未验证 提交 71cb016c 编写于 作者: Z zhaoyingli 提交者: GitHub

[AutoParallel]engine support pp (#40084)

* engine support pp

* fix format

* avoid multi print

* fix convert

* bug fix

* add pp unittest
上级 98c427e2
......@@ -99,11 +99,11 @@ class Engine:
all_ranks = world_process_group.ranks
for rank in all_ranks:
self._parallel(rank)
place = _get_device()
if isinstance(place, fluid.CUDAPlace):
self._place = _get_device()
if isinstance(self._place, fluid.CUDAPlace):
self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
if self._executor is None:
self._executor = fluid.Executor(place)
self._executor = paddle.static.Executor(self._place)
def _build(self):
serial_main_prog = self._serial_main_progs.get(self.mode, None)
......@@ -119,12 +119,13 @@ class Engine:
labels = [s._create_feed_layer() for s in to_list(labels_spec)]
self._input_vars = inputs
self._label_vars = labels
feed_list = self._input_vars + self._label_vars
self._feed_vars = self._input_vars + self._label_vars
outputs = to_list(self.model(*inputs))
if self.mode != "predict" and self.loss:
loss = self.loss(*(outputs + labels))
self._loss_var = loss
self._fetch_vars = {"outputs": outputs, "loss": loss}
self._serial_main_progs[self.mode] = serial_main_prog
self._serial_startup_progs[self.mode] = serial_startup_prog
self._dist_contexts[self.mode] = DistributedContext(
......@@ -278,19 +279,32 @@ class Engine:
dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
dist_context = self._dist_contexts[self.mode]
dist_main_block = dist_main_prog.global_block()
serial_main_prog = self._serial_main_progs[self.mode]
serial_main_block = serial_main_prog.global_block()
op_size = len(dist_main_block.ops)
places = paddle.static.cuda_places()
with fluid.program_guard(dist_main_prog, dist_startup_prog):
dataloader = NonIterableGeneratorLoader(
dataset, feed_list, places, batch_size, epochs, steps_per_epoch)
new_op_size = len(dist_main_block.ops)
for idx in range(new_op_size - 1, op_size - 1, -1):
for _ in range(new_op_size - 1, op_size - 1, -1):
op = dist_main_block.ops[new_op_size - 1]
new_op_desc = dist_main_block.desc._prepend_op()
new_op_desc.copy_from(op.desc)
new_op = Operator(
dist_main_block, new_op_desc, type=new_op_desc.type())
dist_main_block.ops.insert(0, new_op)
for in_name in new_op.input_arg_names:
if in_name == "lod_tensor_blocking_queue_0":
continue
if in_name not in dist_main_block.vars:
in_var = serial_main_block._var_recursive(in_name)
dist_main_block._clone_variable(in_var, in_var.persistable)
for out_name in new_op.output_arg_names:
if out_name not in dist_main_block.vars:
out_var = serial_main_block._var_recursive(out_name)
dist_main_block._clone_variable(out_var,
out_var.persistable)
dist_op = DistributedOperator(new_op)
dist_context.add_dist_op_for_program(dist_op)
for _ in range(new_op_size - op_size):
......
......@@ -22,7 +22,6 @@ import logging
from functools import reduce
import paddle.fluid.core as core
from paddle.framework.io import _to_LodTensor
from paddle.distributed.fleet.meta_optimizers.common import OpRole
from paddle.fluid.io import is_parameter, is_belong_to_optimizer
from paddle.distributed.auto_parallel.dist_attribute import TensorDistributedAttribute, OperatorDistributedAttribute
......@@ -739,7 +738,7 @@ def merge_and_slice_parameter(dist_param_dict, pre_dist_attr, cur_dist_attr):
rank_id = paddle.distributed.get_rank()
index = cur_attr["process_group"].index(rank_id)
param = dist_param_dict[var_name][index]
dist_param_dict[var_name] = _to_LodTensor(param)
dist_param_dict[var_name] = param
continue
pre_param = dist_param_dict[var_name]
......@@ -751,7 +750,7 @@ def merge_and_slice_parameter(dist_param_dict, pre_dist_attr, cur_dist_attr):
dist_param_dict[var_name] = complete_param
else:
complete_param = pre_param[0]
dist_param_dict[var_name] = _to_LodTensor(complete_param)
dist_param_dict[var_name] = complete_param
if len(set(cur_dims_mapping)) > 1 or -1 not in cur_dims_mapping:
sliced_param = _slice_parameter_with_dist_attr(complete_param,
......@@ -798,7 +797,7 @@ def _merge_parameter_with_dist_attr(param_list, dist_attr):
assert len(partition_param_list) == 1 or not partition_param_list, \
"Fail to merge parameter"
complete_param = _to_LodTensor(partition_param_list[0][0])
complete_param = partition_param_list[0][0]
return complete_param
......@@ -818,7 +817,7 @@ def _slice_parameter_with_dist_attr(param, dist_attr):
rank_id = paddle.distributed.get_rank()
sliced_param_index = _get_sliced_param_index(
rank_id, param.shape, dims_mapping, process_shape, process_group)
sliced_param = _to_LodTensor(sliced_param_list[sliced_param_index])
sliced_param = sliced_param_list[sliced_param_index]
return sliced_param
......
......@@ -546,13 +546,15 @@ class Pod(object):
def get_logger(log_level, name="root"):
logger = logging.getLogger(name)
logger.setLevel(log_level)
log_handler = logging.StreamHandler()
log_format = logging.Formatter(
'%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
log_handler.setFormatter(log_format)
logger.addHandler(log_handler)
# Avoid printing multiple logs
if not logger.handlers:
logger.setLevel(log_level)
log_handler = logging.StreamHandler()
log_format = logging.Formatter(
'%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
log_handler.setFormatter(log_format)
logger.addHandler(log_handler)
return logger
......
......@@ -5,7 +5,8 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
set_tests_properties(test_auto_parallel_relaunch PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" TIMEOUT 120)
py_test_modules(test_relaunch_with_planner MODULES test_relaunch_with_planner ENVS ${dist_ENVS})
set_tests_properties(test_relaunch_with_planner PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" TIMEOUT 120)
py_test_modules(test_relaunch_with_gpt_planner MODULES test_relaunch_with_planner ENVS ${dist_ENVS})
py_test_modules(test_relaunch_with_gpt_planner MODULES test_relaunch_with_gpt_planner ENVS ${dist_ENVS})
set_tests_properties(test_relaunch_with_gpt_planner PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" TIMEOUT 240)
py_test_modules(test_engine_api MODULES test_engine_api ENVS ${dist_ENVS})
set_tests_properties(test_engine_api PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" TIMEOUT 80)
endif()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import time
import paddle.fluid as fluid
import copy
import os
import numpy as np
import subprocess
import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
from paddle.fluid import layers
from paddle.io import Dataset, IterableDataset, DataLoader
from paddle.static import InputSpec
from paddle.distributed import fleet
import paddle.distributed.auto_parallel as auto
from paddle.distributed.auto_parallel.engine import Engine
paddle.enable_static()
global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
PP_MESH_0 = auto.ProcessMesh([0])
PP_MESH_1 = auto.ProcessMesh([1])
batch_size = 1
batch_num = 10
hidden_size = 1024
sequence_len = 512
image_size = hidden_size
class_num = 10
paddle.seed(44)
class MyDataset(Dataset):
def __init__(self, num_samples):
super(MyDataset, self).__init__()
self.num_samples = num_samples
def __getitem__(self, index):
input = np.random.uniform(size=image_size).astype("float32")
label = np.random.randint(0, class_num - 1, dtype="int64")
return input, label
def __len__(self):
return self.num_samples
class MLPLayer(nn.Layer):
def __init__(self,
hidden_size=1024,
intermediate_size=4 * 1024,
dropout_ratio=0.1,
initializer_range=0.02):
super(MLPLayer, self).__init__()
d_model = hidden_size
dim_feedforward = intermediate_size
weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
mean=0.0, std=initializer_range))
bias_attr = None
self.linear0 = nn.Linear(
d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
self.linear1 = nn.Linear(
dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")
def forward(self, input):
out = auto.shard_op(
self.norm, dist_attr={"process_mesh": PP_MESH_0})(input)[0]
out = self.linear0(input)
out = F.gelu(out, approximate=True)
out = auto.shard_op(
self.linear1, dist_attr={"process_mesh": PP_MESH_1})(out)[0]
out = self.dropout(out)
out = self.linear2(out)
return out
def train():
mlp = MLPLayer(
hidden_size=hidden_size,
intermediate_size=4 * hidden_size,
dropout_ratio=0.1,
initializer_range=0.02)
loss = paddle.nn.CrossEntropyLoss()
optimizer = paddle.fluid.optimizer.AdamOptimizer(
learning_rate=0.00001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
grad_clip=None)
dataset = MyDataset(batch_num * batch_size)
data_spec = [
InputSpec([batch_size, hidden_size], 'float32', 'x'),
InputSpec([batch_size], 'int64', 'label')
]
dist_strategy = fleet.DistributedStrategy()
dist_strategy.amp = False
dist_strategy.pipeline = False
dist_strategy.recompute = False
# init parallel optimizer
dist_strategy.semi_auto = True
fleet.init(is_collective=True, strategy=dist_strategy)
engine = Engine(mlp, data_spec, strategy=dist_strategy)
engine.prepare(optimizer, loss)
engine.fit(dataset,
batch_size=batch_size,
steps_per_epoch=batch_num * batch_size)
if __name__ == "__main__":
train()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -13,122 +13,35 @@
# limitations under the License.
import unittest
import time
import paddle.fluid as fluid
import copy
import os
import numpy as np
import sys
import shutil
import subprocess
import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
from paddle.fluid import layers
from paddle.io import Dataset, IterableDataset, DataLoader
from paddle.static import InputSpec
from paddle.distributed import fleet
import paddle.distributed.auto_parallel as auto
from paddle.distributed.auto_parallel.engine import Engine
paddle.enable_static()
global_process_mesh = auto.ProcessMesh(mesh=[0])
batch_size = 1
batch_num = 10
hidden_size = 1024
sequence_len = 512
image_size = hidden_size
class_num = 10
paddle.seed(44)
class MyDataset(Dataset):
def __init__(self, num_samples):
super(MyDataset, self).__init__()
self.num_samples = num_samples
def __getitem__(self, index):
input = np.random.uniform(size=image_size).astype("float32")
label = np.random.randint(0, class_num - 1, dtype="int64")
return input, label
def __len__(self):
return self.num_samples
class MLPLayer(nn.Layer):
def __init__(self,
hidden_size=1024,
intermediate_size=4 * 1024,
dropout_ratio=0.1,
initializer_range=0.02):
super(MLPLayer, self).__init__()
d_model = hidden_size
dim_feedforward = intermediate_size
weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
mean=0.0, std=initializer_range))
bias_attr = None
self.linear0 = nn.Linear(
d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
self.linear1 = nn.Linear(
dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
# self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
# self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")
def forward(self, input):
auto.shard_tensor(
input,
dist_attr={
"process_mesh": global_process_mesh,
"dims_mappig": [-1]
})
# out = self.norm(input)
out = self.linear0(input)
out = F.gelu(out, approximate=True)
out = self.linear1(out)
# out = self.dropout(out)
out = self.linear2(out)
return out
from paddle.distributed.fleet.launch_utils import run_with_coverage
class TestEngineAPI(unittest.TestCase):
def test_engine_api(self):
mlp = MLPLayer(
hidden_size=hidden_size,
intermediate_size=4 * hidden_size,
dropout_ratio=0.1,
initializer_range=0.02)
loss = paddle.nn.CrossEntropyLoss()
optimizer = paddle.fluid.optimizer.AdamOptimizer(
learning_rate=0.00001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
grad_clip=None)
file_dir = os.path.dirname(os.path.abspath(__file__))
launch_model_path = os.path.join(file_dir, "engine_api.py")
if os.environ.get("WITH_COVERAGE", "OFF") == "ON":
coverage_args = ["-m", "coverage", "run", "--branch", "-p"]
else:
coverage_args = []
dataset = MyDataset(batch_num * batch_size)
data_spec = [
InputSpec([batch_size, hidden_size], 'float32', 'x'),
InputSpec([batch_size], 'int64', 'label')
cmd = [sys.executable, "-u"] + coverage_args + [
"-m", "launch", "--gpus", "0,1", launch_model_path
]
dist_strategy = fleet.DistributedStrategy()
dist_strategy.amp = False
dist_strategy.pipeline = False
dist_strategy.recompute = False
# init parallel optimizer
dist_strategy.semi_auto = True
fleet.init(is_collective=True, strategy=dist_strategy)
process = subprocess.Popen(cmd)
process.wait()
self.assertEqual(process.returncode, 0)
engine = Engine(mlp, data_spec, strategy=dist_strategy)
engine.prepare(optimizer, loss)
engine.fit(dataset,
batch_size=batch_size,
steps_per_epoch=batch_num * batch_size)
# Remove unnecessary files
log_path = os.path.join(file_dir, "log")
if os.path.exists(log_path):
shutil.rmtree(log_path)
if __name__ == "__main__":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册