add_subdirectory(core)
add_subdirectory
(
pass
)
add_subdirectory
(
pattern_rewrite
)
add_subdirectory
(
kernel_dialect
)
add_subdirectory
(
cinn
)
test/cpp/ir/cinn/CMakeLists.txt
0 → 100644
浏览文件 @
72a910e4
if
(
WITH_TESTING AND WITH_CINN
)
cc_test_old
(
test_graph_compiler_new_ir
SRCS
graph_compiler_new_ir_test.cc
DEPS
cinncore
pd_dialect
ir
phi
gtest
glog
)
set_tests_properties
(
test_graph_compiler_new_ir PROPERTIES LABELS
"RUN_TYPE=CINN"
)
endif
()
test/cpp/ir/cinn/graph_compiler_new_ir_test.cc
0 → 100644
浏览文件 @
72a910e4
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <sstream>
#include "paddle/fluid/ir/dialect/pd_dialect.h"
#include "paddle/fluid/ir/dialect/pd_op.h"
#include "paddle/ir/core/ir_context.h"
#include "paddle/ir/core/program.h"
#include "paddle/cinn/frontend/net_builder.h"
#include "paddle/cinn/frontend/optimize.h"
#include "paddle/cinn/hlir/framework/graph_compiler.h"
#include "paddle/cinn/hlir/framework/new_ir_compiler.h"
TEST
(
GraphCompier
,
TestNewIR
)
{
::
ir
::
IrContext
*
ctx
=
::
ir
::
IrContext
::
Instance
();
ctx
->
GetOrRegisterDialect
<
paddle
::
dialect
::
PaddleDialect
>
();
::
ir
::
Program
program
(
ctx
);
::
ir
::
Builder
builder
=
::
ir
::
Builder
(
ctx
,
program
.
block
());
auto
full_op_x
=
builder
.
Build
<
paddle
::
dialect
::
FullOp
>
(
std
::
vector
<
int64_t
>
{
64
,
128
},
1.0
,
phi
::
DataType
::
FLOAT32
,
phi
::
CPUPlace
());
auto
full_op_y
=
builder
.
Build
<
paddle
::
dialect
::
FullOp
>
(
std
::
vector
<
int64_t
>
{
128
,
64
},
2.0
,
phi
::
DataType
::
FLOAT32
,
phi
::
CPUPlace
());
// TODO(Aurelius84): test more op
// auto add_z = builder.Build<paddle::dialect::MatmulOp>(full_op_x->result(0),
// full_op_y->result(0));
EXPECT_EQ
(
program
.
block
()
->
size
(),
2u
);
std
::
stringstream
ss
;
program
.
Print
(
ss
);
LOG
(
INFO
)
<<
ss
.
str
();
auto
target
=
cinn
::
common
::
DefaultNVGPUTarget
();
auto
scope
=
cinn
::
hlir
::
framework
::
BuildScope
(
target
,
program
);
ASSERT_EQ
(
scope
->
var_names
().
size
(),
2
);
cinn
::
hlir
::
framework
::
NewIRCompiler
ir_compiler
(
program
,
target
,
scope
);
auto
runtime_program
=
ir_compiler
.
Build
();
// FIXME(Aurelius84): It raised illegal memory access while deconstructor
// after running all instruction, but it's ok under GLOG_v=10.
// ASSERT_NO_THROW(runtime_program->Execute());
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录