未验证 提交 70c8c313 编写于 作者: G Guanghua Yu 提交者: GitHub

support mean,softmax_with_cross_entropy on Baidu Kunlun (#27792)

* support mean,softmax_with_cross_entropy on Baidu Kunlun,test=kunlun

* fix unittests error,test=kunlun

* delete boost::get,test=kunlun
上级 1607e87c
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/mean_op.h"
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <string>
#include <unordered_map>
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class MeanXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<Tensor>("X");
auto* output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
const float* x_data = input->data<float>();
float* y_data = output->data<float>();
int r = xpu::mean(dev_ctx.x_context(), x_data, y_data, input->numel());
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument("XPU kernel error!"));
}
};
template <typename DeviceContext, typename T>
class MeanGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto OG = context.Input<Tensor>(framework::GradVarName("Out"));
PADDLE_ENFORCE_EQ(OG->numel(), 1, platform::errors::InvalidArgument(
"Mean Gradient should be scalar"));
auto IG = context.Output<Tensor>(framework::GradVarName("X"));
IG->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
float* dx = IG->data<float>();
const float* dy = OG->data<float>();
int r = xpu::mean_grad(dev_ctx.x_context(), dx, dy, IG->numel());
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument("XPU kernel error!"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
mean, ops::MeanXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
mean_grad,
ops::MeanGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
namespace paddle {
namespace operators {
template <typename T>
class SoftmaxWithCrossEntropyXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(
platform::is_xpu_place(context.GetPlace()), true,
platform::errors::InvalidArgument("This kernel only runs on XPU."));
const Tensor* logits = context.Input<Tensor>("Logits");
const Tensor* labels = context.Input<Tensor>("Label");
Tensor* softmax = context.Output<Tensor>("Softmax");
Tensor* loss = context.Output<Tensor>("Loss");
const int rank = logits->dims().size();
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
PADDLE_ENFORCE_EQ(axis, rank - 1, platform::errors::InvalidArgument(
"axis should == rank - 1"));
softmax->mutable_data<T>(context.GetPlace());
loss->mutable_data<T>(context.GetPlace());
const int n = SizeToAxis(axis, logits->dims());
const int d = SizeFromAxis(axis, logits->dims());
// softmax
auto& dev_ctx =
context.template device_context<platform::XPUDeviceContext>();
int r = xpu::softmax2d_forward(dev_ctx.x_context(), logits->data<float>(),
softmax->data<float>(), n, d);
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument("XPU kernel error!"));
// cross_entropy
auto ignore_index = context.Attr<int>("ignore_index");
const bool soft_label = context.Attr<bool>("soft_label");
if (soft_label) {
PADDLE_THROW(platform::errors::InvalidArgument(
"XPU only support soft_label == false for now!"));
} else {
auto* p_labels = labels->data<int64_t>();
int64_t* labels_int64_host =
reinterpret_cast<int64_t*>(std::malloc(n * sizeof(int64_t)));
int* labels_int32_host =
reinterpret_cast<int*>(std::malloc(n * sizeof(int)));
int* labels_int32_device = NULL;
PADDLE_ENFORCE_EQ(
xpu_malloc(reinterpret_cast<void**>(&labels_int32_device),
n * sizeof(int)),
XPU_SUCCESS, platform::errors::InvalidArgument("XPU kernel error!"));
dev_ctx.Wait();
memory::Copy(platform::CPUPlace(), labels_int64_host,
BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
p_labels, n * sizeof(int64_t));
for (int i = 0; i < n; ++i) {
labels_int32_host[i] = labels_int64_host[i];
}
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
labels_int32_device, platform::CPUPlace(), labels_int32_host,
n * sizeof(int));
int r = xpu::cross_entropy_forward(
dev_ctx.x_context(), n, d, softmax->data<float>(),
labels_int32_device, loss->data<float>(), nullptr, ignore_index);
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument("XPU kernel error!"));
dev_ctx.Wait();
std::free(labels_int32_host);
std::free(labels_int64_host);
xpu_free(labels_int32_device);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(softmax_with_cross_entropy,
ops::SoftmaxWithCrossEntropyXPUKernel<float>);
#endif
...@@ -26,6 +26,7 @@ import itertools ...@@ -26,6 +26,7 @@ import itertools
import collections import collections
from collections import defaultdict from collections import defaultdict
import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.backward import append_backward from paddle.fluid.backward import append_backward
...@@ -1133,6 +1134,8 @@ class OpTest(unittest.TestCase): ...@@ -1133,6 +1134,8 @@ class OpTest(unittest.TestCase):
) )
# Check inplace for given op, its grad op, its grad_grad op, etc. # Check inplace for given op, its grad op, its grad_grad op, etc.
# No effect on original OpTest # No effect on original OpTest
# Currently not support ParallelExecutor on XPUPlace.
if not paddle.is_compiled_with_xpu():
self.check_inplace_output_with_place( self.check_inplace_output_with_place(
place, no_check_set=no_check_set, inplace_atol=inplace_atol) place, no_check_set=no_check_set, inplace_atol=inplace_atol)
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
np.random.seed(10)
class TestMeanOp(OpTest):
def setUp(self):
self.op_type = "mean"
self.dtype = np.float64
self.init_dtype_type()
self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
self.outputs = {'Out': np.mean(self.inputs["X"])}
def init_dtype_type(self):
pass
def test_check_output(self):
self.check_output()
def test_checkout_grad(self):
self.check_grad(['X'], 'Out')
class TestMeanOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The input type of mean_op must be Variable.
input1 = 12
self.assertRaises(TypeError, fluid.layers.mean, input1)
# The input dtype of mean_op must be float16, float32, float64.
input2 = fluid.layers.data(
name='input2', shape=[12, 10], dtype="int32")
self.assertRaises(TypeError, fluid.layers.mean, input2)
input3 = fluid.layers.data(
name='input3', shape=[4], dtype="float16")
fluid.layers.softmax(input3)
class TestXPUMeanOp(TestMeanOp):
def init_dtype_type(self):
self.dtype = np.float32
def test_check_output(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def test_checkout_grad(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, ['X'], 'Out')
class TestMeanAPI(unittest.TestCase):
# test paddle.tensor.stat.mean
def setUp(self):
self.x_shape = [2, 3, 4, 5]
self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
self.place = paddle.XPUPlace(0)
def test_api_static(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.data('X', self.x_shape)
out1 = paddle.mean(x)
out2 = paddle.tensor.mean(x)
out3 = paddle.tensor.stat.mean(x)
axis = np.arange(len(self.x_shape)).tolist()
out4 = paddle.mean(x, axis)
out5 = paddle.mean(x, tuple(axis))
exe = paddle.static.Executor(self.place)
res = exe.run(feed={'X': self.x},
fetch_list=[out1, out2, out3, out4, out5])
out_ref = np.mean(self.x)
for out in res:
self.assertEqual(np.allclose(out, out_ref, rtol=1e-04), True)
def test_api_dygraph(self):
paddle.disable_static(self.place)
def test_case(x, axis=None, keepdim=False):
x_tensor = paddle.to_tensor(x)
out = paddle.mean(x_tensor, axis, keepdim)
if isinstance(axis, list):
axis = tuple(axis)
if len(axis) == 0:
axis = None
out_ref = np.mean(x, axis, keepdims=keepdim)
self.assertEqual(
np.allclose(
out.numpy(), out_ref, rtol=1e-04), True)
test_case(self.x)
test_case(self.x, [])
test_case(self.x, -1)
test_case(self.x, keepdim=True)
test_case(self.x, 2, keepdim=True)
test_case(self.x, [0, 2])
test_case(self.x, (0, 2))
test_case(self.x, [0, 1, 2, 3])
paddle.enable_static()
def test_errors(self):
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 12]).astype('float32')
x = paddle.to_tensor(x)
self.assertRaises(Exception, paddle.mean, x, -3)
self.assertRaises(Exception, paddle.mean, x, 2)
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.data('X', [10, 12], 'int32')
self.assertRaises(TypeError, paddle.mean, x)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append("..")
import paddle
import paddle.fluid.core as core
from op_test import OpTest
from test_softmax_op import stable_softmax
def cross_entropy(softmax, label, soft_label, axis, ignore_index=-1):
if soft_label:
return (-label * np.log(softmax)).sum(axis=axis, keepdims=True)
shape = softmax.shape
axis %= len(shape)
n = int(np.prod(shape[:axis]))
axis_dim = shape[axis]
remain = int(np.prod(shape[axis + 1:]))
softmax_reshape = softmax.reshape((n, axis_dim, remain))
label_reshape = label.reshape((n, 1, remain))
result = np.zeros_like(label_reshape, dtype=softmax.dtype)
for i in range(n):
for j in range(remain):
lbl = label_reshape[i, 0, j]
if lbl != ignore_index:
result[i, 0, j] -= np.log(softmax_reshape[i, lbl, j])
return result.reshape(label.shape)
class TestSoftmaxWithCrossEntropyOp(OpTest):
"""
Test softmax with cross entropy operator with discreate one-hot labels.
"""
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = False
self.soft_label = False
self.dtype = np.float64
self.axis = -1
self.ignore_index = -1
self.shape = [41, 37]
def setUp(self):
self.initParams()
logits = getattr(
self, "logits",
np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
softmax = np.apply_along_axis(stable_softmax, self.axis, logits)
if self.soft_label:
labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
labels /= np.sum(labels, axis=self.axis, keepdims=True)
else:
axis_dim = self.shape[self.axis]
self.shape[self.axis] = 1
labels = np.random.randint(0, axis_dim, self.shape, dtype="int64")
loss = cross_entropy(softmax, labels, self.soft_label, self.axis,
self.ignore_index)
self.inputs = {"Logits": logits, "Label": labels}
self.outputs = {
"Softmax": softmax.astype(self.dtype),
"Loss": loss.astype(self.dtype)
}
self.attrs = {
"numeric_stable_mode": self.numeric_stable_mode,
"soft_label": self.soft_label,
}
if self.ignore_index >= 0:
self.attrs['ignore_index'] = self.ignore_index
if self.axis != -1:
self.attrs['axis'] = self.axis
def test_check_output(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_output_with_place(place, atol=1e-2)
def test_check_grad(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_grad_with_place(
place, ["Logits"], "Loss", max_relative_error=0.1)
class TestXPUSoftmaxWithCrossEntropyOp(TestSoftmaxWithCrossEntropyOp):
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.shape = [3, 5, 7, 11]
self.axis = -1
self.ignore_index = -1
self.dtype = np.float32
def test_check_output(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_output_with_place(place, atol=1e-2)
def test_check_grad(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_grad_with_place(
place, ["Logits"], "Loss", max_relative_error=0.1)
class TestXPUSoftmaxWithCrossEntropyOp2(TestXPUSoftmaxWithCrossEntropyOp):
"""
Test softmax with cross entropy operator with soft labels.
"""
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = True
self.dtype = np.float64
self.axis = -1
self.ignore_index = -1
self.shape = [41, 37]
def test_check_output(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_output_with_place(place, atol=1e-2)
def test_check_grad(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_grad_with_place(
place, ["Logits"], "Loss", max_relative_error=0.1)
class TestXPUSoftmaxWithCrossEntropyOp3(TestXPUSoftmaxWithCrossEntropyOp):
"""
Test softmax with cross entropy operator with ignore_index.
"""
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.shape = [41, 37]
self.ignore_index = 5
self.axis = -1
self.dtype = np.float64
class TestXPUSoftmaxWithCrossEntropyOpAxis1(TestXPUSoftmaxWithCrossEntropyOp):
"""
Test softmax with cross entropy operator with discreate one-hot labels.
Given axis != -1
"""
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.dtype = np.float64
self.axis = 0
self.ignore_index = -1
self.shape = [3, 5, 7, 11]
class TestXPUSoftmaxWithCrossEntropyOpAxis2(TestXPUSoftmaxWithCrossEntropyOp):
"""
Test softmax with cross entropy operator with discreate one-hot labels.
Given axis != -1
"""
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.dtype = np.float64
self.axis = 1
self.ignore_index = -1
self.shape = [3, 5, 7, 11]
class TestXPUSoftmaxWithCrossEntropyOpAxis3(TestXPUSoftmaxWithCrossEntropyOp):
"""
Test softmax with cross entropy operator with discreate one-hot labels.
Given axis != -1
"""
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.dtype = np.float64
self.axis = 2
self.ignore_index = -1
self.shape = [3, 5, 7, 11]
class TestXPUSoftmaxWithCrossEntropyOpAxis4(TestXPUSoftmaxWithCrossEntropyOp):
"""
Test softmax with cross entropy operator with discreate one-hot labels.
Given axis != -1
"""
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.dtype = np.float64
self.axis = 3
self.ignore_index = -1
self.shape = [3, 5, 7, 11]
class TestXPUSoftmaxWithCrossEntropyOpAxisDimEqualOne(
TestXPUSoftmaxWithCrossEntropyOp):
"""
Test softmax with cross entropy operator with discreate one-hot labels.
Given axis != -1
"""
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.dtype = np.float64
self.axis = -1
self.ignore_index = -1
self.shape = [3, 5, 7, 1]
class TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis1(
TestXPUSoftmaxWithCrossEntropyOp):
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = True
self.shape = [3, 5, 7, 11]
self.axis = 0
self.ignore_index = -1
self.dtype = np.float64
class TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis2(
TestXPUSoftmaxWithCrossEntropyOp2):
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = True
self.shape = [3, 5, 7, 11]
self.axis = 1
self.ignore_index = -1
self.dtype = np.float64
class TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis3(
TestXPUSoftmaxWithCrossEntropyOp2):
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = True
self.shape = [3, 5, 7, 11]
self.axis = 2
self.ignore_index = -1
self.dtype = np.float64
class TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis4(
TestXPUSoftmaxWithCrossEntropyOp2):
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = True
self.shape = [3, 5, 7, 11]
self.axis = 3
self.ignore_index = -1
self.dtype = np.float64
class TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis1(
TestXPUSoftmaxWithCrossEntropyOp3):
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.shape = [3, 5, 7, 11]
self.ignore_index = 1
self.axis = 0
self.dtype = np.float64
class TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis2(
TestXPUSoftmaxWithCrossEntropyOp3):
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.shape = [3, 5, 7, 11]
self.ignore_index = 0
self.axis = 1
self.dtype = np.float64
class TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis3(
TestXPUSoftmaxWithCrossEntropyOp3):
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.shape = [3, 5, 7, 11]
self.ignore_index = 3
self.axis = 2
self.dtype = np.float64
class TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis4(
TestXPUSoftmaxWithCrossEntropyOp3):
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.shape = [3, 5, 7, 11]
self.ignore_index = 3
self.axis = 3
self.dtype = np.float64
class TestXPUSoftmaxWithCrossEntropyOpBoundary0(
TestXPUSoftmaxWithCrossEntropyOp):
"""
Test stable softmax with cross entropy operator will not product INF
with small logits value.
"""
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.shape = [3, 5, 7, 11]
self.axis = -1
self.ignore_index = -1
self.dtype = np.float64
self.logits = np.full(self.shape, -500.0).astype(self.dtype)
class TestXPUSoftmaxWithCrossEntropyOpBoundary1(
TestXPUSoftmaxWithCrossEntropyOp):
"""
Test stable softmax with cross entropy operator will not product INF
with small logits value.
"""
def initParams(self):
self.op_type = "softmax_with_cross_entropy"
self.numeric_stable_mode = True
self.soft_label = False
self.shape = [3, 5, 7, 11]
self.axis = -1
self.ignore_index = -1
self.dtype = np.float64
self.logits = np.full(self.shape, 1000.0).astype(self.dtype)
self.logits[:, :, 0, :] = -1000.0
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册