Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
70b9f2ac
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
70b9f2ac
编写于
2月 18, 2022
作者:
T
taixiurong
提交者:
GitHub
2月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
dropout support Seed, fix elementwise_add_grad bug, test=kunlun (#39656)
上级
8363406a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
27 addition
and
81 deletion
+27
-81
paddle/fluid/operators/dropout_op_xpu.cc
paddle/fluid/operators/dropout_op_xpu.cc
+17
-19
paddle/fluid/operators/elementwise/elementwise_add_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_add_op_xpu.cc
+10
-62
未找到文件。
paddle/fluid/operators/dropout_op_xpu.cc
浏览文件 @
70b9f2ac
...
@@ -32,20 +32,18 @@ class DropoutXPUKernel : public framework::OpKernel<T> {
...
@@ -32,20 +32,18 @@ class DropoutXPUKernel : public framework::OpKernel<T> {
context
.
Attr
<
std
::
string
>
(
"dropout_implementation"
);
context
.
Attr
<
std
::
string
>
(
"dropout_implementation"
);
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
PADDLE_ENFORCE_EQ
(
!
context
.
HasInput
(
"Seed"
),
true
,
auto
*
seed
=
platform
::
errors
::
InvalidArgument
(
context
.
HasInput
(
"Seed"
)
?
context
.
Input
<
Tensor
>
(
"Seed"
)
:
nullptr
;
(
"Input(Seed) not supported on XPU"
)));
int
is_upscale
=
(
dropout_implementation
==
"upscale_in_train"
);
int
is_upscale
=
(
dropout_implementation
==
"upscale_in_train"
);
if
(
!
context
.
Attr
<
bool
>
(
"is_test"
))
{
if
(
!
context
.
Attr
<
bool
>
(
"is_test"
))
{
std
::
random_device
rnd
;
int
seed_data
=
0
;
// int seed = (context.Attr<bool>("fix_seed")) ?
if
(
seed
)
{
// int(context.Attr<int>("seed")) : (rnd());
seed_data
=
*
(
seed
->
data
<
int
>
());
int
seed
=
0
;
if
(
context
.
Attr
<
bool
>
(
"fix_seed"
)
==
true
)
{
seed
=
static_cast
<
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
}
else
{
}
else
{
seed
=
rnd
();
seed_data
=
context
.
Attr
<
bool
>
(
"fix_seed"
)
?
context
.
Attr
<
int
>
(
"seed"
)
:
0
;
}
}
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
...
@@ -55,26 +53,26 @@ class DropoutXPUKernel : public framework::OpKernel<T> {
...
@@ -55,26 +53,26 @@ class DropoutXPUKernel : public framework::OpKernel<T> {
int
r
=
xpu
::
constant
(
dev_ctx
.
x_context
(),
int
r
=
xpu
::
constant
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
XPUTyp
*>
(
y_data
),
y
->
numel
(),
reinterpret_cast
<
XPUTyp
*>
(
y_data
),
y
->
numel
(),
XPUTyp
(
0
));
XPUTyp
(
0
));
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"constant
"
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"constant"
);
r
=
xpu
::
constant
(
dev_ctx
.
x_context
(),
r
=
xpu
::
constant
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
XPUTyp
*>
(
mask_data
),
mask
->
numel
(),
reinterpret_cast
<
XPUTyp
*>
(
mask_data
),
mask
->
numel
(),
XPUTyp
(
0
));
XPUTyp
(
0
));
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"constant
"
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"constant"
);
return
;
return
;
}
}
int
r
=
xpu
::
dropout
(
dev_ctx
.
x_context
(),
int
r
=
xpu
::
dropout
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
x
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUTyp
*>
(
x
->
data
<
T
>
()),
reinterpret_cast
<
XPUTyp
*>
(
y
->
data
<
T
>
()),
reinterpret_cast
<
XPUTyp
*>
(
y
->
data
<
T
>
()),
reinterpret_cast
<
XPUTyp
*>
(
mask_data
),
seed
,
reinterpret_cast
<
XPUTyp
*>
(
mask_data
),
seed
_data
,
mask
->
numel
(),
is_upscale
,
dropout_prob
);
mask
->
numel
(),
is_upscale
,
dropout_prob
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"dropout
"
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"dropout"
);
}
else
{
}
else
{
float
scale
=
float
scale
=
(
is_upscale
)
?
(
1.0
)
:
(
static_cast
<
float
>
(
1.0
f
-
dropout_prob
));
(
is_upscale
)
?
(
1.0
)
:
(
static_cast
<
float
>
(
1.0
f
-
dropout_prob
));
int
r
=
xpu
::
scale
(
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
x_data
),
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
x_data
),
reinterpret_cast
<
XPUTyp
*>
(
y_data
),
x
->
numel
(),
false
,
scale
,
0.0
f
);
reinterpret_cast
<
XPUTyp
*>
(
y_data
),
x
->
numel
(),
false
,
scale
,
0.0
f
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"scale
"
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"scale"
);
}
}
}
}
};
};
...
@@ -103,7 +101,7 @@ class DropoutGradXPUKernel : public framework::OpKernel<T> {
...
@@ -103,7 +101,7 @@ class DropoutGradXPUKernel : public framework::OpKernel<T> {
reinterpret_cast
<
const
XPUType
*>
(
mask_data
),
reinterpret_cast
<
const
XPUType
*>
(
mask_data
),
reinterpret_cast
<
XPUType
*>
(
grad_x
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
grad_x
->
data
<
T
>
()),
grad_y
->
numel
());
grad_y
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"mul
"
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"mul"
);
return
;
return
;
}
}
...
@@ -117,13 +115,13 @@ class DropoutGradXPUKernel : public framework::OpKernel<T> {
...
@@ -117,13 +115,13 @@ class DropoutGradXPUKernel : public framework::OpKernel<T> {
reinterpret_cast
<
const
XPUType
*>
(
mask
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
mask
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
mask_new
),
mask
->
numel
(),
reinterpret_cast
<
XPUType
*>
(
mask_new
),
mask
->
numel
(),
false
,
scale
,
0.0
f
);
false
,
scale
,
0.0
f
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"scale
"
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"scale"
);
r
=
xpu
::
mul
(
dev_ctx
.
x_context
(),
r
=
xpu
::
mul
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
grad_y
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
grad_y
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
mask_new
),
reinterpret_cast
<
const
XPUType
*>
(
mask_new
),
reinterpret_cast
<
XPUType
*>
(
grad_x
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
grad_x
->
data
<
T
>
()),
grad_y
->
numel
());
grad_y
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"mul
"
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"mul"
);
}
else
{
}
else
{
int
r
=
int
r
=
xpu
::
dropout_grad
(
dev_ctx
.
x_context
(),
xpu
::
dropout_grad
(
dev_ctx
.
x_context
(),
...
@@ -131,7 +129,7 @@ class DropoutGradXPUKernel : public framework::OpKernel<T> {
...
@@ -131,7 +129,7 @@ class DropoutGradXPUKernel : public framework::OpKernel<T> {
reinterpret_cast
<
const
XPUType
*>
(
grad_y
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
grad_y
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
grad_x
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
grad_x
->
data
<
T
>
()),
dropout_prob
,
grad_y
->
numel
());
dropout_prob
,
grad_y
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"dropout_grad
"
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"dropout_grad"
);
}
}
}
}
};
};
...
...
paddle/fluid/operators/elementwise/elementwise_add_op_xpu.cc
浏览文件 @
70b9f2ac
...
@@ -34,17 +34,6 @@ class ElementwiseAddXPUKernel : public framework::OpKernel<T> {
...
@@ -34,17 +34,6 @@ class ElementwiseAddXPUKernel : public framework::OpKernel<T> {
}
}
};
};
static
std
::
vector
<
int
>
get_rdims
(
const
std
::
vector
<
int
>&
xdims
,
const
std
::
vector
<
int
>&
ydims
)
{
std
::
vector
<
int
>
rdims
;
for
(
size_t
i
=
0
;
i
<
xdims
.
size
();
i
++
)
{
if
(
xdims
[
i
]
!=
ydims
[
i
])
{
rdims
.
push_back
(
i
);
}
}
return
rdims
;
}
template
<
typename
T
>
template
<
typename
T
>
class
ElementwiseAddGradXPUKernel
:
public
ElemwiseGradKernel
<
T
>
{
class
ElementwiseAddGradXPUKernel
:
public
ElemwiseGradKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
...
@@ -53,64 +42,19 @@ class ElementwiseAddGradXPUKernel : public ElemwiseGradKernel<T> {
...
@@ -53,64 +42,19 @@ class ElementwiseAddGradXPUKernel : public ElemwiseGradKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
dz
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dz
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dy
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
framework
::
DDim
&
x_dims
=
x
->
dims
();
const
framework
::
DDim
&
y_dims
=
y
->
dims
();
const
framework
::
DDim
&
dz_dims
=
dz
->
dims
();
const
framework
::
DDim
&
dz_dims
=
dz
->
dims
();
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
:
axis
);
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
PADDLE_ENFORCE_GE
(
axis
,
0
,
platform
::
errors
::
InvalidArgument
(
"Axis should be great than or equal to 0, but received axis is %d."
,
axis
));
PADDLE_ENFORCE_LT
(
axis
,
max_dim
,
platform
::
errors
::
InvalidArgument
(
"Axis should be less than %d, but received axis is %d."
,
max_dim
,
axis
));
std
::
vector
<
int
>
x_dims_vec
(
max_dim
,
1
);
std
::
vector
<
int
>
y_dims_vec
(
max_dim
,
1
);
std
::
vector
<
int
>
z_dims_vec
(
max_dim
,
1
);
if
(
x_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
x_dims_vec
[
i
]
=
x_dims
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
x_dims_vec
[
i
+
axis
]
=
x_dims
[
i
];
}
}
if
(
y_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
y_dims_vec
[
i
]
=
y_dims
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
i
++
)
{
y_dims_vec
[
i
+
axis
]
=
y_dims
[
i
];
}
}
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
z_dims_vec
[
i
]
=
dz_dims
[
i
];
}
std
::
vector
<
int
>
rdims_for_x
;
std
::
vector
<
int
>
rdims_for_y
;
rdims_for_x
=
get_rdims
(
x_dims_vec
,
z_dims_vec
);
rdims_for_y
=
get_rdims
(
y_dims_vec
,
z_dims_vec
);
const
T
*
dz_data
=
dz
->
data
<
T
>
();
const
T
*
dz_data
=
dz
->
data
<
T
>
();
auto
&
dev_ctx
=
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
if
(
dx
!=
nullptr
)
{
if
(
dx
!=
nullptr
)
{
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
rdims_for_x
.
size
()
==
0
)
{
if
(
dx
->
dims
()
==
dz_dims
)
{
if
(
dx_data
!=
dz_data
)
{
if
(
dx_data
!=
dz_data
)
{
framework
::
TensorCopy
(
framework
::
TensorCopy
(
*
dz
,
ctx
.
GetPlace
(),
*
dz
,
ctx
.
GetPlace
(),
...
@@ -123,27 +67,31 @@ class ElementwiseAddGradXPUKernel : public ElemwiseGradKernel<T> {
...
@@ -123,27 +67,31 @@ class ElementwiseAddGradXPUKernel : public ElemwiseGradKernel<T> {
dx
->
clear
();
dx
->
clear
();
dx
->
mutable_data
<
T
>
(
x
->
dims
(),
ctx
.
GetPlace
());
dx
->
mutable_data
<
T
>
(
x
->
dims
(),
ctx
.
GetPlace
());
}
}
std
::
vector
<
int
>
reduce_dims
=
GetReduceDim
(
dx
->
dims
(),
dz_dims
,
axis
);
std
::
vector
<
int
>
dz_vector
=
framework
::
vectorize
<
int
>
(
dz_dims
);
int
ret
=
xpu
::
reduce_sum
<
XPUType
>
(
int
ret
=
xpu
::
reduce_sum
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
dz_data
),
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
dz_data
),
reinterpret_cast
<
XPUType
*>
(
dx_data
),
z_dims_vec
,
rdims_for_x
);
reinterpret_cast
<
XPUType
*>
(
dx_data
),
dz_vector
,
reduce_dims
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"reduce_sum
"
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"reduce_sum"
);
}
}
}
}
if
(
dy
!=
nullptr
)
{
if
(
dy
!=
nullptr
)
{
T
*
dy_data
=
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
dy_data
=
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
rdims_for_y
.
size
()
==
0
)
{
if
(
dy
->
dims
()
==
dz_dims
)
{
if
(
dy_data
!=
dz_data
)
{
if
(
dy_data
!=
dz_data
)
{
framework
::
TensorCopy
(
framework
::
TensorCopy
(
*
dz
,
ctx
.
GetPlace
(),
*
dz
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
dy
);
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
dy
);
}
}
}
else
{
}
else
{
std
::
vector
<
int
>
reduce_dims
=
GetReduceDim
(
dy
->
dims
(),
dz_dims
,
axis
);
std
::
vector
<
int
>
dz_vector
=
framework
::
vectorize
<
int
>
(
dz_dims
);
int
ret
=
xpu
::
reduce_sum
<
XPUType
>
(
int
ret
=
xpu
::
reduce_sum
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
dz_data
),
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
dz_data
),
reinterpret_cast
<
XPUType
*>
(
dy_data
),
z_dims_vec
,
rdims_for_y
);
reinterpret_cast
<
XPUType
*>
(
dy_data
),
dz_vector
,
reduce_dims
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"reduce_sum
"
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"reduce_sum"
);
}
}
}
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录