未验证 提交 6fcdb240 编写于 作者: W whs 提交者: GitHub

Add mean IOU op. (#10519)

* Add mean_iou op.

* Add unitest for mean iou op.

* Add optional collections of confusion matrix and mean_iou.

* Fix cuda kernel.

* Refine code.
1. Merge computing in GPU to two kernel.
2. Use wrong array and correct array instead of confusion matrix.

* Add python api and fix cuda kernel.

* Fix comments.

* Small fix.

* Small fix.
上级 f790b96d
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/mean_iou_op.h"
namespace paddle {
namespace operators {
class MeanIoUOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Predictions"),
"Input (Predictions) of MeanIoU op should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Labels"),
"Input (labels) of MeanIoU op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("OutMeanIou"),
"Output (OutMeanIou) of MeanIoU op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("OutWrong"),
"Output (OutWrong) of MeanIoU op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("OutCorrect"),
"Output (OutWrong) of MeanIoU op should not be null.");
int64_t num_classes =
static_cast<int64_t>(ctx->Attrs().Get<int>("num_classes"));
ctx->SetOutputDim("OutMeanIou", {1});
ctx->SetOutputDim("OutWrong", {num_classes});
ctx->SetOutputDim("OutCorrect", {num_classes});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Predictions")->type()),
ctx.GetPlace());
}
};
class MeanIoUOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Predictions",
"(Tensor), A Tensor of prediction results for semantic labels"
" with type int32 or int64. The rank should be greater than 1.");
AddInput(
"Labels",
"(Tensor), A Tensor of ground truth labels with type int32 or int64."
"Its shape should be the same as Input(Predictions).");
AddInput("InWrongs",
"(vector<Tensor>), A list of Tensor with shape "
"[num_classes]. They are used to collect wrong number among "
"batches. Empty list is also valid here.")
.AsDuplicable()
.AsDispensable();
AddInput(
"InCorrects",
"(vector<Tensor>), A list of Tensor with shape "
"[num_classes]. They are used to collect correct number among batches. "
"Empty list is also valid here.")
.AsDuplicable()
.AsDispensable();
AddInput("InMeanIou",
"(vector<Tensor>), A list of Tensor that Output(mean_iou) should "
"be added to. Empty list is also valid here.")
.AsDuplicable()
.AsDispensable();
AddOutput("OutMeanIou",
"(vector<Tensor>), A Tensor representing the"
" mean intersection-over-union with shape [1].");
AddOutput("OutWrong", "(Tensor), A Tensor with shape [num_classes]. ");
AddOutput("OutCorrect", "(Tensor), A Tensor with shape [num_classes]. ");
AddAttr<int>("num_classes", "(int), The possible number of labels.");
AddComment(R"DOC(
mean-IOU Operator.
Mean Intersection-Over-Union is a common evaluation metric for
semantic image segmentation, which first computes the IOU for each
semantic class and then computes the average over classes.
IOU is defined as follows:
IOU = true_positive / (true_positive + false_positive + false_negative).
It is based on pixel level area while "IOU Similarity Operator"
is based on area of rectangle.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(mean_iou, ops::MeanIoUOp, ops::MeanIoUOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(mean_iou, ops::MeanIoUKernel<int>,
ops::MeanIoUKernel<int32_t>,
ops::MeanIoUKernel<int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/mean_iou_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
template <typename T>
__global__ void CountCUDAKernel(const int num_classes, const int count,
const T* predictions, const T* labels,
int* wrong, int* correct) {
extern __shared__ int blcok_cache[];
int* wrong_c = blcok_cache;
int* correct_c = blcok_cache + num_classes;
// init cache
for (int i = threadIdx.x; i < num_classes * 2; i += blockDim.x) {
blcok_cache[i] = 0;
}
__syncthreads();
T pred;
T label;
CUDA_1D_KERNEL_LOOP(i, count) {
pred = predictions[i];
label = labels[i];
if (pred == label) {
atomicAdd(correct_c + pred, 1);
} else {
atomicAdd(wrong_c + pred, 1);
atomicAdd(wrong_c + label, 1);
}
}
__syncthreads();
for (int i = threadIdx.x; i < num_classes; i += blockDim.x) {
atomicAdd(wrong + i, wrong_c[i]);
atomicAdd(correct + i, correct_c[i]);
}
}
__global__ void ComputeIoUCUDAKernel(const int num_classes, int* wrong,
int* correct, float* ious, float* iou) {
__shared__ int valid_count_c;
if (threadIdx.x == 0) {
valid_count_c = 0;
}
__syncthreads();
CUDA_1D_KERNEL_LOOP(i, num_classes) {
int wrong_n = wrong[i];
int correct_n = correct[i];
int denominator = wrong_n + correct_n;
if (denominator > 0) {
atomicAdd(&valid_count_c, 1);
ious[i] = static_cast<float>(correct_n) / denominator;
} else {
ious[i] = 0;
}
}
__syncthreads();
if (threadIdx.x == 0) {
float iou_sum = 0;
for (int i = 0; i < num_classes; ++i) {
iou_sum += ious[i];
}
iou[0] += iou_sum / valid_count_c;
}
}
template <typename T>
class MeanIoUCUDAOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& place = *ctx.template device_context<platform::CUDADeviceContext>()
.eigen_device();
// get input and output tensor
auto* predictions = ctx.Input<Tensor>("Predictions");
auto* labels = ctx.Input<Tensor>("Labels");
auto* out_mean_iou = ctx.Output<Tensor>("OutMeanIou");
auto* out_wrong = ctx.Output<Tensor>("OutWrong");
auto* out_correct = ctx.Output<Tensor>("OutCorrect");
int num_classes = static_cast<int>(ctx.Attr<int>("num_classes"));
// Get data ptr
const T* predictions_data = predictions->data<T>();
const T* labels_data = labels->data<T>();
int* out_wrong_data = out_wrong->mutable_data<int>(ctx.GetPlace());
int* out_correct_data = out_correct->mutable_data<int>(ctx.GetPlace());
float* out_mean_iou_data =
out_mean_iou->mutable_data<float>(ctx.GetPlace());
// Get Eigen tensor
auto out_mean_iou_t = EigenTensor<float, 1>::From(*out_mean_iou);
auto out_wrong_t = EigenTensor<int, 1>::From(*out_wrong);
auto out_correct_t = EigenTensor<int, 1>::From(*out_correct);
// Temporary tensor
Tensor ious;
float* ious_data = ious.mutable_data<float>(
{static_cast<int64_t>(num_classes)}, ctx.GetPlace());
auto ious_t = EigenTensor<float, 1>::From(ious);
// Init out_wrong, out_correct and out_mean_iou
out_wrong_t.device(place) = out_wrong_t.constant(0);
out_correct_t.device(place) = out_correct_t.constant(0);
out_mean_iou_t.device(place) = out_mean_iou_t.constant(0.0f);
// collect pre wrong, correct and mean_iou
auto in_mean_ious = ctx.MultiInput<Tensor>("InMeanIou");
for (int i = 0; i < in_mean_ious.size(); ++i) {
out_mean_iou_t.device(place) +=
EigenTensor<float, 1>::From(*in_mean_ious[i]);
}
auto in_wrongs = ctx.MultiInput<Tensor>("InWrongs");
for (int i = 0; i < in_wrongs.size(); ++i) {
out_wrong_t.device(place) += EigenTensor<int, 1>::From(*in_wrongs[i]);
}
auto in_corrects = ctx.MultiInput<Tensor>("InCorrects");
for (int i = 0; i < in_corrects.size(); ++i) {
out_correct_t.device(place) += EigenTensor<int, 1>::From(*in_corrects[i]);
}
// compute
auto stream = ctx.cuda_device_context().stream();
int block = PADDLE_CUDA_NUM_THREADS;
int grid = (predictions->numel() + block - 1) / block;
int cache_size = (num_classes * 2 + 1) * sizeof(int);
CountCUDAKernel<T><<<grid, block, cache_size, stream>>>(
num_classes, predictions->numel(), predictions_data, labels_data,
out_wrong_data, out_correct_data);
ctx.device_context().Wait();
ComputeIoUCUDAKernel<<<1, block, 0, stream>>>(num_classes, out_wrong_data,
out_correct_data, ious_data,
out_mean_iou_data);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(mean_iou, ops::MeanIoUCUDAOpKernel<int>,
ops::MeanIoUCUDAOpKernel<int64_t>,
ops::MeanIoUCUDAOpKernel<int32_t>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T>
class MeanIoUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& place = *ctx.template device_context<platform::CPUDeviceContext>()
.eigen_device();
// get input and output tensor
auto* predictions = ctx.Input<Tensor>("Predictions");
auto* labels = ctx.Input<Tensor>("Labels");
auto* out_mean_iou = ctx.Output<Tensor>("OutMeanIou");
auto* out_wrong = ctx.Output<Tensor>("OutWrong");
auto* out_correct = ctx.Output<Tensor>("OutCorrect");
int num_classes = static_cast<int>(ctx.Attr<int>("num_classes"));
// get data ptr
const T* predictions_data = predictions->data<T>();
const T* labels_data = labels->data<T>();
float* out_mean_iou_data =
out_mean_iou->mutable_data<float>(ctx.GetPlace());
int* out_wrong_data = out_wrong->mutable_data<int>(ctx.GetPlace());
int* out_correct_data = out_correct->mutable_data<int>(ctx.GetPlace());
// get eigen tensor
auto out_mean_iou_t = EigenTensor<float, 1>::From(*out_mean_iou);
auto out_wrong_t = EigenTensor<int, 1>::From(*out_wrong);
auto out_correct_t = EigenTensor<int, 1>::From(*out_correct);
// Tmp tensor
Tensor denominator;
Tensor valid_count;
Tensor iou_sum;
// get data ptr of tmp tensor
int* denominator_data = denominator.mutable_data<int>(
{static_cast<int64_t>(num_classes)}, ctx.GetPlace());
int* valid_count_data = valid_count.mutable_data<int>({1}, ctx.GetPlace());
float* iou_sum_data = iou_sum.mutable_data<float>({1}, ctx.GetPlace());
// get eigen tensor of tmp tensor
auto denominator_t = EigenTensor<int, 1>::From(denominator);
auto valid_count_t = EigenTensor<int, 1>::From(valid_count);
auto iou_sum_t = EigenTensor<float, 1>::From(iou_sum);
// init out_wrong, out_correct and out_mean_iou
out_wrong_t = out_wrong_t.constant(0);
out_correct_t = out_correct_t.constant(0);
out_mean_iou_t = out_mean_iou_t.constant(0);
// collect pre wrong, correct and mean_iou
auto in_mean_ious = ctx.MultiInput<Tensor>("InMeanIou");
for (size_t i = 0; i < in_mean_ious.size(); ++i) {
out_mean_iou_t.device(place) +=
EigenTensor<float, 1>::From(*in_mean_ious[i]);
}
auto in_wrongs = ctx.MultiInput<Tensor>("InWrongs");
for (size_t i = 0; i < in_wrongs.size(); ++i) {
out_wrong_t.device(place) += EigenTensor<int, 1>::From(*in_wrongs[i]);
}
auto in_corrects = ctx.MultiInput<Tensor>("InCorrects");
for (size_t i = 0; i < in_corrects.size(); ++i) {
out_correct_t.device(place) += EigenTensor<int, 1>::From(*in_corrects[i]);
}
// compute
for (int64_t i = 0; i < predictions->numel(); ++i) {
if (predictions_data[i] == labels_data[i]) {
out_correct_data[predictions_data[i]] += 1;
} else {
out_wrong_data[labels_data[i]] += 1;
out_wrong_data[predictions_data[i]] += 1;
}
}
denominator_t = out_wrong_t + out_correct_t;
valid_count_t =
(denominator_t > denominator_t.constant(0.0f)).cast<int>().sum();
for (int i = 0; i < num_classes; ++i) {
if (denominator_data[i] == 0) {
denominator_data[i] = 1;
}
}
iou_sum_t =
(out_correct_t.cast<float>() / denominator_t.cast<float>()).sum();
out_mean_iou_data[0] += (iou_sum_data[0] / valid_count_data[0]);
}
};
} // namespace operators
} // namespace paddle
...@@ -25,68 +25,20 @@ import utils ...@@ -25,68 +25,20 @@ import utils
import random import random
__all__ = [ __all__ = [
'fc', 'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru',
'embedding', 'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy',
'dynamic_lstm', 'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d',
'dynamic_lstmp', 'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'batch_norm',
'dynamic_gru', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand', 'lstm_unit',
'gru_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod',
'linear_chain_crf', 'sequence_first_step', 'sequence_last_step', 'dropout', 'split',
'crf_decoding', 'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'topk',
'cos_sim', 'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', 'nce',
'cross_entropy', 'beam_search', 'row_conv', 'multiplex', 'layer_norm',
'square_error_cost', 'softmax_with_cross_entropy', 'smooth_l1', 'one_hot',
'chunk_eval', 'autoincreased_step_counter', 'reshape', 'lod_reset', 'lrn', 'pad',
'sequence_conv', 'label_smooth', 'roi_pool', 'dice_loss', 'image_resize',
'conv2d', 'image_resize_short', 'resize_bilinear', 'gather', 'random_crop', 'mean_iou'
'sequence_pool',
'sequence_softmax',
'softmax',
'pool2d',
'batch_norm',
'beam_search_decode',
'conv2d_transpose',
'sequence_expand',
'lstm_unit',
'reduce_sum',
'reduce_mean',
'reduce_max',
'reduce_min',
'reduce_prod',
'sequence_first_step',
'sequence_last_step',
'dropout',
'split',
'ctc_greedy_decoder',
'edit_distance',
'l2_normalize',
'matmul',
'topk',
'warpctc',
'sequence_reshape',
'transpose',
'im2sequence',
'nce',
'beam_search',
'row_conv',
'multiplex',
'layer_norm',
'softmax_with_cross_entropy',
'smooth_l1',
'one_hot',
'autoincreased_step_counter',
'reshape',
'lod_reset',
'lrn',
'pad',
'label_smooth',
'roi_pool',
'dice_loss',
'image_resize',
'image_resize_short',
'resize_bilinear',
'gather',
'random_crop',
] ]
...@@ -4231,6 +4183,7 @@ def gather(input, index): ...@@ -4231,6 +4183,7 @@ def gather(input, index):
output (Variable): The output is a tensor with the same rank as input. output (Variable): The output is a tensor with the same rank as input.
Examples: Examples:
.. code-block:: python .. code-block:: python
output = fluid.layers.gather(x, index) output = fluid.layers.gather(x, index)
...@@ -4295,3 +4248,53 @@ def random_crop(x, shape, seed=None): ...@@ -4295,3 +4248,53 @@ def random_crop(x, shape, seed=None):
"SeedOut": seed_out}, "SeedOut": seed_out},
attrs={"shape": shape}) attrs={"shape": shape})
return out return out
def mean_iou(input, label, num_classes):
"""
Mean Intersection-Over-Union is a common evaluation metric for
semantic image segmentation, which first computes the IOU for each
semantic class and then computes the average over classes.
IOU is defined as follows:
.. math::
IOU = true_positive / (true_positive + false_positive + false_negative).
The predictions are accumulated in a confusion matrix and mean-IOU
is then calculated from it.
Args:
input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
label (Variable): A Tensor of ground truth labels with type int32 or int64.
Its shape should be the same as input.
Returns:
mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
Examples:
.. code-block:: python
iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
"""
helper = LayerHelper('mean_iou', **locals())
dtype = helper.input_dtype()
out_mean_iou = helper.create_tmp_variable(dtype='float32')
out_wrong = helper.create_tmp_variable(dtype='int32')
out_correct = helper.create_tmp_variable(dtype='int32')
helper.append_op(
type="mean_iou",
inputs={"predictions": input,
"labels": label},
outputs={
"out_mean_iou": out_mean_iou,
"out_wrong": out_wrong,
"out_correct": out_correct
},
attrs={"num_classes": num_classes})
return out_mean_iou, out_wrong, out_correct
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import unittest
import numpy as np
from op_test import OpTest
def compute_mean_iou(predictions, labels, num_classes, in_wrongs, in_corrects,
in_mean_ious):
assert predictions.shape == labels.shape
predictions = predictions.flatten()
labels = labels.flatten()
out_wrong = np.zeros([num_classes]).astype("int32")
for _, wrong in in_wrongs:
out_wrong += wrong
out_correct = np.zeros([num_classes]).astype("int32")
for _, correct in in_corrects:
out_correct += correct
for pred, label in zip(predictions, labels):
if pred == label:
out_correct[pred] += 1
else:
out_wrong[pred] += 1
out_wrong[label] += 1
denominator = out_wrong + out_correct
valid_count = (denominator != 0).sum()
denominator = np.where(denominator > 0, denominator,
np.ones(denominator.shape))
mean_iou = (out_correct / denominator).sum() / valid_count
for _, in_mean_iou in in_mean_ious:
mean_iou += in_mean_iou
return mean_iou, out_wrong, out_correct
class TestMeanIOUOp(OpTest):
def setUp(self):
self.config()
self.op_type = "mean_iou"
predictions = np.random.randint(0, self.num_classes,
self.image_size).astype("int32")
labels = np.random.randint(0, self.num_classes,
self.image_size).astype("int32")
in_wrongs = []
for i in range(self.in_wrong_num):
in_wrongs.append(("in_wrong_%d" % i, np.random.randint(
0, 10, [self.num_classes]).astype("int32")))
in_corrects = []
for i in range(self.in_correct_num):
in_corrects.append(("in_correct_%d" % i, np.random.randint(
0, 10, [self.num_classes]).astype("int32")))
in_mean_ious = []
for i in range(self.in_mean_iou_num):
in_mean_ious.append(("in_mean_iou_%d" % i, np.random.uniform(
0, 1, [1]).astype("float32")))
self.inputs = {
'Predictions': predictions,
'Labels': labels,
'InWrongs': in_wrongs,
'InCorrects': in_corrects,
'InMeanIou': in_mean_ious
}
self.attrs = {'num_classes': long(self.num_classes)}
mean_iou, out_wrong, out_correct = compute_mean_iou(
predictions, labels, self.num_classes, in_wrongs, in_corrects,
in_mean_ious)
self.outputs = {
'OutMeanIou': mean_iou,
'OutWrong': out_wrong,
'OutCorrect': out_correct
}
def config(self):
self.num_classes = 10
self.image_size = [128, 128]
self.in_wrong_num = 0
self.in_correct_num = 0
self.in_mean_iou_num = 0
def test_check_output(self):
self.check_output()
class TestCase1(TestMeanIOUOp):
def config(self):
self.num_classes = 5
self.image_size = [100, 128]
self.in_wrong_num = 2
self.in_correct_num = 2
self.in_mean_iou_num = 2
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册