提交 716e020e 编写于 作者: R ranqiu

Update faq about PaddlePaddle params

上级 a0187f1c
......@@ -321,3 +321,53 @@ pip uninstall py_paddle paddle
然后安装paddle的python环境, 在build目录下执行
pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl
16. 如何加载预训练embedding参数
------------------------------
设置embedding的参数属性 :code:`is_static=True`,使embedding参数在训练过程中保持不变,在创建parameters后,使用 :code:`parameters.set()` 加载预训练参数。
.. code-block:: python
def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)
emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para)
parameters = paddle.parameters.create(my_cost)
parameters.set('emb', load_parameter(emb_param_file, 30000, 256))
17. PaddlePaddle存储的参数格式是什么,如何和明文进行相互转化
---------------------------------------------------------
PaddlePaddle保存的二进制参数文件内容由16位头信息和网络参数两部分组成。头信息中,第一位固定为0,第二位为4,在使用double精度时,第二位为8,第三位记录共有多少个数值。
将PaddlePaddle保存的二进制参数还原回明文时,先跳过PaddlePaddle模型参数文件的头信息,再提取网络参数,示例如下:
.. code-block:: python
def read_parameter(fname, width):
s = open(fname).read()
# skip header
vec = np.fromstring(s[16:], dtype=np.float32)
# width is the size of the corresponding layer
np.savetxt(fname + ".csv", vec.reshape(width, -1),
fmt="%.6f", delimiter=",")
将明文参数转化为PaddlePaddle可加载的模型参数时,先根据参数规模写入头信息,再写入具体网络参数。以下为将随机生成的矩阵转化为PaddlePaddle可加载的模型参数示例:
.. code-block:: python
def gen_rand_param(param_file, width, height, need_trans):
np.random.seed()
header = struct.pack("iil", 0, 4, height * width)
param = np.float32(np.random.rand(height, width))
with open(param_file, "w") as fparam:
fparam.write(header + param.tostring())
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册