Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6fb34e74
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6fb34e74
编写于
8月 19, 2022
作者:
W
Wang Bojun
提交者:
GitHub
8月 19, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix layernormTrt meanVar alloc bug (#45255)
* fix layernormTrt meanVar alloc bug
上级
1c4134f6
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
135 addition
and
10 deletion
+135
-10
paddle/fluid/inference/tensorrt/convert/layer_norm_op.cc
paddle/fluid/inference/tensorrt/convert/layer_norm_op.cc
+12
-10
paddle/fluid/inference/tensorrt/plugin/layer_norm_op_plugin.cu
...e/fluid/inference/tensorrt/plugin/layer_norm_op_plugin.cu
+5
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_layer_norm.py
...sts/unittests/ir/inference/test_trt_convert_layer_norm.py
+118
-0
未找到文件。
paddle/fluid/inference/tensorrt/convert/layer_norm_op.cc
浏览文件 @
6fb34e74
...
...
@@ -56,12 +56,14 @@ class LayerNormOpConverter : public OpConverter {
nvinfer1
::
ILayer
*
layernorm_layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
int
input_num
=
1
;
for
(
int
i
=
begin_norm_axis
;
i
<
X
->
getDimensions
().
nbDims
;
i
++
)
{
input_num
*=
X
->
getDimensions
().
d
[
i
];
int
statis_num
=
1
;
// For dynamic shape,
// the batch num will be taken into account in plugin runtime.
for
(
int
i
=
1
;
i
<
begin_norm_axis
;
i
++
)
{
statis_num
*=
X
->
getDimensions
().
d
[
i
];
}
std
::
vector
<
int64_t
>
mean_shape
{
input
_num
};
std
::
vector
<
int64_t
>
variance_shape
{
input
_num
};
std
::
vector
<
int64_t
>
mean_shape
{
statis
_num
};
std
::
vector
<
int64_t
>
variance_shape
{
statis
_num
};
plugin
::
LayerNormPluginDynamic
*
plugin
=
new
plugin
::
LayerNormPluginDynamic
(
static_cast
<
const
float
*>
(
bias_weight
.
get
().
values
),
...
...
@@ -74,12 +76,12 @@ class LayerNormOpConverter : public OpConverter {
variance_shape
);
layernorm_layer
=
engine_
->
AddDynamicPlugin
(
&
X
,
1
,
plugin
);
}
else
{
int
input
_num
=
1
;
for
(
int
i
=
begin_norm_axis
-
1
;
i
<
X
->
getDimensions
().
nbDim
s
;
i
++
)
{
input
_num
*=
X
->
getDimensions
().
d
[
i
];
int
statis
_num
=
1
;
for
(
int
i
=
0
;
i
<
begin_norm_axi
s
;
i
++
)
{
statis
_num
*=
X
->
getDimensions
().
d
[
i
];
}
std
::
vector
<
int64_t
>
mean_shape
{
input
_num
};
std
::
vector
<
int64_t
>
variance_shape
{
input
_num
};
std
::
vector
<
int64_t
>
mean_shape
{
statis
_num
};
std
::
vector
<
int64_t
>
variance_shape
{
statis
_num
};
plugin
::
LayerNormPlugin
*
plugin
=
new
plugin
::
LayerNormPlugin
(
static_cast
<
const
float
*>
(
bias_weight
.
get
().
values
),
bias_weight
.
get
().
count
,
...
...
paddle/fluid/inference/tensorrt/plugin/layer_norm_op_plugin.cu
浏览文件 @
6fb34e74
...
...
@@ -175,6 +175,11 @@ int LayerNormPluginDynamic::enqueue(
for
(
int
i
=
0
;
i
<
input_dims
.
nbDims
;
i
++
)
{
input_shape
.
push_back
(
input_dims
.
d
[
i
]);
}
// in dynamic shape
// the batch num should be involved in mean/variance shape
mean_shape_
[
0
]
*=
input_dims
.
d
[
0
];
variance_shape_
[
0
]
*=
input_dims
.
d
[
0
];
const
auto
input_ddim
=
phi
::
make_ddim
(
input_shape
);
auto
matrix_dim
=
phi
::
flatten_to_2d
(
input_ddim
,
begin_norm_axis
);
int
feature_size
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_layer_norm.py
浏览文件 @
6fb34e74
...
...
@@ -140,5 +140,123 @@ class TrtConvertLayerNormTest(TrtLayerAutoScanTest):
self
.
run_test
()
class
TrtConvertLayerNormTest_2
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
weights
=
program_config
.
weights
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
if
attrs
[
0
][
'epsilon'
]
<
0
or
attrs
[
0
][
'epsilon'
]
>
0.001
:
return
False
if
attrs
[
0
][
'begin_norm_axis'
]
<=
0
or
attrs
[
0
][
'begin_norm_axis'
]
>=
(
len
(
inputs
[
'input_data'
].
shape
)
-
1
):
return
False
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]],
shape_input
):
return
np
.
ones
(
shape_input
).
astype
(
np
.
float32
)
def
generate_input2
(
attrs
:
List
[
Dict
[
str
,
Any
]],
shape_input
):
begin
=
attrs
[
0
][
"begin_norm_axis"
]
sum
=
1
for
x
in
range
(
begin
,
len
(
shape_input
)):
sum
*=
shape_input
[
x
]
return
np
.
ones
([
sum
]).
astype
(
np
.
float32
)
for
epsilon
in
[
0.0005
,
-
1
,
1
]:
for
begin_norm_axis
in
[
1
,
0
,
-
1
,
2
,
3
]:
dics
=
[{
"epsilon"
:
epsilon
,
"begin_norm_axis"
:
begin_norm_axis
},
{}]
ops_config
=
[{
"op_type"
:
"layer_norm"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
"Scale"
:
[
"scale_data"
],
"Bias"
:
[
"bias_data"
]
},
"op_outputs"
:
{
"Y"
:
[
"y_data"
],
"Mean"
:
[
"saved_mean_data"
],
"Variance"
:
[
"saved_variance_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
shape_input
=
[
2
,
64
,
3
,
3
]
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"bias_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input2
,
dics
,
shape_input
)),
"scale_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input2
,
dics
,
shape_input
))
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
,
shape_input
))
},
outputs
=
[
"y_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
64
,
3
,
3
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
64
,
3
,
3
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
64
,
3
,
3
]}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
inputs
=
program_config
.
inputs
#if not dynamic_shape:
# if attrs[0]["begin_norm_axis"] >= len(inputs["input_data"].shape) - 1:
# print ("iiiiiii")
# return 0, 3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-2
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-2
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录