未验证 提交 1607e87c 编写于 作者: C Chengmo 提交者: GitHub

add xpu sgd & momentum (#27728)

* add xpu sgd & momentum
上级 80283211
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <string>
#include "paddle/fluid/operators/optimizers/sgd_op.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class MomentumOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
T mu = static_cast<T>(ctx.Attr<float>("mu"));
bool use_nesterov = ctx.Attr<bool>("use_nesterov");
auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");
auto param = ctx.Input<framework::Tensor>("Param");
auto param_out = ctx.Output<framework::Tensor>("ParamOut");
auto* velocity = ctx.Input<framework::Tensor>("Velocity");
auto velocity_out = ctx.Output<framework::Tensor>("VelocityOut");
param_out->mutable_data<T>(ctx.GetPlace());
velocity_out->mutable_data<T>(ctx.GetPlace());
auto* lr = learning_rate->data<T>();
auto* grad_var = ctx.InputVar("Grad");
PADDLE_ENFORCE_EQ(grad_var->IsType<framework::LoDTensor>(), true,
platform::errors::PermissionDenied(
"Unsupported Variable Type of Param & Grad in "
"MomentumOp-XPU. Excepted "
"LodTensor, But received [%s] and [%s]",
paddle::framework::ToTypeName(grad_var->Type())));
auto grad = ctx.Input<framework::Tensor>("Grad");
auto& dev_ctx = ctx.template device_context<DeviceContext>();
int r = xpu::momentum(
dev_ctx.x_context(), param->data<float>(), velocity->data<float>(),
grad->data<float>(), lr, use_nesterov, mu, param_out->numel(),
param_out->data<float>(), velocity_out->data<float>());
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::PermissionDenied("XPU kernel error!"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
momentum,
ops::MomentumOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/optimizers/sgd_op.h"
#include <string>
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class SGDOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
const auto *param_var = ctx.InputVar("Param");
const auto *grad_var = ctx.InputVar("Grad");
if (param_var->IsType<framework::LoDTensor>() &&
grad_var->IsType<framework::LoDTensor>()) {
const auto *param = ctx.Input<framework::Tensor>("Param");
auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
// Actually, all tensors are LoDTensor except SelectedRows.
const auto *grad = ctx.Input<framework::Tensor>("Grad");
auto sz = param_out->numel();
PADDLE_ENFORCE_EQ(param->numel(), sz,
platform::errors::InvalidArgument(
"The input tensor Param's numel of SgdOp "
"should be equal with ParamOut's numel. "
"But received Param's "
"numel = [%s], ParamOut's numel = [%s]",
param->numel(), sz));
PADDLE_ENFORCE_EQ(grad->numel(), sz,
platform::errors::InvalidArgument(
"The input tensor Grad's numel of SgdOp "
"should be equal with ParamOut's numel. "
"But received Grad's "
"numel = [%s], ParamOut's numel = [%s]",
grad->numel(), sz));
const T *lr = learning_rate->data<T>();
const T *param_data = param->data<T>();
const T *grad_data = grad->data<T>();
T *out_data = param_out->mutable_data<T>(ctx.GetPlace());
auto &dev_ctx = ctx.template device_context<DeviceContext>();
int r = xpu::sgd(dev_ctx.x_context(), sz, grad_data, param_data, lr,
out_data);
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::PermissionDenied("XPU kernel error!"));
} else {
PADDLE_ENFORCE_EQ(false, true,
platform::errors::PermissionDenied(
"Unsupported Variable Type of Param & Grad in "
"SgdOp-XPU. Excepted "
"LodTensor, But received [%s] and [%s]",
paddle::framework::ToTypeName(param_var->Type())));
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
sgd, ops::SGDOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
import os
sys.path.append("..")
from op_test import OpTest
import paddle
from paddle.fluid import core
from paddle.fluid.op import Operator
class TestMomentumOp1(OpTest):
def setUp(self):
self.op_type = "momentum"
self.dtype = np.float32
self.init_dtype()
param = np.random.random((123, 321)).astype(self.dtype)
grad = np.random.random((123, 321)).astype(self.dtype)
velocity = np.zeros((123, 321)).astype(self.dtype)
learning_rate = np.array([0.001]).astype(self.dtype)
mu = 0.0001
use_nesterov = False
self.inputs = {
'Param': param,
'Grad': grad,
'Velocity': velocity,
'LearningRate': learning_rate
}
self.attrs = {'mu': mu}
velocity_out = mu * velocity + grad
if use_nesterov:
param_out = param - grad * learning_rate - \
velocity_out * mu * learning_rate
else:
param_out = param - learning_rate * velocity_out
self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}
def init_dtype(self):
pass
def test_check_output_with_place(self):
self.check_output_with_place(paddle.XPUPlace(0))
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
import os
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.op import Operator
class TestSGDOp(OpTest):
def setUp(self):
self.op_type = "sgd"
self.conf()
w = np.random.random((self.h, self.w)).astype("float32")
g = np.random.random((self.h, self.w)).astype("float32")
lr = np.array([0.1]).astype("float32")
self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
self.outputs = {'ParamOut': w - lr * g}
def conf(self):
self.h = 102
self.w = 105
def test_check_output_with_place(self):
self.check_output_with_place(paddle.XPUPlace(0))
class TestSGDOpCase8X(TestSGDOp):
def conf(self):
self.h = 10
self.w = 64
class TestSGDOpWithLargeInput(unittest.TestCase):
def runTest(self):
data = fluid.layers.fill_constant(shape=[1], value=128, dtype='int64')
label = fluid.layers.fill_constant(
shape=[1, 150], value=0.5, dtype='float32')
emb = fluid.embedding(input=data, size=(10000, 150), dtype='float32')
out = fluid.layers.l2_normalize(x=emb, axis=-1)
cost = fluid.layers.square_error_cost(input=out, label=label)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
place = paddle.XPUPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
result = exe.run(fluid.default_main_program(), fetch_list=[avg_cost])
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册