Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
70d15e84
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
70d15e84
编写于
5月 05, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add dataset ptb
上级
a0c3465b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
224 addition
and
2 deletion
+224
-2
python/paddle/v2/dataset/imikolov.py
python/paddle/v2/dataset/imikolov.py
+2
-2
python/paddle/v2/dataset/ptb.py
python/paddle/v2/dataset/ptb.py
+169
-0
python/paddle/v2/dataset/tests/ptb_test.py
python/paddle/v2/dataset/tests/ptb_test.py
+53
-0
未找到文件。
python/paddle/v2/dataset/imikolov.py
浏览文件 @
70d15e84
...
...
@@ -41,7 +41,7 @@ def word_count(f, word_freq=None):
return
word_freq
def
build_dict
(
typo
_freq
=
50
):
def
build_dict
(
min_word
_freq
=
50
):
"""
Build a word dictionary from the corpus, Keys of the dictionary are words,
and values are zero-based IDs of these words.
...
...
@@ -59,7 +59,7 @@ def build_dict(typo_freq=50):
# remove <unk> for now, since we will set it as last index
del
word_freq
[
'<unk>'
]
word_freq
=
filter
(
lambda
x
:
x
[
1
]
>
typo
_freq
,
word_freq
.
items
())
word_freq
=
filter
(
lambda
x
:
x
[
1
]
>
min_word
_freq
,
word_freq
.
items
())
word_freq_sorted
=
sorted
(
word_freq
,
key
=
lambda
x
:
(
-
x
[
1
],
x
[
0
]))
words
,
_
=
list
(
zip
(
*
word_freq_sorted
))
...
...
python/paddle/v2/dataset/ptb.py
0 → 100644
浏览文件 @
70d15e84
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
langauge model's simple dataset.
This module will download dataset from
http://www.fit.vutbr.cz/~imikolov/rnnlm/ and parse training set and test set
into paddle reader creators.
"""
import
paddle.v2.dataset.common
import
collections
import
tarfile
__all__
=
[
'train'
,
'test'
,
'build_dict'
]
URL
=
'http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz'
MD5
=
'30177ea32e27c525793142b6bf2c8e2d'
def
word_count
(
f
,
word_freq
=
None
):
if
word_freq
is
None
:
word_freq
=
collections
.
defaultdict
(
int
)
for
l
in
f
:
for
w
in
l
.
strip
().
split
():
word_freq
[
w
]
+=
1
word_freq
[
'<s>'
]
+=
1
word_freq
[
'<e>'
]
+=
1
return
word_freq
def
build_dict
(
min_word_freq
=
50
):
"""
Build a word dictionary from the corpus, Keys of the dictionary are words,
and values are zero-based IDs of these words.
"""
train_filename
=
'./simple-examples/data/ptb.train.txt'
test_filename
=
'./simple-examples/data/ptb.valid.txt'
with
tarfile
.
open
(
paddle
.
v2
.
dataset
.
common
.
download
(
paddle
.
v2
.
dataset
.
imikolov
.
URL
,
'imikolov'
,
paddle
.
v2
.
dataset
.
imikolov
.
MD5
))
as
tf
:
trainf
=
tf
.
extractfile
(
train_filename
)
testf
=
tf
.
extractfile
(
test_filename
)
word_freq
=
word_count
(
testf
,
word_count
(
trainf
))
if
'<unk>'
in
word_freq
:
# remove <unk> for now, since we will set it as last index
del
word_freq
[
'<unk>'
]
word_freq
=
filter
(
lambda
x
:
x
[
1
]
>
min_word_freq
,
word_freq
.
items
())
word_freq_sorted
=
sorted
(
word_freq
,
key
=
lambda
x
:
(
-
x
[
1
],
x
[
0
]))
words
,
_
=
list
(
zip
(
*
word_freq_sorted
))
word_idx
=
dict
(
zip
(
words
,
xrange
(
len
(
words
))))
word_idx
[
'<unk>'
]
=
len
(
words
)
return
word_idx
def
reader_creator
(
filename
,
reader_type
,
word_idx
,
n
=-
1
):
def
reader
():
with
tarfile
.
open
(
paddle
.
v2
.
dataset
.
common
.
download
(
paddle
.
v2
.
dataset
.
imikolov
.
URL
,
'imikolov'
,
paddle
.
v2
.
dataset
.
imikolov
.
MD5
))
as
tf
:
f
=
tf
.
extractfile
(
filename
)
UNK
=
word_idx
[
'<unk>'
]
for
l
in
f
:
if
'ngram'
==
reader_type
:
assert
n
>
-
1
,
'Invalid gram length'
l
=
[
'<s>'
]
+
l
.
strip
().
split
()
+
[
'<e>'
]
if
len
(
l
)
<
n
:
continue
l
=
[
word_idx
.
get
(
w
,
UNK
)
for
w
in
l
]
for
i
in
range
(
n
,
len
(
l
)
+
1
):
yield
tuple
(
l
[
i
-
n
:
i
])
elif
'seq'
==
reader_type
:
l
=
l
.
strip
().
split
()
l
=
[
word_idx
.
get
(
w
,
UNK
)
for
w
in
l
]
src_seq
=
[
word_idx
[
'<s>'
]]
+
l
trg_seq
=
l
+
[
word_idx
[
'<e>'
]]
yield
src_seq
,
trg_seq
return
reader
def
ngram_train
(
word_idx
,
n
):
"""
ptb ngram type training set creator.
It returns a reader creator, each sample in the reader is a word ID
tuple.
:param word_idx: word dictionary
:type word_idx: dict
:param n: sliding window size
:type n: int
:return: Training reader creator
:rtype: callable
"""
return
reader_creator
(
'./simple-examples/data/ptb.train.txt'
,
'ngram'
,
word_idx
,
n
)
def
ngram_test
(
word_idx
,
n
):
"""
ptb ngram test set creator.
It returns a reader creator, each sample in the reader is a word ID
tuple.
:param word_idx: word dictionary
:type word_idx: dict
:param n: sliding window size
:type n: int
:return: Test reader creator
:rtype: callable
"""
return
reader_creator
(
'./simple-examples/data/ptb.valid.txt'
,
'ngram'
,
word_idx
,
n
)
def
seq_train
(
word_idx
):
"""
ptb sequence type training set creator.
It returns a reader creator, each sample in the reader is a word ID
pair.
:param word_idx: word dictionary
:type word_idx: dict
:return: Test reader creator
:rtype: callable
"""
return
reader_creator
(
'./simple-examples/data/ptb.train.txt'
,
'seq'
,
word_idx
)
def
seq_test
(
word_idx
):
"""
ptb sequence type test set creator.
It returns a reader creator, each sample in the reader is a word ID
pair.
:param word_idx: word dictionary
:type word_idx: dict
:return: Test reader creator
:rtype: callable
"""
return
reader_creator
(
'./simple-examples/data/ptb.valid.txt'
,
'seq'
,
word_idx
)
def
fetch
():
paddle
.
v2
.
dataset
.
common
.
download
(
URL
,
"imikolov"
,
MD5
)
python/paddle/v2/dataset/tests/ptb_test.py
0 → 100644
浏览文件 @
70d15e84
import
paddle.v2.dataset.ptb
import
unittest
WORD_DICT
=
paddle
.
v2
.
dataset
.
ptb
.
build_dict
()
class
TestMikolov
(
unittest
.
TestCase
):
def
check_reader
(
self
,
reader
,
n
):
for
l
in
reader
():
self
.
assertEqual
(
len
(
l
),
n
)
def
test_ngram_train
(
self
):
n
=
5
self
.
check_reader
(
paddle
.
v2
.
dataset
.
ptb
.
ngram_train
(
WORD_DICT
,
n
),
n
)
def
test_ngram_test
(
self
):
n
=
5
self
.
check_reader
(
paddle
.
v2
.
dataset
.
ptb
.
ngram_test
(
WORD_DICT
,
n
),
n
)
def
test_seq_train
(
self
):
first_line
=
'aer banknote berlitz calloway centrust cluett fromstein '
\
'gitano guterman hydro-quebec ipo kia memotec mlx nahb punts '
\
'rake regatta rubens sim snack-food ssangyong swapo wachter'
first_line
=
[
WORD_DICT
.
get
(
ch
,
WORD_DICT
[
'<unk>'
])
for
ch
in
first_line
.
split
(
' '
)
]
for
l
in
paddle
.
v2
.
dataset
.
ptb
.
seq_train
(
WORD_DICT
)():
read_line
=
l
[
0
][
1
:]
break
self
.
assertEqual
(
first_line
,
read_line
)
def
test_seq_test
(
self
):
first_line
=
'consumers may want to move their telephones a little '
\
'closer to the tv set'
first_line
=
[
WORD_DICT
.
get
(
ch
,
WORD_DICT
[
'<unk>'
])
for
ch
in
first_line
.
split
(
' '
)
]
for
l
in
paddle
.
v2
.
dataset
.
ptb
.
seq_test
(
WORD_DICT
)():
read_line
=
l
[
0
][
1
:]
break
self
.
assertEqual
(
first_line
,
read_line
)
def
test_total
(
self
):
_
,
idx
=
zip
(
*
WORD_DICT
.
items
())
self
.
assertEqual
(
sorted
(
idx
)[
-
1
],
len
(
WORD_DICT
)
-
1
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录