Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
720018bb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
720018bb
编写于
9月 08, 2023
作者:
Z
zyfncg
提交者:
GitHub
9月 08, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[IR] Add FusedGemmEpilogueOp in new IR (#57039)
* add FusedGemmEpilogueOp in new ir * fix conflict
上级
af6324aa
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
706 addition
and
3 deletion
+706
-3
paddle/fluid/ir/dialect/paddle_dialect/ir/pd_dialect.cc
paddle/fluid/ir/dialect/paddle_dialect/ir/pd_dialect.cc
+3
-0
paddle/fluid/ir/dialect/paddle_dialect/ir/pd_manual_op.cc
paddle/fluid/ir/dialect/paddle_dialect/ir/pd_manual_op.cc
+439
-0
paddle/fluid/ir/dialect/paddle_dialect/ir/pd_manual_op.h
paddle/fluid/ir/dialect/paddle_dialect/ir/pd_manual_op.h
+59
-0
paddle/ir/core/block.h
paddle/ir/core/block.h
+1
-0
paddle/ir/transforms/reorder_block_ops_pass.cc
paddle/ir/transforms/reorder_block_ops_pass.cc
+0
-3
paddle/phi/infermeta/fusion.cc
paddle/phi/infermeta/fusion.cc
+184
-0
paddle/phi/infermeta/fusion.h
paddle/phi/infermeta/fusion.h
+20
-0
未找到文件。
paddle/fluid/ir/dialect/paddle_dialect/ir/pd_dialect.cc
浏览文件 @
720018bb
...
...
@@ -52,8 +52,11 @@ void PaddleDialect::initialize() {
RegisterOps
<
paddle
::
dialect
::
AddNOp
,
paddle
::
dialect
::
AddN_Op
,
paddle
::
dialect
::
AddNWithKernelOp
,
paddle
::
dialect
::
FusedGemmEpilogueOp
,
paddle
::
dialect
::
FusedGemmEpilogueGradOp
,
paddle
::
dialect
::
SplitGradOp
,
paddle
::
dialect
::
IfOp
>
();
RegisterInterfaces
<
ParameterConvertInterface
>
();
}
...
...
paddle/fluid/ir/dialect/paddle_dialect/ir/pd_manual_op.cc
浏览文件 @
720018bb
...
...
@@ -24,6 +24,7 @@
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/fusion.h"
#include "paddle/phi/infermeta/multiary.h"
namespace
paddle
{
...
...
@@ -409,6 +410,442 @@ void AddNWithKernelOp::InferMeta(phi::InferMetaContext *infer_meta) {
fn
(
infer_meta
);
}
const
char
*
FusedGemmEpilogueOp
::
attributes_name
[
3
]
=
{
"trans_x"
,
"trans_y"
,
"activation"
};
OpInfoTuple
FusedGemmEpilogueOp
::
GetOpInfo
()
{
std
::
vector
<
paddle
::
dialect
::
OpInputInfo
>
inputs
=
{
paddle
::
dialect
::
OpInputInfo
(
"x"
,
"paddle::dialect::DenseTensorType"
,
false
,
false
,
false
,
false
),
paddle
::
dialect
::
OpInputInfo
(
"y"
,
"paddle::dialect::DenseTensorType"
,
false
,
false
,
false
,
false
),
paddle
::
dialect
::
OpInputInfo
(
"bias"
,
"paddle::dialect::DenseTensorType"
,
false
,
false
,
false
,
false
)};
std
::
vector
<
paddle
::
dialect
::
OpAttributeInfo
>
attributes
=
{
paddle
::
dialect
::
OpAttributeInfo
(
"trans_x"
,
"ir::BoolAttribute"
,
""
),
paddle
::
dialect
::
OpAttributeInfo
(
"trans_y"
,
"ir::BoolAttribute"
,
""
),
paddle
::
dialect
::
OpAttributeInfo
(
"activation"
,
"ir::StrAttribute"
,
""
)};
std
::
vector
<
paddle
::
dialect
::
OpOutputInfo
>
outputs
=
{
paddle
::
dialect
::
OpOutputInfo
(
"out"
,
"paddle::dialect::DenseTensorType"
,
false
,
false
),
paddle
::
dialect
::
OpOutputInfo
(
"reserve_space"
,
"paddle::dialect::DenseTensorType"
,
true
,
false
)};
paddle
::
dialect
::
OpRunTimeInfo
run_time_info
(
"FusedGemmEpilogueInferMeta"
,
{
"x"
,
"y"
,
"bias"
,
"trans_x"
,
"trans_y"
,
"activation"
},
{
""
},
{
""
},
{
""
},
{},
{},
{});
return
std
::
make_tuple
(
inputs
,
attributes
,
outputs
,
run_time_info
,
"fused_gemm_epilogue"
);
}
void
FusedGemmEpilogueOp
::
Build
(
ir
::
Builder
&
builder
,
ir
::
OperationArgument
&
argument
,
ir
::
OpResult
x_
,
ir
::
OpResult
y_
,
ir
::
OpResult
bias_
,
ir
::
AttributeMap
attributes
)
{
bool
trans_x
=
attributes
.
at
(
"trans_x"
).
dyn_cast
<
ir
::
BoolAttribute
>
().
data
();
bool
trans_y
=
attributes
.
at
(
"trans_y"
).
dyn_cast
<
ir
::
BoolAttribute
>
().
data
();
std
::
string
activation
=
attributes
.
at
(
"activation"
).
dyn_cast
<
ir
::
StrAttribute
>
().
AsString
();
VLOG
(
4
)
<<
"Builder construction inputs"
;
std
::
vector
<
ir
::
OpResult
>
argument_inputs
=
{
x_
,
y_
,
bias_
};
argument
.
AddOperands
(
argument_inputs
.
begin
(),
argument_inputs
.
end
());
VLOG
(
4
)
<<
"Builder construction attributes"
;
ir
::
Attribute
attr_trans_x
=
ir
::
BoolAttribute
::
get
(
ir
::
IrContext
::
Instance
(),
trans_x
);
argument
.
AddAttribute
(
"trans_x"
,
attr_trans_x
);
ir
::
Attribute
attr_trans_y
=
ir
::
BoolAttribute
::
get
(
ir
::
IrContext
::
Instance
(),
trans_y
);
argument
.
AddAttribute
(
"trans_y"
,
attr_trans_y
);
ir
::
Attribute
attr_activation
=
ir
::
StrAttribute
::
get
(
ir
::
IrContext
::
Instance
(),
activation
);
argument
.
AddAttribute
(
"activation"
,
attr_activation
);
VLOG
(
4
)
<<
"Builder construction outputs"
;
paddle
::
dialect
::
DenseTensorType
x
=
x_
.
type
().
dyn_cast
<
paddle
::
dialect
::
DenseTensorType
>
();
(
void
)
x
;
paddle
::
dialect
::
DenseTensorType
y
=
y_
.
type
().
dyn_cast
<
paddle
::
dialect
::
DenseTensorType
>
();
(
void
)
y
;
paddle
::
dialect
::
DenseTensorType
bias
=
bias_
.
type
().
dyn_cast
<
paddle
::
dialect
::
DenseTensorType
>
();
(
void
)
bias
;
VLOG
(
4
)
<<
"Builder construction dense_x"
;
phi
::
DenseTensor
dense_x
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
phi
::
DenseTensorMeta
(
paddle
::
dialect
::
TransToPhiDataType
(
x
.
dtype
()),
x
.
dims
(),
x
.
data_layout
(),
x
.
lod
(),
x
.
offset
()));
VLOG
(
4
)
<<
"Builder construction meta_x"
;
phi
::
MetaTensor
meta_x
(
&
dense_x
);
VLOG
(
4
)
<<
"Builder construction dense_y"
;
phi
::
DenseTensor
dense_y
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
phi
::
DenseTensorMeta
(
paddle
::
dialect
::
TransToPhiDataType
(
y
.
dtype
()),
y
.
dims
(),
y
.
data_layout
(),
y
.
lod
(),
y
.
offset
()));
VLOG
(
4
)
<<
"Builder construction meta_y"
;
phi
::
MetaTensor
meta_y
(
&
dense_y
);
VLOG
(
4
)
<<
"Builder construction dense_bias"
;
phi
::
DenseTensor
dense_bias
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
phi
::
DenseTensorMeta
(
paddle
::
dialect
::
TransToPhiDataType
(
bias
.
dtype
()),
bias
.
dims
(),
bias
.
data_layout
(),
bias
.
lod
(),
bias
.
offset
()));
VLOG
(
4
)
<<
"Builder construction meta_bias"
;
phi
::
MetaTensor
meta_bias
(
&
dense_bias
);
phi
::
DenseTensor
dense_out
;
phi
::
MetaTensor
meta_out
(
&
dense_out
);
phi
::
DenseTensor
dense_reserve_space
;
phi
::
MetaTensor
meta_reserve_space
(
&
dense_reserve_space
);
phi
::
FusedGemmEpilogueInferMeta
(
meta_x
,
meta_y
,
meta_bias
,
trans_x
,
trans_y
,
activation
,
&
meta_out
,
activation
==
"none"
?
nullptr
:
&
meta_reserve_space
);
std
::
vector
<
ir
::
Type
>
argument_outputs
;
ir
::
Type
out_dense_tensor_type
=
paddle
::
dialect
::
DenseTensorType
::
get
(
ir
::
IrContext
::
Instance
(),
paddle
::
dialect
::
TransToIrDataType
(
dense_out
.
dtype
()),
dense_out
.
dims
(),
dense_out
.
layout
(),
dense_out
.
lod
(),
dense_out
.
offset
());
argument_outputs
.
push_back
(
out_dense_tensor_type
);
ir
::
Type
reserve_space_dense_tensor_type
=
activation
==
"none"
?
ir
::
Type
()
:
paddle
::
dialect
::
DenseTensorType
::
get
(
ir
::
IrContext
::
Instance
(),
paddle
::
dialect
::
TransToIrDataType
(
dense_reserve_space
.
dtype
()),
dense_reserve_space
.
dims
(),
dense_reserve_space
.
layout
(),
dense_reserve_space
.
lod
(),
dense_reserve_space
.
offset
());
argument_outputs
.
push_back
(
reserve_space_dense_tensor_type
);
argument
.
AddOutputs
(
argument_outputs
.
begin
(),
argument_outputs
.
end
());
}
void
FusedGemmEpilogueOp
::
Verify
()
{
VLOG
(
4
)
<<
"Start Verifying inputs, outputs and attributes for: "
"FusedGemmEpilogueOp."
;
VLOG
(
4
)
<<
"Verifying inputs:"
;
{
auto
input_size
=
num_operands
();
PADDLE_ENFORCE_EQ
(
input_size
,
3u
,
phi
::
errors
::
PreconditionNotMet
(
"The size %d of inputs must be equal to 3."
,
input_size
));
PADDLE_ENFORCE
((
*
this
)
->
operand_source
(
0
)
.
type
()
.
isa
<
paddle
::
dialect
::
DenseTensorType
>
(),
phi
::
errors
::
PreconditionNotMet
(
"Type validation failed for the 0th input."
));
PADDLE_ENFORCE
((
*
this
)
->
operand_source
(
1
)
.
type
()
.
isa
<
paddle
::
dialect
::
DenseTensorType
>
(),
phi
::
errors
::
PreconditionNotMet
(
"Type validation failed for the 1th input."
));
PADDLE_ENFORCE
((
*
this
)
->
operand_source
(
2
)
.
type
()
.
isa
<
paddle
::
dialect
::
DenseTensorType
>
(),
phi
::
errors
::
PreconditionNotMet
(
"Type validation failed for the 2th input."
));
}
VLOG
(
4
)
<<
"Verifying attributes:"
;
{
auto
&
attributes
=
this
->
attributes
();
PADDLE_ENFORCE
(
attributes
.
count
(
"trans_x"
)
>
0
&&
attributes
.
at
(
"trans_x"
).
isa
<
ir
::
BoolAttribute
>
(),
phi
::
errors
::
PreconditionNotMet
(
"Type of attribute: trans_x is not right."
));
PADDLE_ENFORCE
(
attributes
.
count
(
"trans_y"
)
>
0
&&
attributes
.
at
(
"trans_y"
).
isa
<
ir
::
BoolAttribute
>
(),
phi
::
errors
::
PreconditionNotMet
(
"Type of attribute: trans_y is not right."
));
PADDLE_ENFORCE
(
attributes
.
count
(
"activation"
)
>
0
&&
attributes
.
at
(
"activation"
).
isa
<
ir
::
StrAttribute
>
(),
phi
::
errors
::
PreconditionNotMet
(
"Type of attribute: activation is not right."
));
}
VLOG
(
4
)
<<
"Verifying outputs:"
;
{
auto
output_size
=
num_results
();
PADDLE_ENFORCE_EQ
(
output_size
,
2u
,
phi
::
errors
::
PreconditionNotMet
(
"The size %d of outputs must be equal to 2."
,
output_size
));
PADDLE_ENFORCE
(
(
*
this
)
->
result
(
0
).
type
().
isa
<
paddle
::
dialect
::
DenseTensorType
>
(),
phi
::
errors
::
PreconditionNotMet
(
"Type validation failed for the 0th output."
));
if
(
auto
output_1_type
=
(
*
this
)
->
result
(
1
).
type
())
{
PADDLE_ENFORCE
(
output_1_type
.
isa
<
paddle
::
dialect
::
DenseTensorType
>
(),
phi
::
errors
::
PreconditionNotMet
(
"Type validation failed for the 1th output."
));
}
}
VLOG
(
4
)
<<
"End Verifying for: FusedGemmEpilogueOp."
;
}
void
FusedGemmEpilogueOp
::
InferMeta
(
phi
::
InferMetaContext
*
infer_meta
)
{
auto
fn
=
PD_INFER_META
(
phi
::
FusedGemmEpilogueInferMeta
);
fn
(
infer_meta
);
}
const
char
*
FusedGemmEpilogueGradOp
::
attributes_name
[
3
]
=
{
"trans_x"
,
"trans_y"
,
"activation_grad"
};
OpInfoTuple
FusedGemmEpilogueGradOp
::
GetOpInfo
()
{
std
::
vector
<
paddle
::
dialect
::
OpInputInfo
>
inputs
=
{
paddle
::
dialect
::
OpInputInfo
(
"x"
,
"paddle::dialect::DenseTensorType"
,
false
,
false
,
false
,
false
),
paddle
::
dialect
::
OpInputInfo
(
"y"
,
"paddle::dialect::DenseTensorType"
,
false
,
false
,
false
,
false
),
paddle
::
dialect
::
OpInputInfo
(
"reserve_space"
,
"paddle::dialect::DenseTensorType"
,
true
,
false
,
false
,
false
),
paddle
::
dialect
::
OpInputInfo
(
"out_grad"
,
"paddle::dialect::DenseTensorType"
,
false
,
false
,
false
,
false
)};
std
::
vector
<
paddle
::
dialect
::
OpAttributeInfo
>
attributes
=
{
paddle
::
dialect
::
OpAttributeInfo
(
"trans_x"
,
"ir::BoolAttribute"
,
""
),
paddle
::
dialect
::
OpAttributeInfo
(
"trans_y"
,
"ir::BoolAttribute"
,
""
),
paddle
::
dialect
::
OpAttributeInfo
(
"activation_grad"
,
"ir::StrAttribute"
,
""
)};
std
::
vector
<
paddle
::
dialect
::
OpOutputInfo
>
outputs
=
{
paddle
::
dialect
::
OpOutputInfo
(
"x_grad"
,
"paddle::dialect::DenseTensorType"
,
false
,
false
),
paddle
::
dialect
::
OpOutputInfo
(
"y_grad"
,
"paddle::dialect::DenseTensorType"
,
false
,
false
),
paddle
::
dialect
::
OpOutputInfo
(
"bias_grad"
,
"paddle::dialect::DenseTensorType"
,
false
,
false
)};
paddle
::
dialect
::
OpRunTimeInfo
run_time_info
(
"FusedGemmEpilogueGradInferMeta"
,
{
"x"
,
"y"
,
"reserve_space"
,
"out_grad"
,
"trans_x"
,
"trans_y"
,
"activation_grad"
},
{
""
},
{
""
},
{
""
},
{},
{},
{});
return
std
::
make_tuple
(
inputs
,
attributes
,
outputs
,
run_time_info
,
"fused_gemm_epilogue_grad"
);
}
void
FusedGemmEpilogueGradOp
::
Build
(
ir
::
Builder
&
builder
,
ir
::
OperationArgument
&
argument
,
ir
::
OpResult
x_
,
ir
::
OpResult
y_
,
ir
::
OpResult
reserve_space_
,
ir
::
OpResult
out_grad_
,
ir
::
AttributeMap
attributes
)
{
bool
trans_x
=
attributes
.
at
(
"trans_x"
).
dyn_cast
<
ir
::
BoolAttribute
>
().
data
();
bool
trans_y
=
attributes
.
at
(
"trans_y"
).
dyn_cast
<
ir
::
BoolAttribute
>
().
data
();
std
::
string
activation_grad
=
attributes
.
at
(
"activation_grad"
).
dyn_cast
<
ir
::
StrAttribute
>
().
AsString
();
VLOG
(
4
)
<<
"Builder construction inputs"
;
std
::
vector
<
ir
::
OpResult
>
argument_inputs
=
{
x_
,
y_
,
reserve_space_
,
out_grad_
};
argument
.
AddOperands
(
argument_inputs
.
begin
(),
argument_inputs
.
end
());
VLOG
(
4
)
<<
"Builder construction attributes"
;
ir
::
Attribute
attr_trans_x
=
ir
::
BoolAttribute
::
get
(
ir
::
IrContext
::
Instance
(),
trans_x
);
argument
.
AddAttribute
(
"trans_x"
,
attr_trans_x
);
ir
::
Attribute
attr_trans_y
=
ir
::
BoolAttribute
::
get
(
ir
::
IrContext
::
Instance
(),
trans_y
);
argument
.
AddAttribute
(
"trans_y"
,
attr_trans_y
);
ir
::
Attribute
attr_activation_grad
=
ir
::
StrAttribute
::
get
(
ir
::
IrContext
::
Instance
(),
activation_grad
);
argument
.
AddAttribute
(
"activation_grad"
,
attr_activation_grad
);
VLOG
(
4
)
<<
"Builder construction outputs"
;
paddle
::
dialect
::
DenseTensorType
x
=
x_
.
type
().
dyn_cast
<
paddle
::
dialect
::
DenseTensorType
>
();
(
void
)
x
;
paddle
::
dialect
::
DenseTensorType
y
=
y_
.
type
().
dyn_cast
<
paddle
::
dialect
::
DenseTensorType
>
();
(
void
)
y
;
paddle
::
dialect
::
DenseTensorType
reserve_space
=
reserve_space_
?
reserve_space_
.
type
().
dyn_cast
<
paddle
::
dialect
::
DenseTensorType
>
()
:
paddle
::
dialect
::
DenseTensorType
();
(
void
)
reserve_space
;
paddle
::
dialect
::
DenseTensorType
out_grad
=
out_grad_
.
type
().
dyn_cast
<
paddle
::
dialect
::
DenseTensorType
>
();
(
void
)
out_grad
;
VLOG
(
4
)
<<
"Builder construction dense_x"
;
phi
::
DenseTensor
dense_x
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
phi
::
DenseTensorMeta
(
paddle
::
dialect
::
TransToPhiDataType
(
x
.
dtype
()),
x
.
dims
(),
x
.
data_layout
(),
x
.
lod
(),
x
.
offset
()));
VLOG
(
4
)
<<
"Builder construction meta_x"
;
phi
::
MetaTensor
meta_x
(
&
dense_x
);
VLOG
(
4
)
<<
"Builder construction dense_y"
;
phi
::
DenseTensor
dense_y
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
phi
::
DenseTensorMeta
(
paddle
::
dialect
::
TransToPhiDataType
(
y
.
dtype
()),
y
.
dims
(),
y
.
data_layout
(),
y
.
lod
(),
y
.
offset
()));
VLOG
(
4
)
<<
"Builder construction meta_y"
;
phi
::
MetaTensor
meta_y
(
&
dense_y
);
VLOG
(
4
)
<<
"Builder construction dense_reserve_space"
;
std
::
unique_ptr
<
phi
::
DenseTensor
>
dense_reserve_space
=
reserve_space_
?
std
::
make_unique
<
phi
::
DenseTensor
>
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
phi
::
DenseTensorMeta
(
paddle
::
dialect
::
TransToPhiDataType
(
reserve_space
.
dtype
()),
reserve_space
.
dims
(),
reserve_space
.
data_layout
(),
reserve_space
.
lod
(),
reserve_space
.
offset
()))
:
nullptr
;
VLOG
(
4
)
<<
"Builder construction meta_reserve_space"
;
phi
::
MetaTensor
meta_reserve_space
(
dense_reserve_space
.
get
());
VLOG
(
4
)
<<
"Builder construction dense_out_grad"
;
phi
::
DenseTensor
dense_out_grad
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
phi
::
DenseTensorMeta
(
paddle
::
dialect
::
TransToPhiDataType
(
out_grad
.
dtype
()),
out_grad
.
dims
(),
out_grad
.
data_layout
(),
out_grad
.
lod
(),
out_grad
.
offset
()));
VLOG
(
4
)
<<
"Builder construction meta_out_grad"
;
phi
::
MetaTensor
meta_out_grad
(
&
dense_out_grad
);
phi
::
DenseTensor
dense_x_grad
;
phi
::
MetaTensor
meta_x_grad
(
&
dense_x_grad
);
phi
::
DenseTensor
dense_y_grad
;
phi
::
MetaTensor
meta_y_grad
(
&
dense_y_grad
);
phi
::
DenseTensor
dense_bias_grad
;
phi
::
MetaTensor
meta_bias_grad
(
&
dense_bias_grad
);
phi
::
FusedGemmEpilogueGradInferMeta
(
meta_x
,
meta_y
,
meta_reserve_space
,
meta_out_grad
,
trans_x
,
trans_y
,
activation_grad
,
&
meta_x_grad
,
&
meta_y_grad
,
&
meta_bias_grad
);
std
::
vector
<
ir
::
Type
>
argument_outputs
;
ir
::
Type
x_grad_dense_tensor_type
=
paddle
::
dialect
::
DenseTensorType
::
get
(
ir
::
IrContext
::
Instance
(),
paddle
::
dialect
::
TransToIrDataType
(
dense_x_grad
.
dtype
()),
dense_x_grad
.
dims
(),
dense_x_grad
.
layout
(),
dense_x_grad
.
lod
(),
dense_x_grad
.
offset
());
argument_outputs
.
push_back
(
x_grad_dense_tensor_type
);
ir
::
Type
y_grad_dense_tensor_type
=
paddle
::
dialect
::
DenseTensorType
::
get
(
ir
::
IrContext
::
Instance
(),
paddle
::
dialect
::
TransToIrDataType
(
dense_y_grad
.
dtype
()),
dense_y_grad
.
dims
(),
dense_y_grad
.
layout
(),
dense_y_grad
.
lod
(),
dense_y_grad
.
offset
());
argument_outputs
.
push_back
(
y_grad_dense_tensor_type
);
ir
::
Type
bias_grad_dense_tensor_type
=
paddle
::
dialect
::
DenseTensorType
::
get
(
ir
::
IrContext
::
Instance
(),
paddle
::
dialect
::
TransToIrDataType
(
dense_bias_grad
.
dtype
()),
dense_bias_grad
.
dims
(),
dense_bias_grad
.
layout
(),
dense_bias_grad
.
lod
(),
dense_bias_grad
.
offset
());
argument_outputs
.
push_back
(
bias_grad_dense_tensor_type
);
argument
.
AddOutputs
(
argument_outputs
.
begin
(),
argument_outputs
.
end
());
}
void
FusedGemmEpilogueGradOp
::
Verify
()
{}
void
FusedGemmEpilogueGradOp
::
InferMeta
(
phi
::
InferMetaContext
*
infer_meta
)
{
auto
fn
=
PD_INFER_META
(
phi
::
FusedGemmEpilogueGradInferMeta
);
fn
(
infer_meta
);
}
const
char
*
SplitGradOp
::
attributes_name
[
1
]
=
{
"axis"
};
OpInfoTuple
SplitGradOp
::
GetOpInfo
()
{
...
...
@@ -673,4 +1110,6 @@ IR_DEFINE_EXPLICIT_TYPE_ID(paddle::dialect::AddNOp)
IR_DEFINE_EXPLICIT_TYPE_ID
(
paddle
::
dialect
::
SplitGradOp
)
IR_DEFINE_EXPLICIT_TYPE_ID
(
paddle
::
dialect
::
AddN_Op
)
IR_DEFINE_EXPLICIT_TYPE_ID
(
paddle
::
dialect
::
AddNWithKernelOp
)
IR_DEFINE_EXPLICIT_TYPE_ID
(
paddle
::
dialect
::
FusedGemmEpilogueOp
)
IR_DEFINE_EXPLICIT_TYPE_ID
(
paddle
::
dialect
::
FusedGemmEpilogueGradOp
)
IR_DEFINE_EXPLICIT_TYPE_ID
(
paddle
::
dialect
::
IfOp
)
paddle/fluid/ir/dialect/paddle_dialect/ir/pd_manual_op.h
浏览文件 @
720018bb
...
...
@@ -94,6 +94,62 @@ class AddNWithKernelOp : public ir::Op<AddNWithKernelOp,
static
void
InferMeta
(
phi
::
InferMetaContext
*
infer_meta
);
};
class
FusedGemmEpilogueOp
:
public
ir
::
Op
<
FusedGemmEpilogueOp
,
paddle
::
dialect
::
OpYamlInfoInterface
,
paddle
::
dialect
::
InferMetaInterface
>
{
public:
using
Op
::
Op
;
static
const
char
*
name
()
{
return
"pd.fused_gemm_epilogue"
;
}
static
const
char
*
attributes_name
[
3
];
static
constexpr
uint32_t
attributes_num
=
3
;
static
OpInfoTuple
GetOpInfo
();
static
void
Build
(
ir
::
Builder
&
builder
,
// NOLINT
ir
::
OperationArgument
&
argument
,
// NOLINT
ir
::
OpResult
x_
,
ir
::
OpResult
y_
,
ir
::
OpResult
bias_
,
ir
::
AttributeMap
attributes
);
void
Verify
();
ir
::
Value
x
()
{
return
operand_source
(
0
);
}
ir
::
Value
y
()
{
return
operand_source
(
1
);
}
ir
::
Value
bias
()
{
return
operand_source
(
2
);
}
ir
::
OpResult
out
()
{
return
result
(
0
);
}
ir
::
OpResult
reserve_space
()
{
return
result
(
1
);
}
static
void
InferMeta
(
phi
::
InferMetaContext
*
infer_meta
);
};
class
FusedGemmEpilogueGradOp
:
public
ir
::
Op
<
FusedGemmEpilogueGradOp
,
paddle
::
dialect
::
OpYamlInfoInterface
,
paddle
::
dialect
::
InferMetaInterface
>
{
public:
using
Op
::
Op
;
static
const
char
*
name
()
{
return
"pd.fused_gemm_epilogue_grad"
;
}
static
const
char
*
attributes_name
[
3
];
static
constexpr
uint32_t
attributes_num
=
3
;
static
OpInfoTuple
GetOpInfo
();
static
void
Build
(
ir
::
Builder
&
builder
,
// NOLINT
ir
::
OperationArgument
&
argument
,
// NOLINT
ir
::
OpResult
x_
,
ir
::
OpResult
y_
,
ir
::
OpResult
reserve_space_
,
ir
::
OpResult
out_grad_
,
ir
::
AttributeMap
attributes
);
void
Verify
();
ir
::
Value
x
()
{
return
operand_source
(
0
);
}
ir
::
Value
y
()
{
return
operand_source
(
1
);
}
ir
::
Value
reserve_space
()
{
return
operand_source
(
2
);
}
ir
::
Value
out_grad
()
{
return
operand_source
(
3
);
}
ir
::
OpResult
x_grad
()
{
return
result
(
0
);
}
ir
::
OpResult
y_grad
()
{
return
result
(
1
);
}
ir
::
OpResult
bias_grad
()
{
return
result
(
2
);
}
static
void
InferMeta
(
phi
::
InferMetaContext
*
infer_meta
);
};
class
SplitGradOp
:
public
ir
::
Op
<
SplitGradOp
,
OpYamlInfoInterface
>
{
public:
using
Op
::
Op
;
...
...
@@ -141,5 +197,8 @@ IR_DECLARE_EXPLICIT_TYPE_ID(paddle::dialect::AddNOp)
IR_DECLARE_EXPLICIT_TYPE_ID
(
paddle
::
dialect
::
SplitGradOp
)
IR_DECLARE_EXPLICIT_TYPE_ID
(
paddle
::
dialect
::
AddN_Op
)
IR_DECLARE_EXPLICIT_TYPE_ID
(
paddle
::
dialect
::
AddNWithKernelOp
)
IR_DECLARE_EXPLICIT_TYPE_ID
(
paddle
::
dialect
::
FusedGemmEpilogueOp
)
IR_DECLARE_EXPLICIT_TYPE_ID
(
paddle
::
dialect
::
FusedGemmEpilogueGradOp
)
IR_DECLARE_EXPLICIT_TYPE_ID
(
paddle
::
dialect
::
IfOp
)
#endif
paddle/ir/core/block.h
浏览文件 @
720018bb
...
...
@@ -70,6 +70,7 @@ class IR_API Block {
bool
HasOneUse
()
const
;
BlockOperand
*
first_use_addr
()
{
return
&
first_use_
;
}
// This is a unsafe funcion, please use it carefully.
void
ResetOpListOrder
(
const
OpListType
&
new_op_list
);
private:
...
...
paddle/ir/transforms/reorder_block_ops_pass.cc
浏览文件 @
720018bb
...
...
@@ -22,9 +22,6 @@
namespace
{
// TODO(wilber): After support SideEffectTrait, Only NoSideEffectTrait op can be
// removed by dce pass.
// Now just a naive implementation.
class
ReorderBlockOpsPass
:
public
ir
::
Pass
{
public:
ReorderBlockOpsPass
()
:
ir
::
Pass
(
"ReorderBlockOpsPass"
,
0
)
{}
...
...
paddle/phi/infermeta/fusion.cc
浏览文件 @
720018bb
...
...
@@ -446,6 +446,190 @@ void MultiEncoderXPUInferMeta(
}
}
void
FusedGemmEpilogueInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
bias
,
bool
trans_x
,
bool
trans_y
,
const
std
::
string
&
activation
,
MetaTensor
*
out
,
MetaTensor
*
reserve_space
)
{
const
auto
&
x_dims
=
x
.
dims
();
const
auto
&
y_dims
=
y
.
dims
();
const
auto
&
bias_dims
=
bias
.
dims
();
PADDLE_ENFORCE_EQ
(
y_dims
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"The Input tensor Y's dimension of FusedGemmEpilogueOp "
" should be 2, but got %d."
,
y_dims
.
size
()));
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"The Input tensor X's dimension of FusedGemmEpilogueOp "
" should be >= 2, but got %d."
,
x_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
bias_dims
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"The Input tensor bias's dimension of FusedGemmEpilogueOp "
" should be == 1, but got %d."
,
bias_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
bias_dims
[
0
],
trans_y
?
y_dims
[
0
]
:
y_dims
[
1
],
phi
::
errors
::
InvalidArgument
(
"The Input tensor bias's dimension 0"
" should be == Y[-1], but got bias's shape = [%s] "
"and Y's shape = [%s]"
,
bias_dims
,
y_dims
));
auto
x_mat_dims
=
phi
::
flatten_to_2d
(
x_dims
,
trans_x
?
1
:
x_dims
.
size
()
-
1
);
int
K_from_x
=
trans_x
?
x_mat_dims
[
0
]
:
x_mat_dims
[
1
];
int
K_from_y
=
trans_y
?
y_dims
[
1
]
:
y_dims
[
0
];
PADDLE_ENFORCE_EQ
(
K_from_x
,
K_from_y
,
phi
::
errors
::
InvalidArgument
(
"The last dimension of X should be equal with Y's first dimension."
"But received X[-1] = [%d], Y[0] = [%d]."
,
K_from_x
,
K_from_y
));
std
::
vector
<
int64_t
>
out_dims
;
out_dims
.
reserve
(
static_cast
<
size_t
>
(
x_dims
.
size
()));
if
(
trans_x
)
{
for
(
int
i
=
1
;
i
<
x_dims
.
size
();
++
i
)
out_dims
.
push_back
(
x_dims
[
i
]);
}
else
{
for
(
int
i
=
0
;
i
<
x_dims
.
size
()
-
1
;
++
i
)
out_dims
.
push_back
(
x_dims
[
i
]);
}
if
(
trans_y
)
{
out_dims
.
push_back
(
y_dims
[
0
]);
}
else
{
out_dims
.
push_back
(
y_dims
[
1
]);
}
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
out
->
set_dtype
(
x
.
dtype
());
if
(
reserve_space
)
{
reserve_space
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
reserve_space
->
set_dtype
(
x
.
dtype
());
if
(
activation
==
"none"
)
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"The ReserveSpace would not be used when activation =
\"
none
\"
"
));
}
else
{
int
min_size_of_n
=
activation
==
"relu"
?
128
:
8
;
int
N_size
=
trans_y
?
y_dims
[
0
]
:
y_dims
[
1
];
PADDLE_ENFORCE_EQ
(
N_size
%
min_size_of_n
,
0
,
phi
::
errors
::
InvalidArgument
(
"The output dimension N (X(MxK) * Y(KxN) = C(MxN)) "
"should be multiple of %d when auxiliary_key given "
"and activation=%s, but got N = %d."
,
min_size_of_n
,
activation
,
N_size
));
}
}
}
void
FusedGemmEpilogueGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
reserve_space
,
const
MetaTensor
&
out_grad
,
bool
trans_x
,
bool
trans_y
,
const
std
::
string
&
activation_grad
,
MetaTensor
*
x_grad
,
MetaTensor
*
y_grad
,
MetaTensor
*
bias_grad
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
auto
dout_dims
=
out_grad
.
dims
();
PADDLE_ENFORCE_GE
(
dout_dims
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"The Input tensor DOut's dimension of FusedGemmEpilogueGradOp "
" should be >= 2, but got %d."
,
dout_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
y_dims
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"The Input tensor Y's dimension of FusedGemmEpilogueGradOp "
" should be 2, but got %d."
,
y_dims
.
size
()));
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"The Input tensor X's dimension of FusedGemmEpilogueGradOp "
" should be >= 2, but got %d."
,
x_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
dout_dims
.
size
(),
x_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"The Input tensor DOut's and X's dimension of "
"FusedGemmEpilogueGradOp "
" should be the same, but got DOut's dim = %d and X's = %d."
,
dout_dims
.
size
(),
x_dims
.
size
()));
auto
dout_mat_dims
=
phi
::
flatten_to_2d
(
dout_dims
,
dout_dims
.
size
()
-
1
);
auto
x_mat_dims
=
phi
::
flatten_to_2d
(
x_dims
,
x_dims
.
size
()
-
1
);
PADDLE_ENFORCE_EQ
(
dout_mat_dims
[
1
],
trans_y
?
y_dims
[
0
]
:
y_dims
[
1
],
phi
::
errors
::
InvalidArgument
(
"The last dimension of DOut should be equal with Y's last"
"dimension. But received DOut[-1] = [%d], Y[1] = [%d]."
,
dout_mat_dims
[
1
],
y_dims
[
1
]));
PADDLE_ENFORCE_EQ
(
dout_mat_dims
[
0
],
trans_x
?
x_mat_dims
[
1
]
:
x_mat_dims
[
0
],
phi
::
errors
::
InvalidArgument
(
"The first dimension of DOut should be equal with X's first"
"dimension. But received DOut[0] = [%d], Y[0] = [%d]."
,
dout_mat_dims
[
0
],
x_mat_dims
[
0
]));
if
(
activation_grad
!=
"none"
&&
!
reserve_space
)
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"The ReserveSpace should not be empty. "
"when activation == {relu_grad, gelu_grad}."
));
}
if
(
x_grad
)
{
x_grad
->
set_dims
(
x_dims
);
x_grad
->
set_dtype
(
x
.
dtype
());
}
y_grad
->
set_dims
(
y_dims
);
y_grad
->
set_dtype
(
y
.
dtype
());
if
(
bias_grad
)
{
int64_t
dbias_dim
=
trans_y
?
y_dims
[
0
]
:
y_dims
[
1
];
bias_grad
->
set_dims
(
phi
::
make_ddim
({
dbias_dim
}));
bias_grad
->
set_dtype
(
y
.
dtype
());
}
}
void
FusedMultiTransformerXpuInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
const
MetaTensor
*>&
ln_scale
,
...
...
paddle/phi/infermeta/fusion.h
浏览文件 @
720018bb
...
...
@@ -123,6 +123,26 @@ void MultiEncoderXPUInferMeta(
MetaTensor
*
x_fp16
,
MetaTensor
*
out_fp16
);
void
FusedGemmEpilogueInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
bias
,
bool
trans_x
,
bool
trans_y
,
const
std
::
string
&
activation
,
MetaTensor
*
out
,
MetaTensor
*
reserve_space
);
void
FusedGemmEpilogueGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
reserve_space
,
const
MetaTensor
&
out_grad
,
bool
trans_x
,
bool
trans_y
,
const
std
::
string
&
activation_grad
,
MetaTensor
*
x_grad
,
MetaTensor
*
y_grad
,
MetaTensor
*
bias_grad
);
void
FusedMultiTransformerXpuInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
const
MetaTensor
*>&
ln_scale
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录