Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6f95f589
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6f95f589
编写于
6月 11, 2019
作者:
H
Hong Ming
提交者:
Tensor Tang
6月 11, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enable conv_winograd, fix conv_gemmlike bug, and update the unit tests of conv op
test=develop
上级
e0e47bdf
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
62 addition
and
122 deletion
+62
-122
paddle/fluid/lite/arm/math/CMakeLists.txt
paddle/fluid/lite/arm/math/CMakeLists.txt
+1
-0
paddle/fluid/lite/kernels/arm/conv_compute.cc
paddle/fluid/lite/kernels/arm/conv_compute.cc
+11
-17
paddle/fluid/lite/kernels/arm/conv_compute.h
paddle/fluid/lite/kernels/arm/conv_compute.h
+3
-5
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
+47
-100
未找到文件。
paddle/fluid/lite/arm/math/CMakeLists.txt
浏览文件 @
6f95f589
...
@@ -26,5 +26,6 @@ cc_library(math_arm SRCS
...
@@ -26,5 +26,6 @@ cc_library(math_arm SRCS
conv_depthwise.cc
conv_depthwise.cc
conv_gemmlike.cc
conv_gemmlike.cc
conv_winograd_3x3.cc
conv_winograd_3x3.cc
conv_winograd.cc
DEPS
${
lite_kernel_deps
}
eigen3
)
DEPS
${
lite_kernel_deps
}
eigen3
)
paddle/fluid/lite/kernels/arm/conv_compute.cc
浏览文件 @
6f95f589
...
@@ -13,10 +13,6 @@
...
@@ -13,10 +13,6 @@
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/lite/kernels/arm/conv_compute.h"
#include "paddle/fluid/lite/kernels/arm/conv_compute.h"
#include "paddle/fluid/lite/arm/math/conv_direct.h"
#include "paddle/fluid/lite/arm/math/conv_depthwise.h"
#include "paddle/fluid/lite/arm/math/conv_gemmlike.h"
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"
#include "paddle/fluid/lite/core/type_system.h"
...
@@ -25,7 +21,7 @@ namespace lite {
...
@@ -25,7 +21,7 @@ namespace lite {
namespace
kernels
{
namespace
kernels
{
namespace
arm
{
namespace
arm
{
void
ConvCompute
::
Run
()
{
void
ConvCompute
::
PrepareFor
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
x_dims
=
param
.
x
->
dims
();
auto
x_dims
=
param
.
x
->
dims
();
auto
w_dims
=
param
.
filter
->
dims
();
auto
w_dims
=
param
.
filter
->
dims
();
...
@@ -61,44 +57,42 @@ void ConvCompute::Run() {
...
@@ -61,44 +57,42 @@ void ConvCompute::Run() {
bool
flag_dw
=
flag_dw_3x3
||
flag_dw_5x5
;
bool
flag_dw
=
flag_dw_3x3
||
flag_dw_5x5
;
// select conv impl
// select conv impl
// TODO(xxx): enable more
if
(
param
.
groups
==
ic
&&
ic
==
oc
&&
kps_equal
&&
no_dilation
&&
flag_dw
)
{
if
(
param
.
groups
==
ic
&&
ic
==
oc
&&
kps_equal
&&
no_dilation
&&
flag_dw
)
{
// dw conv impl
// dw conv impl
impl_
=
new
lite
::
arm
::
math
::
DepthwiseConv
<
PRECISION
(
kFloat
)
>
;
impl_
=
new
lite
::
arm
::
math
::
DepthwiseConv
<
PRECISION
(
kFloat
)
>
;
LOG
(
INFO
)
<<
"invoking dw conv"
;
//
LOG(INFO) << "invoking dw conv";
}
else
if
(
param
.
groups
==
1
&&
kw
==
3
&&
stride
==
1
&&
kps_equal
&&
}
else
if
(
param
.
groups
==
1
&&
kw
==
3
&&
stride
==
1
&&
kps_equal
&&
no_dilation
)
{
no_dilation
)
{
if
(
ic
>=
32
&&
oc
>=
32
&&
oh
>
16
&&
ow
>
16
)
{
if
(
ic
>=
32
&&
oc
>=
32
&&
oh
>
16
&&
ow
>
16
)
{
// winograd conv impl
// winograd conv impl
//
impl_ = new lite::arm::math::WinogradConv<PRECISION(kFloat)>;
impl_
=
new
lite
::
arm
::
math
::
WinogradConv
<
PRECISION
(
kFloat
)
>
;
LOG
(
FATAL
)
<<
"TODO!!!
winograd conv"
;
// LOG(INFO) << "invoking
winograd conv";
}
else
{
}
else
{
// direct conv impl
// direct conv impl
impl_
=
new
lite
::
arm
::
math
::
DirectConv
<
PRECISION
(
kFloat
)
>
;
impl_
=
new
lite
::
arm
::
math
::
DirectConv
<
PRECISION
(
kFloat
)
>
;
LOG
(
INFO
)
<<
"invoking direct conv"
;
//
LOG(INFO) << "invoking direct conv";
}
}
}
else
if
(
param
.
groups
==
1
&&
kw
==
3
&&
stride
==
2
&&
kps_equal
&&
}
else
if
(
param
.
groups
==
1
&&
kw
==
3
&&
stride
==
2
&&
kps_equal
&&
no_dilation
)
{
no_dilation
)
{
// direct conv impl
// direct conv impl
impl_
=
new
lite
::
arm
::
math
::
DirectConv
<
PRECISION
(
kFloat
)
>
;
impl_
=
new
lite
::
arm
::
math
::
DirectConv
<
PRECISION
(
kFloat
)
>
;
// LOG(INFO) << "invoking direct conv";
}
else
{
}
else
{
impl_
=
new
lite
::
arm
::
math
::
GemmLikeConv
<
PRECISION
(
kFloat
)
>
;
impl_
=
new
lite
::
arm
::
math
::
GemmLikeConv
<
PRECISION
(
kFloat
)
>
;
LOG
(
INFO
)
<<
"invoking gemm like conv"
;
//
LOG(INFO) << "invoking gemm like conv";
}
}
this
->
impl_
->
create
(
param
,
&
ctx
);
CHECK
(
this
->
impl_
->
create
(
param
,
&
ctx
));
}
void
ConvCompute
::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
CHECK
(
impl_
);
CHECK
(
impl_
);
impl_
->
run
(
param
);
impl_
->
run
(
param
);
// if (this->act_ != nullptr) {
// if (this->act_ != nullptr) {
// this->act_->run(outputs, outputs, param.activation_param);
// this->act_->run(outputs, outputs, param.activation_param);
// }
// }
}
}
TargetType
ConvCompute
::
target
()
const
{
return
TARGET
(
kARM
);
}
PrecisionType
ConvCompute
::
precision
()
const
{
return
PRECISION
(
kFloat
);
}
}
// namespace arm
}
// namespace arm
}
// namespace kernels
}
// namespace kernels
}
// namespace lite
}
// namespace lite
...
...
paddle/fluid/lite/kernels/arm/conv_compute.h
浏览文件 @
6f95f589
...
@@ -13,8 +13,7 @@
...
@@ -13,8 +13,7 @@
// limitations under the License.
// limitations under the License.
#pragma once
#pragma once
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/arm/math/conv_impl.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/operators/conv_op.h"
#include "paddle/fluid/lite/operators/conv_op.h"
...
@@ -27,10 +26,9 @@ class ConvCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
...
@@ -27,10 +26,9 @@ class ConvCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
public:
public:
using
param_t
=
operators
::
ConvParam
;
using
param_t
=
operators
::
ConvParam
;
void
Run
()
override
;
void
PrepareFor
Run
()
override
;
TargetType
target
()
const
override
;
void
Run
()
override
;
PrecisionType
precision
()
const
override
;
virtual
~
ConvCompute
()
=
default
;
virtual
~
ConvCompute
()
=
default
;
...
...
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
浏览文件 @
6f95f589
...
@@ -17,7 +17,6 @@
...
@@ -17,7 +17,6 @@
#include <memory>
#include <memory>
#include <utility>
#include <utility>
#include <vector>
#include <vector>
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -76,7 +75,9 @@ void conv_compute_ref(const operators::ConvParam& param) {
...
@@ -76,7 +75,9 @@ void conv_compute_ref(const operators::ConvParam& param) {
int
out_idx
=
n
*
groups
*
out_c_group
*
hout
*
wout
+
int
out_idx
=
n
*
groups
*
out_c_group
*
hout
*
wout
+
g
*
out_c_group
*
hout
*
wout
+
oc
*
hout
*
wout
+
g
*
out_c_group
*
hout
*
wout
+
oc
*
hout
*
wout
+
oh
*
wout
+
ow
;
oh
*
wout
+
ow
;
output_data
[
out_idx
]
=
0.0
f
;
output_data
[
out_idx
]
=
flag_bias
?
static_cast
<
float
>
(
bias_data
[
g
*
out_c_group
+
oc
])
:
0.
f
;
for
(
int
ic
=
0
;
ic
<
in_c_group
;
++
ic
)
{
for
(
int
ic
=
0
;
ic
<
in_c_group
;
++
ic
)
{
for
(
int
kh
=
0
;
kh
<
kernel_h
;
++
kh
)
{
for
(
int
kh
=
0
;
kh
<
kernel_h
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
kernel_w
;
++
kw
)
{
for
(
int
kw
=
0
;
kw
<
kernel_w
;
++
kw
)
{
...
@@ -97,9 +98,6 @@ void conv_compute_ref(const operators::ConvParam& param) {
...
@@ -97,9 +98,6 @@ void conv_compute_ref(const operators::ConvParam& param) {
}
}
}
}
}
}
output_data
[
out_idx
]
+=
flag_bias
?
static_cast
<
float
>
(
bias_data
[
g
*
out_c_group
+
oc
])
:
0.
f
;
if
(
flag_relu
)
{
if
(
flag_relu
)
{
output_data
[
out_idx
]
=
output_data
[
out_idx
]
=
output_data
[
out_idx
]
>
0.
f
?
output_data
[
out_idx
]
:
0.
f
;
output_data
[
out_idx
]
>
0.
f
?
output_data
[
out_idx
]
:
0.
f
;
...
@@ -112,8 +110,8 @@ void conv_compute_ref(const operators::ConvParam& param) {
...
@@ -112,8 +110,8 @@ void conv_compute_ref(const operators::ConvParam& param) {
}
}
TEST
(
conv_arm
,
retrive_op
)
{
TEST
(
conv_arm
,
retrive_op
)
{
auto
conv
=
auto
conv
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
(
KernelRegistry
::
Global
().
Create
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
(
"conv2d"
);
"conv2d"
);
ASSERT_FALSE
(
conv
.
empty
());
ASSERT_FALSE
(
conv
.
empty
());
ASSERT_TRUE
(
conv
.
front
());
ASSERT_TRUE
(
conv
.
front
());
}
}
...
@@ -125,73 +123,72 @@ TEST(conv_arm, init) {
...
@@ -125,73 +123,72 @@ TEST(conv_arm, init) {
}
}
TEST
(
conv_arm
,
compute
)
{
TEST
(
conv_arm
,
compute
)
{
ConvCompute
conv
;
operators
::
ConvParam
param
;
lite
::
Tensor
input
;
lite
::
Tensor
input
;
lite
::
Tensor
filter
;
lite
::
Tensor
filter
;
lite
::
Tensor
bias
;
lite
::
Tensor
bias
;
lite
::
Tensor
output
;
lite
::
Tensor
output
;
lite
::
Tensor
output_ref
;
lite
::
Tensor
output_ref
;
DeviceInfo
::
Init
();
DeviceInfo
::
Init
();
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
ARMContext
>
();
conv
.
SetContext
(
std
::
move
(
ctx
));
for
(
auto
n
:
{
1
,
2
})
{
for
(
auto
n
:
{
1
,
2
})
{
for
(
auto
chin
:
{
3
,
8
,
/*32
, 128*/
})
{
for
(
auto
ic
:
{
6
,
32
/*
, 128*/
})
{
for
(
auto
chout
:
{
3
,
8
,
/*32
, 128*/
})
{
for
(
auto
oc
:
{
6
,
32
/*
, 128*/
})
{
for
(
auto
hin
:
{
7
,
14
,
28
,
/*
56 , 112, 224, 512*/
})
{
for
(
auto
ih
:
{
9
,
18
/*,
56 , 112, 224, 512*/
})
{
for
(
auto
win
:
{
7
,
14
,
28
,
/*
56, 112, 224, 512*/
})
{
for
(
auto
iw
:
{
9
,
18
/*,
56, 112, 224, 512*/
})
{
for
(
auto
flag_bias
:
{
false
,
true
})
{
for
(
auto
flag_bias
:
{
false
,
true
})
{
for
(
auto
flag_relu
:
{
false
,
true
})
{
for
(
auto
flag_relu
:
{
false
,
true
})
{
for
(
auto
depthwise
:
{
false
,
true
})
{
for
(
auto
depthwise
:
{
false
,
true
})
{
for
(
auto
dilation
:
{
1
/*, 2*/
})
{
for
(
auto
dilation
:
{
1
,
2
})
{
for
(
auto
stride
:
{
1
,
2
})
{
for
(
auto
stride
:
{
1
,
2
})
{
for
(
auto
padding
:
{
0
,
1
})
{
for
(
auto
padding
:
{
0
,
1
,
2
})
{
for
(
auto
ks
:
{
/*1, */
3
/*, 5*/
})
{
for
(
auto
ks
:
{
1
,
3
,
5
})
{
int
group
=
1
;
int
group
=
1
;
if
(
depthwise
)
{
// depthwise conv ?
if
(
depthwise
)
{
// depthwise convolution ?
group
=
chin
;
group
=
oc
=
ic
;
chout
=
chin
;
// remove the follow code if
// all kernels are implemented.
if
(
ks
==
5
)
{
stride
=
2
;
padding
=
2
;
}
}
}
// get input, filter and output shape
// get input, filter and output shape
std
::
vector
<
int64_t
>
input_shape
=
{
n
,
chin
,
hin
,
std
::
vector
<
int64_t
>
input_shape
=
{
n
,
ic
,
ih
,
iw
};
win
};
std
::
vector
<
int64_t
>
filter_shape
=
{
oc
,
ic
/
group
,
std
::
vector
<
int64_t
>
filter_shape
=
{
ks
,
ks
};
chout
,
chin
/
group
,
ks
,
ks
};
std
::
vector
<
int64_t
>
output_shape
({
n
,
oc
});
std
::
vector
<
int64_t
>
output_shape
({
n
,
chout
});
const
int
dkernel
=
dilation
*
(
ks
-
1
)
+
1
;
const
int
dkernel
=
dilation
*
(
ks
-
1
)
+
1
;
output_shape
.
push_back
(
output_shape
.
push_back
(
(
hin
+
2
*
padding
-
dkernel
)
/
stride
+
1
);
(
ih
+
2
*
padding
-
dkernel
)
/
stride
+
1
);
output_shape
.
push_back
(
output_shape
.
push_back
(
(
win
+
2
*
padding
-
dkernel
)
/
stride
+
1
);
(
iw
+
2
*
padding
-
dkernel
)
/
stride
+
1
);
// resize input, filter and output
// resize input, filter and output
input
.
Resize
(
DDim
(
input_shape
)
);
input
.
Resize
(
input_shape
);
filter
.
Resize
(
DDim
(
filter_shape
)
);
filter
.
Resize
(
filter_shape
);
output
.
Resize
(
DDim
(
output_shape
)
);
output
.
Resize
(
output_shape
);
output_ref
.
Resize
(
DDim
(
output_shape
)
);
output_ref
.
Resize
(
output_shape
);
auto
*
input_data
=
input
.
mutable_data
<
float
>
();
auto
*
input_data
=
input
.
mutable_data
<
float
>
();
auto
*
filter_data
=
filter
.
mutable_data
<
float
>
();
auto
*
filter_data
=
filter
.
mutable_data
<
float
>
();
auto
*
output_data
=
output
.
mutable_data
<
float
>
();
auto
*
output_data
=
output
.
mutable_data
<
float
>
();
auto
*
output_ref_data
=
output_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
input
.
dims
().
production
();
i
++
)
{
for
(
int
i
=
0
;
i
<
input
.
dims
().
production
();
i
++
)
{
input_data
[
i
]
=
static_cast
<
float
>
(
i
%
128
);
input_data
[
i
]
=
static_cast
<
float
>
(
i
%
128
);
}
}
for
(
int
i
=
0
;
i
<
filter
.
dims
().
production
();
i
++
)
{
for
(
int
i
=
0
;
i
<
filter
.
dims
().
production
();
i
++
)
{
filter_data
[
i
]
=
i
/
1000.0
f
;
filter_data
[
i
]
=
i
*
0.001
f
/
static_cast
<
float
>
(
filter
.
dims
().
production
());
}
}
// prepare kernel params and run
ConvCompute
conv
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
ARMContext
>
();
conv
.
SetContext
(
std
::
move
(
ctx
));
operators
::
ConvParam
param
;
param
.
x
=
&
input
;
param
.
x
=
&
input
;
param
.
filter
=
&
filter
;
param
.
filter
=
&
filter
;
param
.
output
=
&
output
;
param
.
output
=
&
output
;
param
.
bias
=
nullptr
;
param
.
bias
=
nullptr
;
if
(
flag_bias
)
{
bias
.
Resize
({
oc
});
auto
*
bias_data
=
bias
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
bias
.
dims
().
production
();
i
++
)
{
bias_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
param
.
bias
=
&
bias
;
}
// TODO(hong19860320) param.relu = flag_relu;
// TODO(hong19860320) param.relu = flag_relu;
param
.
paddings
=
std
::
vector
<
int
>
({
padding
,
padding
});
param
.
paddings
=
std
::
vector
<
int
>
({
padding
,
padding
});
param
.
strides
=
std
::
vector
<
int
>
({
stride
,
stride
});
param
.
strides
=
std
::
vector
<
int
>
({
stride
,
stride
});
...
@@ -199,9 +196,12 @@ TEST(conv_arm, compute) {
...
@@ -199,9 +196,12 @@ TEST(conv_arm, compute) {
std
::
vector
<
int
>
({
dilation
,
dilation
});
std
::
vector
<
int
>
({
dilation
,
dilation
});
param
.
groups
=
group
;
param
.
groups
=
group
;
conv
.
SetParam
(
param
);
conv
.
SetParam
(
param
);
conv
.
Run
();
conv
.
Launch
();
// invoking ref implementation and compare results
param
.
output
=
&
output_ref
;
param
.
output
=
&
output_ref
;
conv_compute_ref
<
float
>
(
param
);
conv_compute_ref
<
float
>
(
param
);
auto
*
output_ref_data
=
output_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
output
.
dims
().
production
();
i
++
)
{
for
(
int
i
=
0
;
i
<
output
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1e-3
);
1e-3
);
...
@@ -218,59 +218,6 @@ TEST(conv_arm, compute) {
...
@@ -218,59 +218,6 @@ TEST(conv_arm, compute) {
}
}
}
}
}
}
#if 0
// for testing gemm like conv
int n = 1;
int chin = 8;
int chout = 8;
int hin = 14;
int win = 14;
int flag_bias = false;
int flag_relu = false;
int dilation = 1;
int stride = 1;
int padding = 1;
int ks = 5;
int group = 1;
// get input, filter and output shape
std::vector<int64_t> input_shape = {n, chin, hin, win};
std::vector<int64_t> filter_shape = {chout, chin / group, ks, ks};
std::vector<int64_t> output_shape({n, chout});
const int dkernel = dilation * (ks - 1) + 1;
output_shape.push_back((hin + 2 * padding - dkernel) / stride + 1);
output_shape.push_back((win + 2 * padding - dkernel) / stride + 1);
// resize input, filter and output
input.Resize(DDim(input_shape));
filter.Resize(DDim(filter_shape));
output.Resize(DDim(output_shape));
output_ref.Resize(DDim(output_shape));
auto* input_data = input.mutable_data<float>();
auto* filter_data = filter.mutable_data<float>();
auto* output_data = output.mutable_data<float>();
auto* output_ref_data = output_ref.mutable_data<float>();
for (int i = 0; i < input.dims().production(); i++) {
input_data[i] = static_cast<float>(i % 128);
}
for (int i = 0; i < filter.dims().production(); i++) {
filter_data[i] = i / 1000.0f;
}
param.x = &input;
param.filter = &filter;
param.output = &output;
param.bias = nullptr;
// TODO(hong19860320) param.relu = flag_relu;
param.paddings = std::vector<int>({padding, padding});
param.strides = std::vector<int>({stride, stride});
param.dilations = std::vector<int>({dilation, dilation});
param.groups = group;
conv.SetParam(param);
conv.Run();
param.output = &output_ref;
conv_compute_ref<float>(param);
for (int i = 0; i < output.dims().production(); i++) {
EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-3);
}
#endif
}
}
}
// namespace arm
}
// namespace arm
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录