Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7205d331
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7205d331
编写于
5月 22, 2018
作者:
T
tensor-tang
提交者:
GitHub
5月 22, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #10597 from kbinias/mkldnn-activations-improvments
Update activations for MKL-DNN
上级
2a77fc50
24904b91
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
172 addition
and
117 deletion
+172
-117
paddle/fluid/operators/activation_mkldnn_op.cc
paddle/fluid/operators/activation_mkldnn_op.cc
+135
-67
paddle/fluid/operators/activation_op.cc
paddle/fluid/operators/activation_op.cc
+30
-3
paddle/fluid/operators/mkldnn_activation_op.h
paddle/fluid/operators/mkldnn_activation_op.h
+2
-47
paddle/fluid/platform/mkldnn_helper.h
paddle/fluid/platform/mkldnn_helper.h
+5
-0
未找到文件。
paddle/fluid/operators/activation_mkldnn_op.cc
浏览文件 @
7205d331
...
...
@@ -15,6 +15,7 @@
#include "mkldnn.hpp"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/mkldnn_activation_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -23,6 +24,18 @@ using paddle::framework::Tensor;
using
paddle
::
platform
::
MKLDNNDeviceContext
;
namespace
{
std
::
string
gethash
(
const
mkldnn
::
memory
::
dims
&
operand_dims
,
const
mkldnn
::
algorithm
algorithm
)
{
auto
dim2str
=
[](
const
mkldnn
::
memory
::
dims
&
operand_dims
)
{
std
::
string
dstr
=
""
;
for
(
size_t
i
=
0
;
i
<
operand_dims
.
size
();
++
i
)
{
dstr
+=
std
::
to_string
(
operand_dims
[
i
])
+
"-"
;
}
return
dstr
;
};
return
dim2str
(
operand_dims
)
+
std
::
to_string
(
algorithm
);
}
template
<
typename
T
,
typename
ExecContext
>
void
eltwise_forward
(
const
ExecContext
&
ctx
,
mkldnn
::
algorithm
algorithm
,
const
T
alpha
=
0
,
const
T
beta
=
0
)
{
...
...
@@ -37,42 +50,70 @@ void eltwise_forward(const ExecContext &ctx, mkldnn::algorithm algorithm,
const
auto
*
src_data
=
src
->
template
data
<
T
>();
auto
*
dst
=
ctx
.
template
Output
<
Tensor
>(
"Out"
);
const
T
*
dst_data
=
dst
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
T
*
dst_data
=
dst
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
// get memory dim
PADDLE_ENFORCE
(
src
->
dims
().
size
()
==
2
||
src
->
dims
().
size
()
==
4
,
"Input dim must be with 2 or 4"
);
std
::
vector
<
int
>
src_tz
=
framework
::
vectorize2int
(
src
->
dims
());
// create memory description
auto
data_md
=
src_tz
.
size
()
==
2
?
platform
::
MKLDNNMemDesc
(
src_tz
,
mkldnn
::
memory
::
f32
,
mkldnn
::
memory
::
format
::
nc
)
:
platform
::
MKLDNNMemDesc
(
src_tz
,
mkldnn
::
memory
::
f32
,
mkldnn
::
memory
::
format
::
nchw
);
// create memory primitives
auto
src_memory
=
mkldnn
::
memory
({
data_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
const_cast
<
float
*>
(
src_data
)));
auto
dst_memory
=
mkldnn
::
memory
({
data_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
const_cast
<
float
*>
(
dst_data
)));
auto
forward_desc
=
mkldnn
::
eltwise_forward
::
desc
(
mkldnn
::
prop_kind
::
forward_training
,
algorithm
,
data_md
,
alpha
,
beta
);
// save prim desc into global device context to be referred in backward path
const
std
::
string
key
=
ctx
.
op
().
Output
(
"Out"
);
const
std
::
string
key_eltwise_pd
=
key
+
"@eltwise_pd"
;
auto
forward_pd
=
std
::
make_shared
<
mkldnn
::
eltwise_forward
::
primitive_desc
>
(
forward_desc
,
mkldnn_engine
);
dev_ctx
.
SetBlob
(
key_eltwise_pd
,
forward_pd
);
auto
eltwise
=
mkldnn
::
eltwise_forward
(
*
forward_pd
,
src_memory
,
dst_memory
);
const
std
::
string
key
=
gethash
(
src_tz
,
algorithm
);
const
std
::
string
key_src_data
=
key
+
ctx
.
op
().
Output
(
"Out"
)
+
"@eltwise_fwd_src_data"
;
const
std
::
string
key_src_mem
=
key
+
"@eltwise_fwd_src_mem"
;
const
std
::
string
key_dst_mem
=
key
+
"@eltwise_fwd_dst_mem"
;
const
std
::
string
key_fwd
=
key
+
"@eltwise_fwd"
;
auto
p_fwd
=
std
::
static_pointer_cast
<
mkldnn
::
eltwise_forward
>
(
dev_ctx
.
GetBlob
(
key_fwd
));
// save input data to be referred in backward path
auto
p_src_data
=
std
::
make_shared
<
const
T
*>
(
src_data
);
dev_ctx
.
SetBlob
(
key_src_data
,
p_src_data
);
if
(
p_fwd
==
nullptr
)
{
// create memory description
auto
data_md
=
src_tz
.
size
()
==
2
?
platform
::
MKLDNNMemDesc
(
src_tz
,
mkldnn
::
memory
::
f32
,
mkldnn
::
memory
::
format
::
nc
)
:
platform
::
MKLDNNMemDesc
(
src_tz
,
mkldnn
::
memory
::
f32
,
mkldnn
::
memory
::
format
::
nchw
);
// create memory primitives
auto
p_src_mem
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mkldnn
::
memory
(
{
data_md
,
mkldnn_engine
},
platform
::
to_void_cast
(
src_data
)));
dev_ctx
.
SetBlob
(
key_src_mem
,
p_src_mem
);
auto
p_dst_mem
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mkldnn
::
memory
(
{
data_md
,
mkldnn_engine
},
platform
::
to_void_cast
(
dst_data
)));
dev_ctx
.
SetBlob
(
key_dst_mem
,
p_dst_mem
);
auto
fwd_desc
=
mkldnn
::
eltwise_forward
::
desc
(
mkldnn
::
prop_kind
::
forward_training
,
algorithm
,
data_md
,
alpha
,
beta
);
auto
p_fwd_pd
=
std
::
make_shared
<
mkldnn
::
eltwise_forward
::
primitive_desc
>
(
fwd_desc
,
mkldnn_engine
);
const
std
::
string
key_fwd_pd
=
key
+
"eltwise_fwd_pd"
;
dev_ctx
.
SetBlob
(
key_fwd_pd
,
p_fwd_pd
);
p_fwd
=
std
::
make_shared
<
mkldnn
::
eltwise_forward
>
(
*
p_fwd_pd
,
*
(
p_src_mem
.
get
()),
*
(
p_dst_mem
.
get
()));
dev_ctx
.
SetBlob
(
key_fwd
,
p_fwd
);
}
else
{
// primitives already exist
auto
p_src_mem
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
key_src_mem
));
PADDLE_ENFORCE
(
p_src_mem
!=
nullptr
,
"Fail to find eltwise p_src_mem in device context."
);
auto
p_dst_mem
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
key_dst_mem
));
PADDLE_ENFORCE
(
p_dst_mem
!=
nullptr
,
"Fail to find eltwise p_src_mem in device context."
);
p_src_mem
->
set_data_handle
(
platform
::
to_void_reinterpret_cast
(
src_data
));
p_dst_mem
->
set_data_handle
(
dst_data
);
}
// push primitive to stream and wait until it's executed
std
::
vector
<
mkldnn
::
primitive
>
pipeline
=
{
eltwise
};
std
::
vector
<
mkldnn
::
primitive
>
pipeline
=
{
*
(
p_fwd
.
get
())
};
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
...
...
@@ -83,8 +124,7 @@ void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm,
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
// get buffers
const
auto
*
x
=
ctx
.
template
Input
<
Tensor
>(
"X"
);
const
auto
*
src
=
x
->
template
data
<
T
>();
const
auto
*
out
=
ctx
.
template
Input
<
Tensor
>(
"Out"
);
auto
*
dout
=
ctx
.
template
Input
<
Tensor
>(
framework
::
GradVarName
(
"Out"
));
const
auto
*
diff_dst
=
dout
->
template
data
<
T
>();
...
...
@@ -94,45 +134,73 @@ void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm,
const
T
*
diff_src
=
dx
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
// get memory dim
std
::
vector
<
int
>
src_tz
=
framework
::
vectorize2int
(
x
->
dims
());
// create memory description
auto
data_md
=
src_tz
.
size
()
==
2
?
platform
::
MKLDNNMemDesc
(
src_tz
,
mkldnn
::
memory
::
f32
,
mkldnn
::
memory
::
format
::
nc
)
:
platform
::
MKLDNNMemDesc
(
src_tz
,
mkldnn
::
memory
::
f32
,
mkldnn
::
memory
::
format
::
nchw
);
// create memory primitives
auto
src_memory
=
mkldnn
::
memory
(
{
data_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
const_cast
<
float
*>
(
src
)));
auto
diff_src_memory
=
mkldnn
::
memory
({
data_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
const_cast
<
float
*>
(
diff_src
)));
auto
diff_dst_memory
=
mkldnn
::
memory
({
data_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
const_cast
<
float
*>
(
diff_dst
)));
auto
backward_desc
=
mkldnn
::
eltwise_backward
::
desc
(
algorithm
,
data_md
,
data_md
,
alpha
,
beta
);
// retrieve eltwise primitive desc from device context
const
std
::
string
key
=
ctx
.
op
().
Input
(
"Out"
);
const
std
::
string
key_eltwise_pd
=
key
+
"@eltwise_pd"
;
const
std
::
shared_ptr
<
void
>
forward_pd
=
dev_ctx
.
GetBlob
(
key_eltwise_pd
);
PADDLE_ENFORCE
(
forward_pd
!=
nullptr
,
"Fail to find eltwise_pd in device context"
);
auto
*
p_forward_pd
=
static_cast
<
mkldnn
::
eltwise_forward
::
primitive_desc
*>
(
forward_pd
.
get
());
auto
eltwise_bwd_prim_desc
=
mkldnn
::
eltwise_backward
::
primitive_desc
(
backward_desc
,
mkldnn_engine
,
*
p_forward_pd
);
auto
eltwise_bwd
=
mkldnn
::
eltwise_backward
(
eltwise_bwd_prim_desc
,
src_memory
,
diff_dst_memory
,
diff_src_memory
);
std
::
vector
<
int
>
src_tz
=
framework
::
vectorize2int
(
out
->
dims
());
const
std
::
string
key
=
gethash
(
src_tz
,
algorithm
);
const
std
::
string
key_diff_src_mem
=
key
+
"@eltwise_diff_src_mem"
;
const
std
::
string
key_diff_dst_mem
=
key
+
"@eltwise_diff_dst_mem"
;
const
std
::
string
key_grad
=
key
+
"@eltwise_grad"
;
const
std
::
string
key_src_data
=
key
+
ctx
.
op
().
Input
(
"Out"
)
+
"@eltwise_fwd_src_data"
;
const
auto
p_src_data
=
std
::
static_pointer_cast
<
T
*>
(
dev_ctx
.
GetBlob
(
key_src_data
));
const
std
::
string
key_src_mem
=
key
+
"@eltwise_fwd_src_mem"
;
auto
p_src_mem
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
key_src_mem
));
p_src_mem
->
set_data_handle
(
*
p_src_data
.
get
());
auto
p_grad
=
std
::
static_pointer_cast
<
mkldnn
::
eltwise_forward
::
primitive
>
(
dev_ctx
.
GetBlob
(
key_grad
));
if
(
p_grad
==
nullptr
)
{
// create memory description
auto
data_md
=
src_tz
.
size
()
==
2
?
platform
::
MKLDNNMemDesc
(
src_tz
,
mkldnn
::
memory
::
f32
,
mkldnn
::
memory
::
format
::
nc
)
:
platform
::
MKLDNNMemDesc
(
src_tz
,
mkldnn
::
memory
::
f32
,
mkldnn
::
memory
::
format
::
nchw
);
// create memory primitives
std
::
shared_ptr
<
void
>
p_diff_src_mem
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mkldnn
::
memory
(
{
data_md
,
mkldnn_engine
},
platform
::
to_void_cast
(
diff_src
)));
dev_ctx
.
SetBlob
(
key_diff_src_mem
,
p_diff_src_mem
);
std
::
shared_ptr
<
void
>
p_diff_dst_mem
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mkldnn
::
memory
(
{
data_md
,
mkldnn_engine
},
platform
::
to_void_cast
(
diff_dst
)));
dev_ctx
.
SetBlob
(
key_diff_dst_mem
,
p_diff_dst_mem
);
auto
bwd_desc
=
mkldnn
::
eltwise_backward
::
desc
(
algorithm
,
data_md
,
data_md
,
alpha
,
beta
);
const
std
::
string
key_fwd_pd
=
key
+
"eltwise_fwd_pd"
;
auto
*
p_fwd_pd
=
static_cast
<
mkldnn
::
eltwise_forward
::
primitive_desc
*>
(
dev_ctx
.
GetBlob
(
key_fwd_pd
).
get
());
auto
eltwise_bwd_prim_desc
=
mkldnn
::
eltwise_backward
::
primitive_desc
(
bwd_desc
,
mkldnn_engine
,
*
p_fwd_pd
);
p_grad
=
std
::
make_shared
<
mkldnn
::
eltwise_backward
>
(
eltwise_bwd_prim_desc
,
*
static_cast
<
mkldnn
::
memory
*>
(
p_src_mem
.
get
()),
*
(
static_cast
<
mkldnn
::
memory
*>
(
p_diff_dst_mem
.
get
())),
*
(
static_cast
<
mkldnn
::
memory
*>
(
p_diff_src_mem
.
get
())));
}
else
{
// primitives already exist
auto
p_diff_src_mem
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
key_diff_src_mem
));
auto
p_diff_dst_mem
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
key_diff_dst_mem
));
p_diff_src_mem
->
set_data_handle
(
platform
::
to_void_reinterpret_cast
(
diff_src
));
p_diff_dst_mem
->
set_data_handle
(
platform
::
to_void_reinterpret_cast
(
diff_dst
));
}
// push primitive to stream and wait until it's executed
std
::
vector
<
mkldnn
::
primitive
>
pipeline
=
{
eltwise_bwd
};
std
::
vector
<
mkldnn
::
primitive
>
pipeline
=
{
*
(
p_grad
.
get
())
};
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
}
// anonymous namespace
...
...
paddle/fluid/operators/activation_op.cc
浏览文件 @
7205d331
...
...
@@ -41,7 +41,7 @@ namespace operators {
\
protected: \
std::unique_ptr<::paddle::framework::OpDesc> Apply() const override { \
auto
*
op = new ::paddle::framework::OpDesc(); \
auto
*
op = new ::paddle::framework::OpDesc(); \
op->SetType(#KERNEL_TYPE "_grad"); \
op->SetInput("Out", Output("Out")); \
op->SetInput(::paddle::framework::GradVarName("Out"), \
...
...
@@ -54,23 +54,50 @@ namespace operators {
} \
}
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
OperatorWithKernel
&
oper
,
const
std
::
string
&
name
)
{
framework
::
LibraryType
library
{
framework
::
LibraryType
::
kPlain
};
#ifdef PADDLE_WITH_MKLDNN
auto
it
=
oper
.
Attrs
().
find
(
"use_mkldnn"
);
if
(
library
==
framework
::
LibraryType
::
kPlain
&&
it
!=
oper
.
Attrs
().
end
()
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library
=
framework
::
LibraryType
::
kMKLDNN
;
}
#endif
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kAnyLayout
;
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
name
)
->
type
()),
ctx
.
GetPlace
(),
layout
,
library
);
}
class
ActivationOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
GetKernelType
(
ctx
,
*
this
,
"X"
);
}
};
class
ActivationOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"Out"
));
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
GetKernelType
(
ctx
,
*
this
,
"Out"
);
}
};
__attribute__
((
unused
))
constexpr
char
SigmoidDoc
[]
=
R"DOC(
...
...
paddle/fluid/operators/mkldnn_activation_op.h
浏览文件 @
7205d331
...
...
@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
...
...
@@ -60,52 +62,5 @@ class MKLDNNActivationGradKernel
}
};
namespace
{
// NOLINT
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
OperatorWithKernel
&
oper
)
{
framework
::
LibraryType
library
{
framework
::
LibraryType
::
kPlain
};
#ifdef PADDLE_WITH_MKLDNN
if
(
library
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library
=
framework
::
LibraryType
::
kMKLDNN
;
}
#endif
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kAnyLayout
;
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
(),
layout
,
library
);
}
}
// anonymous namespace
class
ActivationWithMKLDNNOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
GetKernelType
(
ctx
,
*
this
);
}
};
class
ActivationWithMKLDNNOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"Out"
));
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
GetKernelType
(
ctx
,
*
this
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/platform/mkldnn_helper.h
浏览文件 @
7205d331
...
...
@@ -38,6 +38,11 @@ void* to_void_cast(const Type* t) {
return
static_cast
<
void
*>
(
const_cast
<
Type
*>
(
t
));
}
template
<
typename
Type
>
void
*
to_void_reinterpret_cast
(
const
Type
*
t
)
{
return
reinterpret_cast
<
void
*>
(
const_cast
<
Type
*>
(
t
));
}
template
<
class
Type
>
using
tf_desc
=
typename
Type
::
desc
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录