Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
71cb3ff8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
71cb3ff8
编写于
10月 11, 2021
作者:
W
wangxinxin08
提交者:
GitHub
10月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enhance yolobox trt plugin (#34128)
* enhance yolobox plugin
上级
7850f7ce
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
111 addition
and
17 deletion
+111
-17
paddle/fluid/inference/tensorrt/convert/yolo_box_op.cc
paddle/fluid/inference/tensorrt/convert/yolo_box_op.cc
+8
-1
paddle/fluid/inference/tensorrt/plugin/yolo_box_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/yolo_box_op_plugin.cu
+49
-16
paddle/fluid/inference/tensorrt/plugin/yolo_box_op_plugin.h
paddle/fluid/inference/tensorrt/plugin/yolo_box_op_plugin.h
+3
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_yolo_box_op.py
...luid/tests/unittests/ir/inference/test_trt_yolo_box_op.py
+51
-0
未找到文件。
paddle/fluid/inference/tensorrt/convert/yolo_box_op.cc
浏览文件 @
71cb3ff8
...
...
@@ -48,13 +48,20 @@ class YoloBoxOpConverter : public OpConverter {
float
conf_thresh
=
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"conf_thresh"
));
bool
clip_bbox
=
BOOST_GET_CONST
(
bool
,
op_desc
.
GetAttr
(
"clip_bbox"
));
float
scale_x_y
=
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"scale_x_y"
));
bool
iou_aware
=
op_desc
.
HasAttr
(
"iou_aware"
)
?
BOOST_GET_CONST
(
bool
,
op_desc
.
GetAttr
(
"iou_aware"
))
:
false
;
float
iou_aware_factor
=
op_desc
.
HasAttr
(
"iou_aware_factor"
)
?
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"iou_aware_factor"
))
:
0.5
;
int
type_id
=
static_cast
<
int
>
(
engine_
->
WithFp16
());
auto
input_dim
=
X_tensor
->
getDimensions
();
auto
*
yolo_box_plugin
=
new
plugin
::
YoloBoxPlugin
(
type_id
?
nvinfer1
::
DataType
::
kHALF
:
nvinfer1
::
DataType
::
kFLOAT
,
anchors
,
class_num
,
conf_thresh
,
downsample_ratio
,
clip_bbox
,
scale_x_y
,
input_dim
.
d
[
1
],
input_dim
.
d
[
2
]);
i
ou_aware
,
iou_aware_factor
,
i
nput_dim
.
d
[
1
],
input_dim
.
d
[
2
]);
std
::
vector
<
nvinfer1
::
ITensor
*>
yolo_box_inputs
;
yolo_box_inputs
.
push_back
(
X_tensor
);
...
...
paddle/fluid/inference/tensorrt/plugin/yolo_box_op_plugin.cu
浏览文件 @
71cb3ff8
...
...
@@ -12,8 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <algorithm>
#include <cassert>
...
...
@@ -29,7 +27,8 @@ YoloBoxPlugin::YoloBoxPlugin(const nvinfer1::DataType data_type,
const
std
::
vector
<
int
>&
anchors
,
const
int
class_num
,
const
float
conf_thresh
,
const
int
downsample_ratio
,
const
bool
clip_bbox
,
const
float
scale_x_y
,
const
int
input_h
,
const
float
scale_x_y
,
const
bool
iou_aware
,
const
float
iou_aware_factor
,
const
int
input_h
,
const
int
input_w
)
:
data_type_
(
data_type
),
class_num_
(
class_num
),
...
...
@@ -37,6 +36,8 @@ YoloBoxPlugin::YoloBoxPlugin(const nvinfer1::DataType data_type,
downsample_ratio_
(
downsample_ratio
),
clip_bbox_
(
clip_bbox
),
scale_x_y_
(
scale_x_y
),
iou_aware_
(
iou_aware
),
iou_aware_factor_
(
iou_aware_factor
),
input_h_
(
input_h
),
input_w_
(
input_w
)
{
anchors_
.
insert
(
anchors_
.
end
(),
anchors
.
cbegin
(),
anchors
.
cend
());
...
...
@@ -45,6 +46,7 @@ YoloBoxPlugin::YoloBoxPlugin(const nvinfer1::DataType data_type,
assert
(
class_num_
>
0
);
assert
(
input_h_
>
0
);
assert
(
input_w_
>
0
);
assert
((
iou_aware_factor_
>
0
&&
iou_aware_factor_
<
1
));
cudaMalloc
(
&
anchors_device_
,
anchors
.
size
()
*
sizeof
(
int
));
cudaMemcpy
(
anchors_device_
,
anchors
.
data
(),
anchors
.
size
()
*
sizeof
(
int
),
...
...
@@ -59,6 +61,8 @@ YoloBoxPlugin::YoloBoxPlugin(const void* data, size_t length) {
DeserializeValue
(
&
data
,
&
length
,
&
downsample_ratio_
);
DeserializeValue
(
&
data
,
&
length
,
&
clip_bbox_
);
DeserializeValue
(
&
data
,
&
length
,
&
scale_x_y_
);
DeserializeValue
(
&
data
,
&
length
,
&
iou_aware_
);
DeserializeValue
(
&
data
,
&
length
,
&
iou_aware_factor_
);
DeserializeValue
(
&
data
,
&
length
,
&
input_h_
);
DeserializeValue
(
&
data
,
&
length
,
&
input_w_
);
}
...
...
@@ -133,8 +137,19 @@ __device__ inline void GetYoloBox(float* box, const T* x, const int* anchors,
__device__
inline
int
GetEntryIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
,
int
entry
)
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
entry
*
stride
+
hw_idx
;
int
entry
,
bool
iou_aware
)
{
if
(
iou_aware
)
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
(
batch
*
an_num
+
an_num
+
entry
)
*
stride
+
hw_idx
;
}
else
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
entry
*
stride
+
hw_idx
;
}
}
__device__
inline
int
GetIoUIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
)
{
return
batch
*
an_num
*
an_stride
+
(
batch
*
an_num
+
an_idx
)
*
stride
+
hw_idx
;
}
template
<
typename
T
>
...
...
@@ -178,7 +193,8 @@ __global__ void KeYoloBoxFw(const T* const input, const int* const imgsize,
const
int
w
,
const
int
an_num
,
const
int
class_num
,
const
int
box_num
,
int
input_size_h
,
int
input_size_w
,
bool
clip_bbox
,
const
float
scale
,
const
float
bias
)
{
const
float
bias
,
bool
iou_aware
,
const
float
iou_aware_factor
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
float
box
[
4
];
...
...
@@ -193,11 +209,16 @@ __global__ void KeYoloBoxFw(const T* const input, const int* const imgsize,
int
img_height
=
imgsize
[
2
*
i
];
int
img_width
=
imgsize
[
2
*
i
+
1
];
int
obj_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
4
);
int
obj_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
4
,
iou_aware
);
float
conf
=
sigmoid
(
static_cast
<
float
>
(
input
[
obj_idx
]));
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
0
);
if
(
iou_aware
)
{
int
iou_idx
=
GetIoUIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
);
float
iou
=
sigmoid
<
float
>
(
input
[
iou_idx
]);
conf
=
powf
(
conf
,
1.
-
iou_aware_factor
)
*
powf
(
iou
,
iou_aware_factor
);
}
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
0
,
iou_aware
);
if
(
conf
<
conf_thresh
)
{
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
...
...
@@ -212,8 +233,8 @@ __global__ void KeYoloBoxFw(const T* const input, const int* const imgsize,
box_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
4
;
CalcDetectionBox
<
T
>
(
boxes
,
box
,
box_idx
,
img_height
,
img_width
,
clip_bbox
);
int
label_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
5
);
int
label_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
5
,
iou_aware
);
int
score_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
class_num
;
CalcLabelScore
<
T
>
(
scores
,
input
,
label_idx
,
score_idx
,
class_num
,
conf
,
grid_num
);
...
...
@@ -240,7 +261,8 @@ int YoloBoxPlugin::enqueue_impl(int batch_size, const void* const* inputs,
reinterpret_cast
<
const
int
*
const
>
(
inputs
[
1
]),
reinterpret_cast
<
T
*>
(
outputs
[
0
]),
reinterpret_cast
<
T
*>
(
outputs
[
1
]),
conf_thresh_
,
anchors_device_
,
n
,
h
,
w
,
an_num
,
class_num_
,
box_num
,
input_size_h
,
input_size_w
,
clip_bbox_
,
scale_x_y_
,
bias
);
input_size_h
,
input_size_w
,
clip_bbox_
,
scale_x_y_
,
bias
,
iou_aware_
,
iou_aware_factor_
);
return
cudaGetLastError
()
!=
cudaSuccess
;
}
...
...
@@ -274,6 +296,8 @@ size_t YoloBoxPlugin::getSerializationSize() const TRT_NOEXCEPT {
serialize_size
+=
SerializedSize
(
scale_x_y_
);
serialize_size
+=
SerializedSize
(
input_h_
);
serialize_size
+=
SerializedSize
(
input_w_
);
serialize_size
+=
SerializedSize
(
iou_aware_
);
serialize_size
+=
SerializedSize
(
iou_aware_factor_
);
return
serialize_size
;
}
...
...
@@ -285,6 +309,8 @@ void YoloBoxPlugin::serialize(void* buffer) const TRT_NOEXCEPT {
SerializeValue
(
&
buffer
,
downsample_ratio_
);
SerializeValue
(
&
buffer
,
clip_bbox_
);
SerializeValue
(
&
buffer
,
scale_x_y_
);
SerializeValue
(
&
buffer
,
iou_aware_
);
SerializeValue
(
&
buffer
,
iou_aware_factor_
);
SerializeValue
(
&
buffer
,
input_h_
);
SerializeValue
(
&
buffer
,
input_w_
);
}
...
...
@@ -326,8 +352,8 @@ void YoloBoxPlugin::configurePlugin(
nvinfer1
::
IPluginV2Ext
*
YoloBoxPlugin
::
clone
()
const
TRT_NOEXCEPT
{
return
new
YoloBoxPlugin
(
data_type_
,
anchors_
,
class_num_
,
conf_thresh_
,
downsample_ratio_
,
clip_bbox_
,
scale_x_y_
,
input_h_
,
input_w_
);
downsample_ratio_
,
clip_bbox_
,
scale_x_y_
,
i
ou_aware_
,
iou_aware_factor_
,
input_h_
,
i
nput_w_
);
}
YoloBoxPluginCreator
::
YoloBoxPluginCreator
()
{}
...
...
@@ -367,6 +393,8 @@ nvinfer1::IPluginV2Ext* YoloBoxPluginCreator::createPlugin(
float
scale_x_y
=
1.
;
int
h
=
-
1
;
int
w
=
-
1
;
bool
iou_aware
=
false
;
float
iou_aware_factor
=
0.5
;
for
(
int
i
=
0
;
i
<
fc
->
nbFields
;
++
i
)
{
const
std
::
string
field_name
(
fc
->
fields
[
i
].
name
);
...
...
@@ -386,6 +414,10 @@ nvinfer1::IPluginV2Ext* YoloBoxPluginCreator::createPlugin(
clip_bbox
=
*
static_cast
<
const
bool
*>
(
fc
->
fields
[
i
].
data
);
}
else
if
(
field_name
.
compare
(
"scale_x_y"
))
{
scale_x_y
=
*
static_cast
<
const
float
*>
(
fc
->
fields
[
i
].
data
);
}
else
if
(
field_name
.
compare
(
"iou_aware"
))
{
iou_aware
=
*
static_cast
<
const
bool
*>
(
fc
->
fields
[
i
].
data
);
}
else
if
(
field_name
.
compare
(
"iou_aware_factor"
))
{
iou_aware_factor
=
*
static_cast
<
const
float
*>
(
fc
->
fields
[
i
].
data
);
}
else
if
(
field_name
.
compare
(
"h"
))
{
h
=
*
static_cast
<
const
int
*>
(
fc
->
fields
[
i
].
data
);
}
else
if
(
field_name
.
compare
(
"w"
))
{
...
...
@@ -397,7 +429,8 @@ nvinfer1::IPluginV2Ext* YoloBoxPluginCreator::createPlugin(
return
new
YoloBoxPlugin
(
type_id
?
nvinfer1
::
DataType
::
kHALF
:
nvinfer1
::
DataType
::
kFLOAT
,
anchors
,
class_num
,
conf_thresh
,
downsample_ratio
,
clip_bbox
,
scale_x_y
,
h
,
w
);
class_num
,
conf_thresh
,
downsample_ratio
,
clip_bbox
,
scale_x_y
,
iou_aware
,
iou_aware_factor
,
h
,
w
);
}
nvinfer1
::
IPluginV2Ext
*
YoloBoxPluginCreator
::
deserializePlugin
(
...
...
paddle/fluid/inference/tensorrt/plugin/yolo_box_op_plugin.h
浏览文件 @
71cb3ff8
...
...
@@ -31,6 +31,7 @@ class YoloBoxPlugin : public nvinfer1::IPluginV2Ext {
const
std
::
vector
<
int
>&
anchors
,
const
int
class_num
,
const
float
conf_thresh
,
const
int
downsample_ratio
,
const
bool
clip_bbox
,
const
float
scale_x_y
,
const
bool
iou_aware
,
const
float
iou_aware_factor
,
const
int
input_h
,
const
int
input_w
);
YoloBoxPlugin
(
const
void
*
data
,
size_t
length
);
~
YoloBoxPlugin
()
override
;
...
...
@@ -89,6 +90,8 @@ class YoloBoxPlugin : public nvinfer1::IPluginV2Ext {
float
scale_x_y_
;
int
input_h_
;
int
input_w_
;
bool
iou_aware_
;
float
iou_aware_factor_
;
std
::
string
namespace_
;
};
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_yolo_box_op.py
浏览文件 @
71cb3ff8
...
...
@@ -116,5 +116,56 @@ class TRTYoloBoxFP16Test(InferencePassTest):
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TRTYoloBoxIoUAwareTest
(
InferencePassTest
):
def
setUp
(
self
):
self
.
set_params
()
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
image_shape
=
[
self
.
bs
,
self
.
channel
,
self
.
height
,
self
.
width
]
image
=
fluid
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
image_size
=
fluid
.
data
(
name
=
'image_size'
,
shape
=
[
self
.
bs
,
2
],
dtype
=
'int32'
)
boxes
,
scores
=
self
.
append_yolobox
(
image
,
image_size
)
self
.
feeds
=
{
'image'
:
np
.
random
.
random
(
image_shape
).
astype
(
'float32'
),
'image_size'
:
np
.
random
.
randint
(
32
,
64
,
size
=
(
self
.
bs
,
2
)).
astype
(
'int32'
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TRTYoloBoxTest
.
TensorRTParam
(
1
<<
30
,
self
.
bs
,
1
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
scores
,
boxes
]
def
set_params
(
self
):
self
.
bs
=
4
self
.
channel
=
258
self
.
height
=
64
self
.
width
=
64
self
.
class_num
=
80
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
self
.
conf_thresh
=
.
1
self
.
downsample_ratio
=
32
self
.
iou_aware
=
True
self
.
iou_aware_factor
=
0.5
def
append_yolobox
(
self
,
image
,
image_size
):
return
fluid
.
layers
.
yolo_box
(
x
=
image
,
img_size
=
image_size
,
class_num
=
self
.
class_num
,
anchors
=
self
.
anchors
,
conf_thresh
=
self
.
conf_thresh
,
downsample_ratio
=
self
.
downsample_ratio
,
iou_aware
=
self
.
iou_aware
,
iou_aware_factor
=
self
.
iou_aware_factor
)
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
,
flatten
=
True
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录