Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6f6d5527
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6f6d5527
编写于
7月 30, 2018
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into add_tensorrt_conv2d_converter
上级
990741aa
2409d0f7
变更
97
隐藏空白更改
内联
并排
Showing
97 changed file
with
1707 addition
and
832 deletion
+1707
-832
AUTHORS.md
AUTHORS.md
+1
-0
doc/fluid/design/ir/draft.md
doc/fluid/design/ir/draft.md
+24
-24
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-13
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+6
-1
paddle/fluid/framework/block_desc.h
paddle/fluid/framework/block_desc.h
+2
-3
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+2
-2
paddle/fluid/framework/details/multi_devices_graph_builder.cc
...le/fluid/framework/details/multi_devices_graph_builder.cc
+101
-50
paddle/fluid/framework/details/multi_devices_graph_builder.h
paddle/fluid/framework/details/multi_devices_graph_builder.h
+17
-14
paddle/fluid/framework/details/rpc_op_handle.cc
paddle/fluid/framework/details/rpc_op_handle.cc
+2
-1
paddle/fluid/framework/details/ssa_graph_builder.cc
paddle/fluid/framework/details/ssa_graph_builder.cc
+16
-8
paddle/fluid/framework/details/ssa_graph_builder.h
paddle/fluid/framework/details/ssa_graph_builder.h
+9
-12
paddle/fluid/framework/details/ssa_graph_checker.cc
paddle/fluid/framework/details/ssa_graph_checker.cc
+1
-1
paddle/fluid/framework/details/ssa_graph_checker.h
paddle/fluid/framework/details/ssa_graph_checker.h
+3
-2
paddle/fluid/framework/details/ssa_graph_printer.cc
paddle/fluid/framework/details/ssa_graph_printer.cc
+2
-2
paddle/fluid/framework/details/ssa_graph_printer.h
paddle/fluid/framework/details/ssa_graph_printer.h
+4
-3
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+2
-1
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+2
-2
paddle/fluid/framework/details/var_handle.cc
paddle/fluid/framework/details/var_handle.cc
+1
-1
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+3
-9
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+3
-9
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+3
-2
paddle/fluid/framework/ir/graph.cc
paddle/fluid/framework/ir/graph.cc
+68
-17
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+58
-16
paddle/fluid/framework/ir/graph_helper.cc
paddle/fluid/framework/ir/graph_helper.cc
+118
-0
paddle/fluid/framework/ir/graph_helper.h
paddle/fluid/framework/ir/graph_helper.h
+40
-0
paddle/fluid/framework/ir/graph_helper_test.cc
paddle/fluid/framework/ir/graph_helper_test.cc
+125
-0
paddle/fluid/framework/ir/graph_test.cc
paddle/fluid/framework/ir/graph_test.cc
+17
-15
paddle/fluid/framework/ir/node.cc
paddle/fluid/framework/ir/node.cc
+5
-1
paddle/fluid/framework/ir/node.h
paddle/fluid/framework/ir/node.h
+3
-0
paddle/fluid/framework/mixed_vector.h
paddle/fluid/framework/mixed_vector.h
+6
-6
paddle/fluid/framework/mixed_vector_test.cc
paddle/fluid/framework/mixed_vector_test.cc
+72
-0
paddle/fluid/framework/mixed_vector_test.cu
paddle/fluid/framework/mixed_vector_test.cu
+2
-41
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+1
-1
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+1
-0
paddle/fluid/inference/api/demo_ci/clean.sh
paddle/fluid/inference/api/demo_ci/clean.sh
+4
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+3
-2
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
+1
-1
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
+80
-0
paddle/fluid/inference/tensorrt/convert/test_activation_op.cc
...le/fluid/inference/tensorrt/convert/test_activation_op.cc
+1
-1
paddle/fluid/inference/tensorrt/convert/test_conv2d_op.cc
paddle/fluid/inference/tensorrt/convert/test_conv2d_op.cc
+4
-4
paddle/fluid/inference/tensorrt/convert/test_fc_op.cc
paddle/fluid/inference/tensorrt/convert/test_fc_op.cc
+2
-3
paddle/fluid/inference/tensorrt/convert/test_mul_op.cc
paddle/fluid/inference/tensorrt/convert/test_mul_op.cc
+2
-2
paddle/fluid/inference/tensorrt/convert/test_pool2d_op.cc
paddle/fluid/inference/tensorrt/convert/test_pool2d_op.cc
+60
-0
paddle/fluid/inference/tensorrt/convert/ut_helper.h
paddle/fluid/inference/tensorrt/convert/ut_helper.h
+29
-7
paddle/fluid/inference/tensorrt/test_engine.cc
paddle/fluid/inference/tensorrt/test_engine.cc
+32
-1
paddle/fluid/inference/tests/book/test_inference_nlp.cc
paddle/fluid/inference/tests/book/test_inference_nlp.cc
+2
-9
paddle/fluid/inference/tests/test_helper.h
paddle/fluid/inference/tests/test_helper.h
+6
-4
paddle/fluid/memory/detail/buddy_allocator.cc
paddle/fluid/memory/detail/buddy_allocator.cc
+11
-6
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+3
-2
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+13
-13
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
+9
-9
paddle/fluid/operators/distributed/CMakeLists.txt
paddle/fluid/operators/distributed/CMakeLists.txt
+3
-3
paddle/fluid/operators/distributed/grpc_client.cc
paddle/fluid/operators/distributed/grpc_client.cc
+11
-28
paddle/fluid/operators/distributed/grpc_client.h
paddle/fluid/operators/distributed/grpc_client.h
+8
-9
paddle/fluid/operators/distributed/request_handler.h
paddle/fluid/operators/distributed/request_handler.h
+0
-2
paddle/fluid/operators/distributed/request_handler_impl.cc
paddle/fluid/operators/distributed/request_handler_impl.cc
+4
-7
paddle/fluid/operators/distributed/rpc_client.h
paddle/fluid/operators/distributed/rpc_client.h
+5
-9
paddle/fluid/operators/distributed/rpc_server.cc
paddle/fluid/operators/distributed/rpc_server.cc
+6
-12
paddle/fluid/operators/distributed/rpc_server.h
paddle/fluid/operators/distributed/rpc_server.h
+2
-3
paddle/fluid/operators/distributed/rpc_server_test.cc
paddle/fluid/operators/distributed/rpc_server_test.cc
+37
-17
paddle/fluid/operators/extract_rows_op.cc
paddle/fluid/operators/extract_rows_op.cc
+103
-0
paddle/fluid/operators/lookup_table_op.cc
paddle/fluid/operators/lookup_table_op.cc
+16
-30
paddle/fluid/operators/lookup_table_op.cu
paddle/fluid/operators/lookup_table_op.cu
+28
-45
paddle/fluid/operators/lookup_table_op.h
paddle/fluid/operators/lookup_table_op.h
+5
-35
paddle/fluid/operators/math/im2col.cc
paddle/fluid/operators/math/im2col.cc
+30
-5
paddle/fluid/operators/math/im2col_test.cc
paddle/fluid/operators/math/im2col_test.cc
+72
-0
paddle/fluid/operators/math/softmax.cu
paddle/fluid/operators/math/softmax.cu
+2
-2
paddle/fluid/operators/pool_cudnn_op.cu.cc
paddle/fluid/operators/pool_cudnn_op.cu.cc
+2
-2
paddle/fluid/operators/send_recv_util.h
paddle/fluid/operators/send_recv_util.h
+5
-1
paddle/fluid/platform/cpu_helper.cc
paddle/fluid/platform/cpu_helper.cc
+2
-0
paddle/fluid/platform/cudnn_helper.h
paddle/fluid/platform/cudnn_helper.h
+6
-7
paddle/fluid/platform/init.cc
paddle/fluid/platform/init.cc
+4
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+1
-4
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+1
-0
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+28
-28
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+21
-4
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+22
-1
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+0
-98
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+3
-11
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+0
-3
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+14
-2
python/paddle/fluid/tests/demo/file_reader/.gitignore
python/paddle/fluid/tests/demo/file_reader/.gitignore
+0
-0
python/paddle/fluid/tests/demo/file_reader/convert_data_to_recordio.py
.../fluid/tests/demo/file_reader/convert_data_to_recordio.py
+2
-2
python/paddle/fluid/tests/demo/file_reader/train.py
python/paddle/fluid/tests/demo/file_reader/train.py
+138
-0
python/paddle/fluid/tests/test_if_else_op.py
python/paddle/fluid/tests/test_if_else_op.py
+8
-5
python/paddle/fluid/tests/unittests/test_conditional_block.py
...on/paddle/fluid/tests/unittests/test_conditional_block.py
+3
-2
python/paddle/fluid/tests/unittests/test_const_value.py
python/paddle/fluid/tests/unittests/test_const_value.py
+1
-1
python/paddle/fluid/tests/unittests/test_dyn_rnn.py
python/paddle/fluid/tests/unittests/test_dyn_rnn.py
+11
-7
python/paddle/fluid/tests/unittests/test_extract_rows_op.py
python/paddle/fluid/tests/unittests/test_extract_rows_op.py
+58
-0
python/paddle/fluid/tests/unittests/test_lod_rank_table.py
python/paddle/fluid/tests/unittests/test_lod_rank_table.py
+2
-1
python/paddle/fluid/tests/unittests/test_lod_tensor_array_ops.py
...paddle/fluid/tests/unittests/test_lod_tensor_array_ops.py
+12
-7
python/paddle/fluid/tests/unittests/test_lookup_table_op.py
python/paddle/fluid/tests/unittests/test_lookup_table_op.py
+0
-47
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
...dle/fluid/tests/unittests/test_parallel_executor_mnist.py
+28
-57
python/paddle/fluid/tests/unittests/test_reorder_lod_tensor.py
...n/paddle/fluid/tests/unittests/test_reorder_lod_tensor.py
+2
-1
python/paddle/fluid/tests/unittests/test_shrink_rnn_memory.py
...on/paddle/fluid/tests/unittests/test_shrink_rnn_memory.py
+7
-4
python/paddle/fluid/tests/unittests/test_split_and_merge_lod_tensor_op.py
...uid/tests/unittests/test_split_and_merge_lod_tensor_op.py
+6
-6
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+5
-2
未找到文件。
AUTHORS.md
浏览文件 @
6f6d5527
...
...
@@ -46,6 +46,7 @@
| tianbingsz | Tian-Bing Xu |
| tpatejko | Tomasz Patejko |
| typhoonzero | Yi Wu |
| velconia | Qi-Yang Min |
| wanghaoshuang | Hao-Shuang Wang |
| wangyang59 | Yang Wang |
| wangzhen-nlp | Zhen Wang |
...
...
doc/fluid/design/ir/draft.md
浏览文件 @
6f6d5527
## Motivation
There is a
`
``gap```
between the
```Program``
`
defined by
user and the
`
``Executable``
`
that can be scheduled
There is a
`
gap`
between the
`Program
`
defined by
user and the
`
Executable
`
that can be scheduled
efficiently on heterogeneous hardware, either locally
or distributedly.
Usually, the
`
``gap``
`
is bridged by
Usually, the
`
gap
`
is bridged by
*
A serious transformations with defined order.
*
These transformations usually involve
`
``
insert, delete, clustering, split, dependency analysis``
`.
`
insert, delete, clustering, split, dependency analysis
`
.
*
Has a simple way to verify and debug each transformation.
...
...
@@ -38,44 +38,44 @@ design below.
#### Node
`
``
Node
``
` represents an operation that performs some computation or
`
Node
`
represents an operation that performs some computation or
a variable that is input or output of operation.
`
``
Node
```s are connected to other ```
Node
``
`s via inputs and outputs.
`
Node`
s are connected to other
`Node
`
s via inputs and outputs.
Other properties (maybe device placement information) can be added
to `
``
Node
``
` in the future if it's a
common requirement of many other `
``
Pass
``
`es. Otherwise, it should live
in a `
``
Node
``` wrapper class that is private to some ```
Pass
``
` or be
a local member of a `
``
Pass
``
`.
to
`
Node
`
in the future if it's a
common requirement of many other
`
Pass
`
es. Otherwise, it should live
in a
`
Node`
wrapper class that is private to some
`Pass
`
or be
a local member of a
`
Pass
`
.
#### Graph
`
``
Graph
``` contains a list of ```
Node
``
`s, which are connected to
`
Graph`
contains a list of
`Node
`
s, which are connected to
each other via inputs and outputs.
TODO: Better definitions for the graph.
`
``
Graph
``` can also contain ```
Attribute
```s. ```
Attribute
``
`s
can be `
`any`
` thing. For example, it can be a list of "wraper"
nodes. The `
``
wrapper
``` nodes compose ```
Node
``
`s and provide
helper method for execution or transformation. `
``
Attribute
``
`
`
Graph`
can also contain
`Attribute`
s.
`Attribute
`
s
can be
`
any
`
thing. For example, it can be a list of "wraper"
nodes. The
`
wrapper`
nodes compose
`Node
`
s and provide
helper method for execution or transformation.
`
Attribute
`
can also contain other things that describe some properties of
the `
``
Graph
``` or ```
Graph
``` nodes. ```
Attribute
``
` can be passed
across `
``
Pass
``
`. However, it should be used with care.
the
`
Graph`
or
`Graph`
nodes.
`Attribute
`
can be passed
across
`
Pass
`
. However, it should be used with care.
#### Pass
`
``
Pass
``` represents a transformation of ```
Graph
``
`. Its input
is a `
``
Graph
``` and its output is also a ```
Graph
``
`. For example,
a `
``
Pass
``` can simply print out the ```
Graph
```. A ```
Pass
``
`
can also fuse some `
``
Graph
```'s ```
Node
``
`s.
`
Pass`
represents a transformation of
`Graph
`
. Its input
is a
`
Graph`
and its output is also a
`Graph
`
. For example,
a
`
Pass`
can simply print out the
`Graph`
. A
`Pass
`
can also fuse some
`
Graph`
's
`Node
`
s.
#### Optimize
`
``
Optimize
``` contains a series of ```
Pass
``
` with defined order.
`
``
Optimize
``` transforms a ```
Graph
``
` that only contains raw
modeling logic to a `
``
Graph
``
`
that can be run efficiently while
`
Optimize`
contains a series of
`Pass
`
with defined order.
`
Optimize`
transforms a
`Graph
`
that only contains raw
modeling logic to a
`
Graph
`
that can be run efficiently while
maintaining the original modeling logic.
...
...
paddle/fluid/API.spec
浏览文件 @
6f6d5527
...
...
@@ -35,8 +35,7 @@ paddle.fluid.program_guard ArgSpec(args=[], varargs='args', keywords='kwds', def
paddle.fluid.get_var ArgSpec(args=['name', 'program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.Executor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.as_lodtensor ArgSpec(args=['self', 'data'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.begin_pass ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.end_pass ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.close ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.run ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False))
paddle.fluid.global_scope ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.scope_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
...
...
@@ -200,31 +199,23 @@ paddle.fluid.layers.argsort ArgSpec(args=['input', 'axis', 'name'], varargs=None
paddle.fluid.layers.ones ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.zeros ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.reverse ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.split_lod_tensor ArgSpec(args=['input', 'mask', 'level'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.merge_lod_tensor ArgSpec(args=['in_true', 'in_false', 'x', 'mask', 'level'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.While.__init__ ArgSpec(args=['self', 'cond', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.While.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.While.complete ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Switch.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.Switch.case ArgSpec(args=['self', 'condition'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Switch.default ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.lod_rank_table ArgSpec(args=['x', 'level'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.max_sequence_len ArgSpec(args=['rank_table'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.lod_tensor_to_array ArgSpec(args=['x', 'table'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.array_to_lod_tensor ArgSpec(args=['x', 'table'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.increment ArgSpec(args=['x', 'value', 'in_place'], varargs=None, keywords=None, defaults=(1.0, True))
paddle.fluid.layers.array_write ArgSpec(args=['x', 'i', 'array'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.create_array ArgSpec(args=['dtype'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.less_than ArgSpec(args=['x', 'y', 'force_cpu', 'cond'], varargs=None, keywords='ignored', defaults=(None, None))
paddle.fluid.layers.equal ArgSpec(args=['x', 'y', 'cond'], varargs=None, keywords='ignored', defaults=(None,))
paddle.fluid.layers.array_read ArgSpec(args=['array', 'i'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.shrink_memory ArgSpec(args=['x', 'i', 'table'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.array_length ArgSpec(args=['array'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.IfElse.__init__ ArgSpec(args=['self', 'cond', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.IfElse.false_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.IfElse.input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.IfElse.output ArgSpec(args=['self'], varargs='outs', keywords=None, defaults=None)
paddle.fluid.layers.IfElse.parent_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.IfElse.true_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.DynamicRNN.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
...
...
@@ -233,9 +224,6 @@ paddle.fluid.layers.DynamicRNN.output ArgSpec(args=['self'], varargs='outputs',
paddle.fluid.layers.DynamicRNN.static_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.step_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.update_memory ArgSpec(args=['self', 'ex_mem', 'new_mem'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.ConditionalBlock.__init__ ArgSpec(args=['self', 'inputs', 'is_scalar_condition', 'name'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.layers.ConditionalBlock.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.ConditionalBlock.complete ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.StaticRNN.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.StaticRNN.complete_op ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.StaticRNN.memory ArgSpec(args=['self', 'init', 'shape', 'batch_ref', 'init_value', 'init_batch_dim_idx', 'ref_batch_dim_idx'], varargs=None, keywords=None, defaults=(None, None, None, 0.0, 0, 1))
...
...
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
6f6d5527
...
...
@@ -22,7 +22,12 @@ endif()
cc_test
(
eigen_test SRCS eigen_test.cc DEPS tensor
)
nv_test
(
mixed_vector_test SRCS mixed_vector_test.cu DEPS place memory device_context tensor
)
if
(
WITH_GPU
)
nv_test
(
mixed_vector_test SRCS mixed_vector_test.cc mixed_vector_test.cu DEPS place memory device_context tensor
)
else
()
cc_test
(
mixed_vector_test SRCS mixed_vector_test.cc DEPS place memory device_context tensor
)
endif
()
cc_library
(
lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto recordio
)
cc_test
(
lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory
)
nv_test
(
lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor
)
...
...
paddle/fluid/framework/block_desc.h
浏览文件 @
6f6d5527
...
...
@@ -88,9 +88,8 @@ class BlockDesc {
OpDesc
*
InsertOp
(
size_t
index
);
/*
* Remove Op and its input/output variables.
* Note that for either input or output variable, if it is also an input or
* output variable of other ops, we should remain it.
* Only remove op itself,
* do nothing to its input and output variables
*/
void
RemoveOp
(
size_t
s
,
size_t
e
);
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
6f6d5527
cc_library
(
var_handle SRCS var_handle.cc DEPS place framework_proto
)
cc_library
(
var_handle SRCS var_handle.cc DEPS place framework_proto
node
)
cc_library
(
op_handle_base SRCS op_handle_base.cc DEPS var_handle device_context lod_tensor
)
cc_library
(
scale_loss_grad_op_handle SRCS scale_loss_grad_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
)
cc_library
(
fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
)
cc_library
(
computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry
)
cc_library
(
rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place operator op_registry
)
cc_library
(
ssa_graph_builder SRCS ssa_graph_builder.cc DEPS graph
)
cc_library
(
ssa_graph_builder SRCS ssa_graph_builder.cc DEPS graph
graph_helper
)
cc_library
(
ssa_graph_printer SRCS ssa_graph_printer.cc DEPS ssa_graph_builder
)
cc_library
(
ssa_graph_checker SRCS ssa_graph_checker.cc DEPS ssa_graph_builder
)
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.cc
浏览文件 @
6f6d5527
...
...
@@ -25,6 +25,7 @@
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/rpc_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/scope.h"
...
...
@@ -67,7 +68,8 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
}
}
void
MultiDevSSAGraphBuilder
::
CreateOpHandleIOs
(
Graph
*
result
,
ir
::
Node
*
node
,
void
MultiDevSSAGraphBuilder
::
CreateOpHandleIOs
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
size_t
place_id
)
const
{
auto
p
=
places_
[
place_id
];
auto
*
op_handle
=
result
->
Get
<
GraphOps
>
(
"ops"
).
back
().
get
();
...
...
@@ -92,12 +94,11 @@ void MultiDevSSAGraphBuilder::CreateOpHandleIOs(Graph *result, ir::Node *node,
}
std
::
vector
<
std
::
string
>
MultiDevSSAGraphBuilder
::
FindDistTrainSendVars
(
const
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>
>
&
nodes
)
const
{
const
std
::
vector
<
ir
::
Node
*
>
&
nodes
)
const
{
std
::
vector
<
std
::
string
>
send_vars
;
// since parameters are all in block 0,
// it's enough to only scan send ops in block 0
for
(
auto
&
node
:
nodes
)
{
if
(
node
->
NodeType
()
!=
ir
::
Node
::
Type
::
kOperation
)
continue
;
OpDesc
*
op
=
node
->
Op
();
// TODO(Yancey1989): use a graceful method to find send op,
// instead of the the hard code string
...
...
@@ -112,10 +113,9 @@ std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
}
std
::
vector
<
std
::
string
>
MultiDevSSAGraphBuilder
::
FindDistTrainRecvVars
(
const
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>
>
&
nodes
)
const
{
const
std
::
vector
<
ir
::
Node
*
>
&
nodes
)
const
{
std
::
vector
<
std
::
string
>
recv_vars
;
for
(
auto
&
node
:
nodes
)
{
if
(
node
->
NodeType
()
!=
ir
::
Node
::
Type
::
kOperation
)
continue
;
OpDesc
*
op
=
node
->
Op
();
// TODO(Yancey1989): use a graceful method to find recv op,
// instead of the hard code string
...
...
@@ -170,6 +170,7 @@ size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
const
std
::
vector
<
std
::
string
>
&
var_names
)
const
{
int64_t
numel_sum
=
0
;
for
(
auto
var_name
:
var_names
)
{
if
(
all_vars_
.
find
(
var_name
)
==
all_vars_
.
end
())
continue
;
auto
var_desc
=
all_vars_
.
at
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var_desc
);
auto
dim
=
framework
::
make_ddim
(
var_desc
->
GetShape
());
...
...
@@ -186,19 +187,70 @@ size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
return
dev_id
;
}
std
::
unique_ptr
<
Graph
>
MultiDevSSAGraphBuilder
::
Apply
(
std
::
unique_ptr
<
Graph
>
graph
)
const
{
// Rebuild the graph structure.
auto
nodes
=
std
::
move
(
graph
->
nodes
);
graph
->
nodes
.
clear
();
// Topology sort the graph nodes from inputs to outputs.
// Since SSAGraphBuilder depends on forward/backward nodes to assign devices
// to parameter/gradients before optimizer ops, topo sort is insufficient. (
// some optimizer ops might not depend on any nodes), we manually move all
// optimizer nodes after last backward nodes.
// However, the assumption by SSAGraphBuilder should be relaxed in the future.
std
::
vector
<
ir
::
Node
*>
SortOpsAndDelayOptimizeOp
(
const
ir
::
Graph
&
graph
)
{
std
::
vector
<
ir
::
Node
*>
ret
=
ir
::
TopologySortOperations
(
graph
);
size_t
last_backward
=
0
;
for
(
size_t
i
=
0
;
i
<
ret
.
size
();
++
i
)
{
if
(
boost
::
get
<
int
>
(
ret
[
i
]
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
==
static_cast
<
int
>
(
OpRole
::
kBackward
))
{
last_backward
=
i
;
}
}
std
::
vector
<
ir
::
Node
*>
optimize_ops
;
std
::
vector
<
ir
::
Node
*>
sorted_ret
;
for
(
size_t
i
=
0
;
i
<
ret
.
size
();
++
i
)
{
if
(
i
<
last_backward
)
{
if
(
boost
::
get
<
int
>
(
ret
[
i
]
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
optimize_ops
.
push_back
(
ret
[
i
]);
}
else
{
sorted_ret
.
push_back
(
ret
[
i
]);
}
}
else
if
(
i
==
last_backward
)
{
sorted_ret
.
push_back
(
ret
[
i
]);
// Verify that no operations before optimize ops depends on optimize ops.
std
::
unordered_set
<
ir
::
Node
*>
optimize_set
(
optimize_ops
.
begin
(),
optimize_ops
.
end
());
for
(
ir
::
Node
*
n
:
sorted_ret
)
{
for
(
ir
::
Node
*
in
:
n
->
inputs
)
{
for
(
ir
::
Node
*
pre_n
:
in
->
inputs
)
{
PADDLE_ENFORCE
(
optimize_set
.
find
(
pre_n
)
==
optimize_set
.
end
(),
"optimize operations cannot be depended by forward "
"or backward node %s -> %s"
,
pre_n
->
Name
(),
n
->
Name
());
}
}
}
sorted_ret
.
insert
(
sorted_ret
.
end
(),
optimize_ops
.
begin
(),
optimize_ops
.
end
());
}
else
{
sorted_ret
.
push_back
(
ret
[
i
]);
}
}
return
sorted_ret
;
}
std
::
unique_ptr
<
ir
::
Graph
>
MultiDevSSAGraphBuilder
::
Apply
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
// Give the topology sort order and rebuild the graph structure.
std
::
vector
<
ir
::
Node
*>
sorted_ops
=
SortOpsAndDelayOptimizeOp
(
*
graph
);
auto
nodes
=
graph
->
ReleaseNodes
();
ir
::
Graph
&
result
=
*
graph
;
for
(
auto
&
node
:
nodes
)
{
if
(
node
->
NodeType
()
==
ir
::
Node
::
Type
::
kVariable
)
{
if
(
node
->
NodeType
()
==
ir
::
Node
::
Type
::
kVariable
&&
node
->
Var
()
)
{
all_vars_
.
emplace
(
node
->
Name
(),
node
->
Var
());
}
}
Graph
&
result
=
*
graph
;
std
::
unordered_set
<
std
::
string
>
og_has_been_broadcast
;
// We cannot invoke resize. It is a bug of GCC 4.8
...
...
@@ -207,9 +259,9 @@ std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
result
.
Set
(
"ops"
,
new
GraphOps
);
// find send/recv vars so that we can place the distributed training
// re
al
ted op in the place 0
auto
send_vars
=
FindDistTrainSendVars
(
node
s
);
auto
recv_vars
=
FindDistTrainRecvVars
(
node
s
);
// re
la
ted op in the place 0
auto
send_vars
=
FindDistTrainSendVars
(
sorted_op
s
);
auto
recv_vars
=
FindDistTrainRecvVars
(
sorted_op
s
);
std
::
vector
<
std
::
unordered_set
<
std
::
string
>>
bcast_var_name_set
;
bcast_var_name_set
.
resize
(
places_
.
size
());
...
...
@@ -217,22 +269,18 @@ std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
size_t
cur_device_id
=
0
;
bool
is_forwarding
=
true
;
// NOTE: Currently, passes before SSAGraphBuilder cannot reorder
// forward, backward nodes. E.g. you can't append an forward node
// at the end of the node list.
// TODO(panyx0718): FIXME: Needs to sort by forward->backward order.
for
(
auto
&
node
:
nodes
)
{
if
(
node
->
NodeType
()
!=
ir
::
Node
::
Type
::
kOperation
)
continue
;
for
(
ir
::
Node
*
node
:
sorted_ops
)
{
if
(
boost
::
get
<
int
>
(
node
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
==
static_cast
<
int
>
(
OpRole
::
kRPC
))
{
CreateRPCOp
(
&
result
,
node
.
get
()
);
}
else
if
(
IsDistTrainOp
(
node
.
get
()
,
send_vars
,
recv_vars
))
{
CreateDistTrainOp
(
&
result
,
node
.
get
()
);
}
else
if
(
IsScaleLossOp
(
node
.
get
()
))
{
CreateRPCOp
(
&
result
,
node
);
}
else
if
(
IsDistTrainOp
(
node
,
send_vars
,
recv_vars
))
{
CreateDistTrainOp
(
&
result
,
node
);
}
else
if
(
IsScaleLossOp
(
node
))
{
// user can customize loss@grad if not use_default_grad_scale_
if
(
strategy_
.
gradient_scale_
!=
BuildStrategy
::
GradientScaleStrategy
::
kCustomized
)
{
// TODO(paddle-dev): Why is there no input for this op_handle?
CreateScaleLossGradOp
(
&
result
);
}
// This assumes the backward generating code will ensure IsScaleLossOp
...
...
@@ -241,24 +289,23 @@ std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
// the block.
is_forwarding
=
false
;
}
else
{
int
op_dev_id
=
GetOpDeviceID
(
node
.
get
()
);
int
op_dev_id
=
GetOpDeviceID
(
node
);
if
(
op_dev_id
!=
-
1
)
{
// This op only runs on one specific device.
CreateComputationalOp
(
&
result
,
node
.
get
()
,
op_dev_id
);
CreateComputationalOp
(
&
result
,
node
,
op_dev_id
);
for
(
ir
::
Node
*
n
:
node
->
outputs
)
{
var_name_on_devices_
.
emplace
(
n
->
Name
(),
op_dev_id
);
}
}
else
{
// This op runs on all devices, and its output may have parameter's
// gradients.
// TODO(paddle-dev): Why is so special about "read" op?
if
(
node
->
Op
()
->
Type
()
==
"read"
&&
strategy_
.
enable_data_balance_
)
{
node
->
Op
()
->
SetAttr
(
"throw_eof_exp"
,
false
);
CreateComputationalOps
(
&
result
,
node
.
get
(),
places_
.
size
());
// TODO(paddle-dev): builder shouldn't depend on the out logic of
// a specific op.
CreateComputationalOps
(
&
result
,
node
,
places_
.
size
());
const
auto
&
data_var_names
=
node
->
Op
()
->
Output
(
"Out"
);
InsertDataBalanceOp
(
&
result
,
data_var_names
);
}
else
{
CreateComputationalOps
(
&
result
,
node
.
get
()
,
places_
.
size
());
CreateComputationalOps
(
&
result
,
node
,
places_
.
size
());
}
if
(
!
is_forwarding
&&
places_
.
size
()
>
1
)
{
...
...
@@ -322,17 +369,17 @@ std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
}
}
}
/*
Dependency graph has been constructed. However, there are still data
hazards need to be handled.
*/
Dependency graph has been constructed. However, there are still data
hazards need to be handled.
*/
PolishGraphToSupportDataHazards
(
&
result
);
/*
* Only variables should be the leaves of graph.
*/
AddOutputToLeafOps
(
&
result
);
PADDLE_ENFORCE
(
!
ir
::
HasCircle
(
result
));
return
graph
;
}
...
...
@@ -357,7 +404,7 @@ void MultiDevSSAGraphBuilder::SetCommunicationContext(
#endif
}
void
MultiDevSSAGraphBuilder
::
CreateBroadcastOp
(
Graph
*
result
,
void
MultiDevSSAGraphBuilder
::
CreateBroadcastOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
p_name
,
size_t
src_dev_id
)
const
{
#ifdef PADDLE_WITH_CUDA
...
...
@@ -387,7 +434,7 @@ void MultiDevSSAGraphBuilder::CreateBroadcastOp(Graph *result,
}
}
void
MultiDevSSAGraphBuilder
::
CreateComputationalOp
(
Graph
*
result
,
void
MultiDevSSAGraphBuilder
::
CreateComputationalOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
int
dev_id
)
const
{
result
->
Get
<
GraphOps
>
(
"ops"
).
emplace_back
(
...
...
@@ -396,7 +443,7 @@ void MultiDevSSAGraphBuilder::CreateComputationalOp(Graph *result,
CreateOpHandleIOs
(
result
,
node
,
dev_id
);
}
void
MultiDevSSAGraphBuilder
::
InsertAllReduceOp
(
Graph
*
result
,
void
MultiDevSSAGraphBuilder
::
InsertAllReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
)
const
{
#ifdef PADDLE_WITH_CUDA
result
->
Get
<
GraphOps
>
(
"ops"
).
emplace_back
(
new
AllReduceOpHandle
(
...
...
@@ -426,7 +473,7 @@ void MultiDevSSAGraphBuilder::InsertAllReduceOp(Graph *result,
}
void
MultiDevSSAGraphBuilder
::
InsertDataBalanceOp
(
Graph
*
result
,
const
std
::
vector
<
std
::
string
>
&
datas
)
const
{
ir
::
Graph
*
result
,
const
std
::
vector
<
std
::
string
>
&
datas
)
const
{
#ifdef PADDLE_WITH_CUDA
result
->
Get
<
GraphOps
>
(
"ops"
).
emplace_back
(
new
DataBalanceOpHandle
(
result
->
CreateEmptyNode
(
"data_balance"
,
ir
::
Node
::
Type
::
kOperation
),
...
...
@@ -479,8 +526,8 @@ int MultiDevSSAGraphBuilder::GetOpDeviceID(ir::Node *node) const {
PADDLE_ENFORCE_EQ
(
param_grad
.
size
(),
2U
);
int
dev_id
=
GetVarDeviceID
(
param_grad
[
1
]);
PADDLE_ENFORCE_NE
(
dev_id
,
-
1
,
"dev_id should not be -1.[%s, %s]"
,
node
->
Op
()
->
Type
(),
param_grad
[
0
]);
PADDLE_ENFORCE_NE
(
dev_id
,
-
1
,
"dev_id should not be -1.[%s, %s
, %s
]"
,
node
->
Op
()
->
Type
(),
param_grad
[
0
]
,
param_grad
[
1
]
);
return
dev_id
;
}
...
...
@@ -489,7 +536,7 @@ int MultiDevSSAGraphBuilder::GetVarDeviceID(const std::string &varname) const {
return
got
==
var_name_on_devices_
.
end
()
?
-
1
:
got
->
second
;
}
void
MultiDevSSAGraphBuilder
::
CreateScaleLossGradOp
(
Graph
*
result
)
const
{
void
MultiDevSSAGraphBuilder
::
CreateScaleLossGradOp
(
ir
::
Graph
*
result
)
const
{
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
...
...
@@ -519,7 +566,7 @@ void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(Graph *result) const {
}
}
void
MultiDevSSAGraphBuilder
::
CreateComputationalOps
(
Graph
*
result
,
void
MultiDevSSAGraphBuilder
::
CreateComputationalOps
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
size_t
num_places
)
const
{
for
(
size_t
scope_idx
=
0
;
scope_idx
<
num_places
;
++
scope_idx
)
{
...
...
@@ -531,7 +578,7 @@ void MultiDevSSAGraphBuilder::CreateComputationalOps(Graph *result,
}
}
VarHandle
*
MultiDevSSAGraphBuilder
::
CreateReduceOp
(
Graph
*
result
,
VarHandle
*
MultiDevSSAGraphBuilder
::
CreateReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
,
int
dst_dev_id
)
const
{
#ifdef PADDLE_WITH_CUDA
...
...
@@ -564,12 +611,11 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(Graph *result,
// Find the first occurence of `prev_op_name` and make current `op` depend
// on it.
void
MultiDevSSAGraphBuilder
::
ConnectOp
(
Graph
*
result
,
OpHandleBase
*
op
,
void
MultiDevSSAGraphBuilder
::
ConnectOp
(
ir
::
Graph
*
result
,
OpHandleBase
*
op
,
const
std
::
string
&
prev_op_name
)
const
{
for
(
auto
&
prev_op
:
result
->
Get
<
GraphOps
>
(
"ops"
))
{
if
(
prev_op
->
Name
()
==
prev_op_name
)
{
auto
*
dep_var
=
new
DummyVarHandle
(
result
->
CreateEmptyNode
(
"dummy"
,
ir
::
Node
::
Type
::
kVariable
));
auto
*
dep_var
=
new
DummyVarHandle
(
result
->
CreateControlDepVar
());
prev_op
->
AddOutput
(
dep_var
);
result
->
Get
<
GraphDepVars
>
(
"dep_vars"
).
emplace
(
dep_var
);
op
->
AddInput
(
dep_var
);
...
...
@@ -577,7 +623,7 @@ void MultiDevSSAGraphBuilder::ConnectOp(Graph *result, OpHandleBase *op,
}
}
void
MultiDevSSAGraphBuilder
::
CreateDistTrainOp
(
Graph
*
result
,
void
MultiDevSSAGraphBuilder
::
CreateDistTrainOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
{
int
op_dev_id
=
-
1
;
std
::
vector
<
std
::
string
>
input_var_names
;
...
...
@@ -591,6 +637,7 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(Graph *result,
if
(
node
->
Op
()
->
Type
()
==
"split_byref"
||
node
->
Op
()
->
Type
()
==
"split_selected_rows"
)
{
// TODO(paddle-dev): getting the first var is not safe.
op_dev_id
=
GetVarDeviceID
(
input_var_names
[
0
]);
if
(
strategy_
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kAllReduce
)
{
op_dev_id
=
GetAppropriateDeviceID
(
input_var_names
);
...
...
@@ -624,10 +671,14 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(Graph *result,
}
// Create RPC related op handles that connects its in ops and out ops.
void
MultiDevSSAGraphBuilder
::
CreateRPCOp
(
Graph
*
result
,
ir
::
Node
*
node
)
const
{
void
MultiDevSSAGraphBuilder
::
CreateRPCOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
{
int
op_dev_id
=
-
1
;
if
(
node
->
Op
()
->
Type
()
==
"send"
)
{
// TODO(paddle-dev): getting the first var is not safe.
op_dev_id
=
GetVarDeviceID
(
node
->
inputs
[
0
]
->
Name
());
PADDLE_ENFORCE
(
!
ir
::
IsControlDepVar
(
*
node
->
inputs
[
0
]),
"This hack no longer holds, please fix."
);
// the variable name which contains .block means it was splited by
// split_byref op
// so that we can balance the variable blocks to all the pserver
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.h
浏览文件 @
6f6d5527
...
...
@@ -46,11 +46,13 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
BuildStrategy
&
strategy
);
#endif
std
::
unique_ptr
<
Graph
>
Apply
(
std
::
unique_ptr
<
Graph
>
graph
)
const
override
;
std
::
unique_ptr
<
ir
::
Graph
>
Apply
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
int
GetVarDeviceID
(
const
std
::
string
&
varname
)
const
override
;
private:
void
CreateOpHandleIOs
(
Graph
*
result
,
ir
::
Node
*
node
,
size_t
device_id
)
const
;
void
CreateOpHandleIOs
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
size_t
device_id
)
const
;
private:
std
::
string
loss_var_name_
;
...
...
@@ -64,8 +66,8 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
bool
IsScaleLossOp
(
ir
::
Node
*
node
)
const
;
void
CreateRPCOp
(
Graph
*
result
,
ir
::
Node
*
node
)
const
;
void
CreateDistTrainOp
(
Graph
*
result
,
ir
::
Node
*
node
)
const
;
void
CreateRPCOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
;
void
CreateDistTrainOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
;
/**
* Is this operator as the end-point operator before/after send operator.
...
...
@@ -74,21 +76,22 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const
std
::
vector
<
std
::
string
>
&
recv_vars
)
const
;
std
::
vector
<
std
::
string
>
FindDistTrainSendVars
(
const
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>
>
&
nodes
)
const
;
const
std
::
vector
<
ir
::
Node
*
>
&
nodes
)
const
;
std
::
vector
<
std
::
string
>
FindDistTrainRecvVars
(
const
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>
>
&
nodes
)
const
;
const
std
::
vector
<
ir
::
Node
*
>
&
nodes
)
const
;
void
ConnectOp
(
Graph
*
result
,
OpHandleBase
*
op
,
void
ConnectOp
(
ir
::
Graph
*
result
,
OpHandleBase
*
op
,
const
std
::
string
&
prev_op_name
)
const
;
void
CreateComputationalOps
(
Graph
*
result
,
ir
::
Node
*
node
,
void
CreateComputationalOps
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
size_t
num_places
)
const
;
void
CreateScaleLossGradOp
(
Graph
*
result
)
const
;
VarHandle
*
CreateReduceOp
(
Graph
*
result
,
const
std
::
string
&
og
,
void
CreateScaleLossGradOp
(
ir
::
Graph
*
result
)
const
;
VarHandle
*
CreateReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
,
int
dst_dev_id
)
const
;
void
CreateComputationalOp
(
Graph
*
result
,
ir
::
Node
*
node
,
int
dev_id
)
const
;
void
CreateComputationalOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
int
dev_id
)
const
;
bool
IsParameterGradientOnce
(
const
std
::
string
&
og
,
...
...
@@ -96,12 +99,12 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
int
GetOpDeviceID
(
ir
::
Node
*
node
)
const
;
void
InsertAllReduceOp
(
Graph
*
result
,
const
std
::
string
&
og
)
const
;
void
InsertAllReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
)
const
;
void
InsertDataBalanceOp
(
Graph
*
result
,
void
InsertDataBalanceOp
(
ir
::
Graph
*
result
,
const
std
::
vector
<
std
::
string
>
&
datas
)
const
;
void
CreateBroadcastOp
(
Graph
*
result
,
const
std
::
string
&
p_name
,
void
CreateBroadcastOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
p_name
,
size_t
src_dev_id
)
const
;
bool
IsSparseGradient
(
const
std
::
string
&
og
)
const
;
...
...
paddle/fluid/framework/details/rpc_op_handle.cc
浏览文件 @
6f6d5527
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/framework/details/rpc_op_handle.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -33,7 +34,7 @@ void RPCOpHandle::RunImpl() {
for
(
auto
*
in
:
inputs_
)
{
auto
&
p
=
static_cast
<
VarHandle
*>
(
in
)
->
place_
;
// FIXME(Yancey1989): need a better solution instead of use DebugString()
if
(
i
n
->
DebugString
()
==
"dummy"
)
{
// HACK
if
(
i
r
::
IsControlDepVar
(
*
in
->
Node
())
)
{
// HACK
continue
;
}
if
(
in
->
GeneratedOp
())
{
...
...
paddle/fluid/framework/details/ssa_graph_builder.cc
浏览文件 @
6f6d5527
...
...
@@ -17,7 +17,7 @@
namespace
paddle
{
namespace
framework
{
namespace
details
{
void
SSAGraphBuilder
::
PolishGraphToSupportDataHazards
(
Graph
*
graph
)
{
void
SSAGraphBuilder
::
PolishGraphToSupportDataHazards
(
ir
::
Graph
*
graph
)
{
for
(
auto
&
var_map
:
graph
->
Get
<
GraphVars
>
(
"vars"
))
{
for
(
auto
&
name_pair
:
var_map
)
{
if
(
name_pair
.
second
.
size
()
<=
1
)
{
...
...
@@ -36,9 +36,18 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(Graph *graph) {
// Read Write is the same op.
continue
;
}
bool
has_dep
=
false
;
for
(
auto
*
r_out
:
read_op
->
Outputs
())
{
for
(
auto
*
w_in
:
write_op
->
Inputs
())
{
if
(
r_out
->
Node
()
==
w_in
->
Node
())
{
has_dep
=
true
;
break
;
}
}
}
if
(
has_dep
)
continue
;
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateEmptyNode
(
"dummy"
,
ir
::
Node
::
Type
::
kVariable
));
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
read_op
->
AddOutput
(
dep_var
);
write_op
->
AddInput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
"dep_vars"
).
emplace
(
dep_var
);
...
...
@@ -49,7 +58,7 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(Graph *graph) {
}
VarHandle
*
SSAGraphBuilder
::
CreateOrGetLatestVarHandle
(
Graph
*
graph
,
ir
::
Node
*
node
,
const
platform
::
Place
&
place
,
ir
::
Graph
*
graph
,
ir
::
Node
*
node
,
const
platform
::
Place
&
place
,
size_t
place_offset
)
{
auto
&
var_holders
=
graph
->
Get
<
GraphVars
>
(
"vars"
)[
place_offset
];
auto
&
var_holder
=
var_holders
[
node
->
Name
()];
...
...
@@ -70,7 +79,7 @@ VarHandle *SSAGraphBuilder::CreateOrGetLatestVarHandle(
return
var
;
}
void
SSAGraphBuilder
::
CreateOpOutput
(
Graph
*
graph
,
OpHandleBase
*
op_handle
,
void
SSAGraphBuilder
::
CreateOpOutput
(
ir
::
Graph
*
graph
,
OpHandleBase
*
op_handle
,
ir
::
Node
*
new_node
,
const
platform
::
Place
&
place
,
size_t
place_offset
)
{
...
...
@@ -82,13 +91,12 @@ void SSAGraphBuilder::CreateOpOutput(Graph *graph, OpHandleBase *op_handle,
op_handle
->
AddOutput
(
var
);
}
void
SSAGraphBuilder
::
AddOutputToLeafOps
(
Graph
*
graph
)
{
void
SSAGraphBuilder
::
AddOutputToLeafOps
(
ir
::
Graph
*
graph
)
{
for
(
auto
&
op
:
graph
->
Get
<
GraphOps
>
(
"ops"
))
{
if
(
!
op
->
Outputs
().
empty
())
{
continue
;
}
auto
*
dummy_leaf
=
new
DummyVarHandle
(
graph
->
CreateEmptyNode
(
"dummy"
,
ir
::
Node
::
Type
::
kVariable
));
auto
*
dummy_leaf
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
"dep_vars"
).
emplace
(
dummy_leaf
);
op
->
AddOutput
(
dummy_leaf
);
}
...
...
paddle/fluid/framework/details/ssa_graph_builder.h
浏览文件 @
6f6d5527
...
...
@@ -57,26 +57,23 @@ class SSAGraphBuilder : public ir::Pass {
DISABLE_COPY_AND_ASSIGN
(
SSAGraphBuilder
);
protected:
/**
* We only handle write after read(WAR), since it should not have a write
* after write in program. If there are write after write operators, we need
* prune them.
*
* https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
*/
static
void
PolishGraphToSupportDataHazards
(
Graph
*
graph
);
static
VarHandle
*
CreateOrGetLatestVarHandle
(
Graph
*
graph
,
ir
::
Node
*
node
,
/*
Dependency graph has been constructed. However, there are still data
hazards need to be handled.
*/
static
void
PolishGraphToSupportDataHazards
(
ir
::
Graph
*
graph
);
static
VarHandle
*
CreateOrGetLatestVarHandle
(
ir
::
Graph
*
graph
,
ir
::
Node
*
node
,
const
platform
::
Place
&
place
,
size_t
place_offset
);
// Add an output variable (each_var_name, place, place_offset) to op_handle,
// which belongs to graph
static
void
CreateOpOutput
(
Graph
*
graph
,
OpHandleBase
*
op_handle
,
static
void
CreateOpOutput
(
ir
::
Graph
*
graph
,
OpHandleBase
*
op_handle
,
ir
::
Node
*
new_node
,
const
platform
::
Place
&
place
,
size_t
place_offset
);
static
void
AddOutputToLeafOps
(
Graph
*
graph
);
static
void
AddOutputToLeafOps
(
ir
::
Graph
*
graph
);
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/ssa_graph_checker.cc
浏览文件 @
6f6d5527
...
...
@@ -20,7 +20,7 @@ namespace paddle {
namespace
framework
{
namespace
details
{
bool
SSAGraghBuilderWithChecker
::
IsValidGraph
(
const
Graph
*
graph
)
const
{
bool
SSAGraghBuilderWithChecker
::
IsValidGraph
(
const
ir
::
Graph
*
graph
)
const
{
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
pending_ops
;
std
::
unordered_set
<
VarHandleBase
*>
pending_vars
;
std
::
unordered_set
<
VarHandleBase
*>
ready_vars
;
...
...
paddle/fluid/framework/details/ssa_graph_checker.h
浏览文件 @
6f6d5527
...
...
@@ -28,7 +28,8 @@ class SSAGraghBuilderWithChecker : public SSAGraphBuilder {
std
::
unique_ptr
<
SSAGraphBuilder
>&&
builder
)
:
builder_
(
std
::
move
(
builder
))
{}
std
::
unique_ptr
<
Graph
>
Apply
(
std
::
unique_ptr
<
Graph
>
graph
)
const
override
{
std
::
unique_ptr
<
ir
::
Graph
>
Apply
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
{
auto
new_graph
=
builder_
->
Apply
(
std
::
move
(
graph
));
PADDLE_ENFORCE
(
IsValidGraph
(
new_graph
.
get
()));
return
new_graph
;
...
...
@@ -38,7 +39,7 @@ class SSAGraghBuilderWithChecker : public SSAGraphBuilder {
return
builder_
->
GetVarDeviceID
(
var_name
);
}
bool
IsValidGraph
(
const
Graph
*
graph
)
const
;
bool
IsValidGraph
(
const
ir
::
Graph
*
graph
)
const
;
private:
std
::
unique_ptr
<
SSAGraphBuilder
>
builder_
;
...
...
paddle/fluid/framework/details/ssa_graph_printer.cc
浏览文件 @
6f6d5527
...
...
@@ -21,7 +21,7 @@ namespace framework {
namespace
details
{
template
<
typename
Callback
>
static
inline
void
IterAllVar
(
const
Graph
&
graph
,
Callback
callback
)
{
static
inline
void
IterAllVar
(
const
ir
::
Graph
&
graph
,
Callback
callback
)
{
for
(
auto
&
each
:
graph
.
Get
<
GraphVars
>
(
"vars"
))
{
for
(
auto
&
pair1
:
each
)
{
for
(
auto
&
pair2
:
pair1
.
second
)
{
...
...
@@ -35,7 +35,7 @@ static inline void IterAllVar(const Graph &graph, Callback callback) {
}
}
void
GraphvizSSAGraphPrinter
::
Print
(
const
Graph
&
graph
,
void
GraphvizSSAGraphPrinter
::
Print
(
const
ir
::
Graph
&
graph
,
std
::
ostream
&
sout
)
const
{
size_t
var_id
=
0
;
std
::
unordered_map
<
const
VarHandleBase
*
,
size_t
>
vars
;
...
...
paddle/fluid/framework/details/ssa_graph_printer.h
浏览文件 @
6f6d5527
...
...
@@ -25,12 +25,12 @@ namespace details {
class
SSAGraphPrinter
{
public:
virtual
~
SSAGraphPrinter
()
{}
virtual
void
Print
(
const
Graph
&
graph
,
std
::
ostream
&
sout
)
const
=
0
;
virtual
void
Print
(
const
ir
::
Graph
&
graph
,
std
::
ostream
&
sout
)
const
=
0
;
};
class
GraphvizSSAGraphPrinter
:
public
SSAGraphPrinter
{
public:
void
Print
(
const
Graph
&
graph
,
std
::
ostream
&
sout
)
const
override
;
void
Print
(
const
ir
::
Graph
&
graph
,
std
::
ostream
&
sout
)
const
override
;
};
class
SSAGraghBuilderWithPrinter
:
public
SSAGraphBuilder
{
...
...
@@ -50,7 +50,8 @@ class SSAGraghBuilderWithPrinter : public SSAGraphBuilder {
stream_ptr_
(
std
::
move
(
sout
)),
stream_ref_
(
*
stream_ptr_
)
{}
std
::
unique_ptr
<
Graph
>
Apply
(
std
::
unique_ptr
<
Graph
>
graph
)
const
override
{
std
::
unique_ptr
<
ir
::
Graph
>
Apply
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
{
auto
new_graph
=
builder_
->
Apply
(
std
::
move
(
graph
));
printer_
->
Print
(
*
new_graph
,
stream_ref_
);
return
new_graph
;
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
6f6d5527
...
...
@@ -21,7 +21,8 @@ namespace framework {
namespace
details
{
ThreadedSSAGraphExecutor
::
ThreadedSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
Graph
>
&&
graph
)
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
)
:
graph_
(
std
::
move
(
graph
)),
pool_
(
strategy
.
num_threads_
>=
2
?
new
::
ThreadPool
(
strategy
.
num_threads_
)
:
nullptr
),
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
浏览文件 @
6f6d5527
...
...
@@ -40,7 +40,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
ThreadedSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
Graph
>
&&
graph
);
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
);
// Run a SSAGraph by a thread pool
// Use topological sort algorithm
...
...
@@ -53,7 +53,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
details
::
OpHandleBase
*
op
);
private:
std
::
unique_ptr
<
Graph
>
graph_
;
std
::
unique_ptr
<
ir
::
Graph
>
graph_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
...
...
paddle/fluid/framework/details/var_handle.cc
浏览文件 @
6f6d5527
...
...
@@ -26,7 +26,7 @@ std::string VarHandle::DebugString() const {
return
ss
.
str
();
}
std
::
string
DummyVarHandle
::
DebugString
()
const
{
return
"dummy"
;
}
std
::
string
DummyVarHandle
::
DebugString
()
const
{
return
node_
->
Name
()
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/executor.cc
浏览文件 @
6f6d5527
...
...
@@ -45,19 +45,13 @@ ExecutorPrepareContext::~ExecutorPrepareContext() {
Executor
::
Executor
(
const
platform
::
Place
&
place
)
:
place_
(
place
)
{}
void
Executor
::
Close
()
{
#ifdef PADDLE_WITH_DISTRIBUTE
void
Executor
::
BeginPass
()
{
::
paddle
::
operators
::
distributed
::
RPCClient
::
GetInstance
<
::
paddle
::
operators
::
distributed
::
GRPCClient
>
()
->
SendBeginPass
();
}
void
Executor
::
EndPass
()
{
::
paddle
::
operators
::
distributed
::
RPCClient
::
GetInstance
<
::
paddle
::
operators
::
distributed
::
GRPCClient
>
()
->
SendEndPass
();
}
->
SendComplete
();
#endif
}
void
InitializeVariable
(
Variable
*
var
,
proto
::
VarType
::
Type
var_type
)
{
if
(
var_type
==
proto
::
VarType
::
LOD_TENSOR
)
{
...
...
paddle/fluid/framework/executor.h
浏览文件 @
6f6d5527
...
...
@@ -44,17 +44,11 @@ class Executor {
explicit
Executor
(
const
platform
::
Place
&
place
);
#ifdef PADDLE_WITH_DISTRIBUTE
/*
* Sending signal to pserver to mark current pass started.
* Close this Executor.
* Calling this method will send complete messages to all pserver instances.
*/
void
BeginPass
();
/*
* Sending signal to pserver to mark current pass finished.
*/
void
EndPass
();
#endif
void
Close
();
/* @Brief
* Runtime evaluation of the given ProgramDesc under certain Scope
...
...
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
6f6d5527
cc_library
(
node SRCS node.cc DEPS proto_desc
)
cc_library
(
graph SRCS graph.cc DEPS node
)
cc_library
(
graph_helper SRCS graph_helper.cc DEPS graph
)
cc_library
(
pass SRCS pass.cc DEPS graph node
)
cc_test
(
graph_
test SRCS graph_test.cc DEPS graph proto_desc
op_registry
)
cc_test
(
graph_test SRCS graph_test.cc DEPS graph op_registry
)
cc_test
(
graph_
helper_test SRCS graph_helper_test.cc DEPS graph_helper
op_registry
)
paddle/fluid/framework/ir/graph.cc
浏览文件 @
6f6d5527
...
...
@@ -12,14 +12,18 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <unordered_set>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/var_desc.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
// NOTE(paddle-dev): This graph contains circle.
Graph
::
Graph
(
const
ProgramDesc
&
program
)
:
program_
(
program
)
{
VLOG
(
3
)
<<
"block in program:"
<<
program_
.
Size
();
std
::
unordered_map
<
std
::
string
,
VarDesc
*>
all_vars
;
...
...
@@ -27,40 +31,87 @@ Graph::Graph(const ProgramDesc &program) : program_(program) {
all_vars
.
emplace
(
var
->
Name
(),
var
);
}
std
::
map
<
std
::
string
,
ir
::
Node
*
>
var_nodes
;
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>
>
var_nodes
;
for
(
auto
*
op
:
program
.
Block
(
0
).
AllOps
())
{
ir
::
Node
*
node
=
CreateOpNode
(
op
);
// For input args, reuse the same var name if it was created before.
// Otherwise, create a new one.
for
(
auto
&
each_var_name
:
op
->
InputArgumentNames
())
{
ir
::
Node
*
var
=
nullptr
;
if
(
var_nodes
.
find
(
each_var_name
)
!=
var_nodes
.
end
())
{
var
=
var_nodes
.
at
(
each_var_name
);
var
=
var_nodes
.
at
(
each_var_name
)
.
back
()
;
}
else
if
(
all_vars
.
count
(
each_var_name
)
!=
0
)
{
var
=
CreateVarNode
(
all_vars
.
at
(
each_var_name
));
var_nodes
[
each_var_name
]
=
var
;
var_nodes
[
each_var_name
]
.
push_back
(
var
)
;
}
else
{
//
TODO(paddle-dev): Seems some assumption doesn't hold?
VLOG
(
3
)
<<
op
->
Type
()
<<
" input var not in all_var list: "
<<
each_var_name
;
//
Operation input var can be optional (dispensable). Which means
// the operation doesn't really need the var at runtime. In this
// case, the no-existed var is ready at the beginning.
var
=
CreateEmptyNode
(
each_var_name
,
ir
::
Node
::
Type
::
kVariable
);
var_nodes
[
each_var_name
]
=
var
;
var_nodes
[
each_var_name
]
.
push_back
(
var
)
;
}
node
->
inputs
.
push_back
(
var
);
var
->
outputs
.
push_back
(
node
);
}
// For output args, always create a new var.
for
(
auto
&
each_var_name
:
op
->
OutputArgumentNames
())
{
ir
::
Node
*
var
=
nullptr
;
if
(
var_nodes
.
find
(
each_var_name
)
!=
var_nodes
.
end
())
{
var
=
var_nodes
.
at
(
each_var_name
);
}
else
{
var
=
CreateVarNode
(
all_vars
.
at
(
each_var_name
));
var_nodes
[
each_var_name
]
=
var
;
}
ir
::
Node
*
var
=
CreateVarNode
(
all_vars
.
at
(
each_var_name
));
var_nodes
[
each_var_name
].
push_back
(
var
);
node
->
outputs
.
push_back
(
var
);
var
->
inputs
.
push_back
(
node
);
}
}
/**
* We only handle write after read(WAR), since it should not have a write
* after write in program. If there are write after write operators, we need
* prune them.
*
* https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
*/
for
(
auto
&
var
:
var_nodes
)
{
auto
&
versions
=
var
.
second
;
if
(
versions
.
size
()
<=
1
)
continue
;
auto
it_new
=
versions
.
rbegin
();
auto
it_old
=
versions
.
rbegin
();
++
it_old
;
for
(;
it_old
!=
versions
.
rend
();
it_new
=
it_old
,
++
it_old
)
{
ir
::
Node
*
write_op
=
(
*
it_new
)
->
inputs
.
empty
()
?
nullptr
:
(
*
it_new
)
->
inputs
[
0
];
const
auto
&
read_ops
=
(
*
it_old
)
->
outputs
;
for
(
auto
*
read_op
:
read_ops
)
{
// Manually add a dependency var from read_op to write_op;
if
(
read_op
==
write_op
)
{
// Read Write is the same op.
continue
;
}
// 2 ops might have been connected via other vars.
bool
has_dep
=
false
;
for
(
ir
::
Node
*
r_out
:
read_op
->
outputs
)
{
for
(
ir
::
Node
*
w_in
:
write_op
->
inputs
)
{
if
(
r_out
==
w_in
)
{
has_dep
=
true
;
break
;
}
}
}
if
(
has_dep
)
continue
;
ir
::
Node
*
dep_var
=
CreateControlDepVar
();
read_op
->
outputs
.
push_back
(
dep_var
);
dep_var
->
inputs
.
push_back
(
read_op
);
write_op
->
inputs
.
push_back
(
dep_var
);
dep_var
->
outputs
.
push_back
(
write_op
);
}
}
}
}
bool
IsControlDepVar
(
const
ir
::
Node
&
var
)
{
return
var
.
Name
().
find
(
ir
::
Node
::
kControlDepVarName
)
!=
std
::
string
::
npos
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph.h
浏览文件 @
6f6d5527
...
...
@@ -26,13 +26,14 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Graph
{
public:
explicit
Graph
(
const
ProgramDesc
&
program
);
explicit
Graph
(
const
ProgramDesc
&
program
);
virtual
~
Graph
()
{
for
(
auto
&
attr
:
attrs_
)
{
for
(
auto
&
attr
:
attrs_
)
{
attr_dels_
[
attr
.
first
]();
}
attrs_
.
clear
();
...
...
@@ -40,12 +41,12 @@ class Graph {
}
template
<
typename
AttrType
>
AttrType
&
Get
(
const
std
::
string
&
attr_name
)
const
{
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
AttrType
&
Get
(
const
std
::
string
&
attr_name
)
const
{
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
}
template
<
typename
AttrType
>
void
Set
(
const
std
::
string
&
attr_name
,
AttrType
*
attr
)
{
void
Set
(
const
std
::
string
&
attr_name
,
AttrType
*
attr
)
{
PADDLE_ENFORCE
(
attrs_
.
count
(
attr_name
)
==
0
);
attrs_
[
attr_name
]
=
attr
;
attr_dels_
[
attr_name
]
=
[
attr
,
attr_name
]()
{
...
...
@@ -54,29 +55,70 @@ class Graph {
};
}
ir
::
Node
*
CreateVarNode
(
VarDesc
*
var_desc
)
{
nodes
.
emplace_back
(
new
ir
::
Node
(
var_desc
));
return
nodes
.
back
().
get
();
const
std
::
unordered_set
<
ir
::
Node
*>
&
Nodes
()
const
{
return
node_set_
;
}
// Create a normal variable with non-null VarDesc.
ir
::
Node
*
CreateVarNode
(
VarDesc
*
var_desc
)
{
return
AddNode
(
new
ir
::
Node
(
var_desc
));
}
// Create a normal runnable operator with OpDesc.
ir
::
Node
*
CreateOpNode
(
OpDesc
*
op_desc
)
{
return
AddNode
(
new
ir
::
Node
(
op_desc
));
}
ir
::
Node
*
CreateOpNode
(
OpDesc
*
op_desc
)
{
nodes
.
emplace_back
(
new
ir
::
Node
(
op_desc
));
return
nodes
.
back
().
get
();
// Create a control dependency var that connects 2 operations. The
// var doesn't hold any data. Other than that, it's no different from
// other var, considering dependency analysis.
ir
::
Node
*
CreateControlDepVar
()
{
// TODO(panyx0718): control var name should be really unique.
const
std
::
string
name
=
string
::
Sprintf
(
"%s@%llu"
,
ir
::
Node
::
kControlDepVarName
,
node_set_
.
size
());
return
AddNode
(
new
ir
::
Node
(
name
,
ir
::
Node
::
Type
::
kVariable
));
}
ir
::
Node
*
CreateEmptyNode
(
const
std
::
string
&
name
,
ir
::
Node
::
Type
type
)
{
nodes
.
emplace_back
(
new
ir
::
Node
(
name
,
type
));
return
nodes
.
back
().
get
();
// A more free style way of creating a graph node. Mostly use for test
// or "copy" from another node. Avoid using it if possible.
ir
::
Node
*
CreateEmptyNode
(
const
std
::
string
&
name
,
ir
::
Node
::
Type
type
)
{
return
AddNode
(
new
ir
::
Node
(
name
,
type
));
}
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>>
nodes
;
// Clear all node information of the graph and return the ownership of the
// nodes.
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>>
ReleaseNodes
()
{
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>>
ret
;
for
(
auto
&
n
:
nodes_
)
{
ret
.
emplace_back
(
n
.
second
.
release
());
}
nodes_
.
clear
();
node_set_
.
clear
();
return
ret
;
}
private:
// This method takes ownership of `node`.
ir
::
Node
*
AddNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
==
node_set_
.
end
());
nodes_
[
node
].
reset
(
node
);
node_set_
.
insert
(
node
);
return
node
;
}
void
RemoveNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
!=
node_set_
.
end
());
node_set_
.
erase
(
node
);
nodes_
.
erase
(
node
);
}
// NOTE: program_ shouldn't be exposed to user.
const
ProgramDesc
&
program_
;
const
ProgramDesc
&
program_
;
std
::
map
<
std
::
string
,
boost
::
any
>
attrs_
;
std
::
map
<
std
::
string
,
std
::
function
<
void
(
void
)
>>
attr_dels_
;
std
::
map
<
ir
::
Node
*
,
std
::
unique_ptr
<
ir
::
Node
>>
nodes_
;
std
::
unordered_set
<
ir
::
Node
*>
node_set_
;
};
bool
IsControlDepVar
(
const
ir
::
Node
&
var
);
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_helper.cc
0 → 100644
浏览文件 @
6f6d5527
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <unordered_set>
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
{
void
SortHelper
(
const
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
&
adj_list
,
ir
::
Node
*
node
,
std
::
unordered_set
<
ir
::
Node
*>
*
visited
,
std
::
vector
<
ir
::
Node
*>
*
ret
)
{
visited
->
insert
(
node
);
for
(
auto
adj
:
adj_list
.
at
(
node
))
{
if
(
visited
->
find
(
adj
)
==
visited
->
end
())
{
SortHelper
(
adj_list
,
adj
,
visited
,
ret
);
}
}
VLOG
(
3
)
<<
"topology sort insert: "
<<
node
->
Name
()
<<
reinterpret_cast
<
void
*>
(
node
)
<<
" input "
<<
node
->
inputs
.
size
();
ret
->
push_back
(
node
);
}
bool
HasCircleHelper
(
ir
::
Node
*
node
,
const
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
&
adj_list
,
std
::
unordered_set
<
ir
::
Node
*>
*
visited
,
std
::
unordered_set
<
ir
::
Node
*>
*
in_trace
)
{
if
(
visited
->
find
(
node
)
==
visited
->
end
())
{
visited
->
insert
(
node
);
in_trace
->
insert
(
node
);
for
(
ir
::
Node
*
in
:
adj_list
.
at
(
node
))
{
if
(
visited
->
find
(
in
)
==
visited
->
end
()
&&
HasCircleHelper
(
in
,
adj_list
,
visited
,
in_trace
))
{
return
true
;
}
else
if
(
in_trace
->
find
(
in
)
!=
in_trace
->
end
())
{
return
true
;
}
}
}
in_trace
->
erase
(
node
);
return
false
;
}
bool
HasCircleInternal
(
const
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
&
adj_list
)
{
std
::
unordered_set
<
ir
::
Node
*>
visited
;
std
::
unordered_set
<
ir
::
Node
*>
in_trace
;
for
(
auto
&
adj
:
adj_list
)
{
if
(
HasCircleHelper
(
adj
.
first
,
adj_list
,
&
visited
,
&
in_trace
))
{
return
true
;
}
}
return
false
;
}
}
// namespace
bool
HasCircle
(
const
Graph
&
graph
)
{
return
HasCircleInternal
(
BuildOperationAdjList
(
graph
));
}
std
::
vector
<
ir
::
Node
*>
TopologySortOperations
(
const
Graph
&
graph
)
{
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
adj_list
=
BuildOperationAdjList
(
graph
);
PADDLE_ENFORCE
(
!
HasCircleInternal
(
adj_list
));
std
::
unordered_set
<
ir
::
Node
*>
visited
;
std
::
vector
<
ir
::
Node
*>
ret
;
for
(
auto
adj
:
adj_list
)
{
if
(
visited
.
find
(
adj
.
first
)
==
visited
.
end
())
{
SortHelper
(
adj_list
,
adj
.
first
,
&
visited
,
&
ret
);
}
}
return
ret
;
}
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
BuildOperationAdjList
(
const
Graph
&
graph
)
{
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
adj_list
;
for
(
auto
&
n
:
graph
.
Nodes
())
{
if
(
n
->
NodeType
()
!=
ir
::
Node
::
Type
::
kOperation
)
continue
;
if
(
adj_list
.
find
(
n
)
==
adj_list
.
end
())
{
adj_list
[
n
]
=
std
::
unordered_set
<
ir
::
Node
*>
();
}
for
(
auto
&
var
:
n
->
inputs
)
{
for
(
auto
&
adj_n
:
var
->
inputs
)
{
PADDLE_ENFORCE
(
adj_n
->
NodeType
()
==
ir
::
Node
::
Type
::
kOperation
);
adj_list
[
n
].
insert
(
adj_n
);
VLOG
(
3
)
<<
"adj "
<<
adj_n
->
Name
()
<<
reinterpret_cast
<
void
*>
(
adj_n
)
<<
" -> "
<<
n
->
Name
()
<<
reinterpret_cast
<
void
*>
(
n
)
<<
" via "
<<
var
->
Name
()
<<
reinterpret_cast
<
void
*>
(
var
);
}
}
}
return
adj_list
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_helper.h
0 → 100644
浏览文件 @
6f6d5527
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <map>
#include <memory>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
// Test if the graph contains circle.
bool
HasCircle
(
const
Graph
&
graph
);
// Topology Sort the operations in the graph from inputs to outputs.
// `graph` cannot contain circle.
std
::
vector
<
ir
::
Node
*>
TopologySortOperations
(
const
Graph
&
graph
);
// Build an adjacency list of operations for the `graph`.
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
BuildOperationAdjList
(
const
Graph
&
graph
);
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_helper_test.cc
0 → 100644
浏览文件 @
6f6d5527
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#include <string>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/program_desc.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
BuildCircleGraph
(
Graph
*
g
)
{
ir
::
Node
*
o1
=
g
->
CreateEmptyNode
(
"op1"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
v1
=
g
->
CreateEmptyNode
(
"var1"
,
Node
::
Type
::
kVariable
);
o1
->
outputs
.
push_back
(
v1
);
o1
->
inputs
.
push_back
(
v1
);
v1
->
inputs
.
push_back
(
o1
);
v1
->
outputs
.
push_back
(
o1
);
}
void
BuildCircleGraph2
(
Graph
*
g
)
{
ir
::
Node
*
o1
=
g
->
CreateEmptyNode
(
"op1"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o2
=
g
->
CreateEmptyNode
(
"op2"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
v1
=
g
->
CreateEmptyNode
(
"var1"
,
Node
::
Type
::
kVariable
);
ir
::
Node
*
v2
=
g
->
CreateEmptyNode
(
"var2"
,
Node
::
Type
::
kVariable
);
o1
->
outputs
.
push_back
(
v1
);
o2
->
inputs
.
push_back
(
v1
);
v1
->
inputs
.
push_back
(
o1
);
v1
->
outputs
.
push_back
(
o2
);
o2
->
outputs
.
push_back
(
v2
);
o1
->
inputs
.
push_back
(
v2
);
v2
->
inputs
.
push_back
(
o2
);
v2
->
outputs
.
push_back
(
o1
);
}
void
BuildNoCircleGraph
(
Graph
*
g
)
{
ir
::
Node
*
o1
=
g
->
CreateEmptyNode
(
"op1"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o2
=
g
->
CreateEmptyNode
(
"op2"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o3
=
g
->
CreateEmptyNode
(
"op3"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o4
=
g
->
CreateEmptyNode
(
"op4"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o5
=
g
->
CreateEmptyNode
(
"op5"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
v1
=
g
->
CreateEmptyNode
(
"var1"
,
Node
::
Type
::
kVariable
);
ir
::
Node
*
v2
=
g
->
CreateEmptyNode
(
"var2"
,
Node
::
Type
::
kVariable
);
ir
::
Node
*
v3
=
g
->
CreateEmptyNode
(
"var3"
,
Node
::
Type
::
kVariable
);
ir
::
Node
*
v4
=
g
->
CreateEmptyNode
(
"var4"
,
Node
::
Type
::
kVariable
);
// o1->v1->o2
o1
->
outputs
.
push_back
(
v1
);
o2
->
inputs
.
push_back
(
v1
);
v1
->
inputs
.
push_back
(
o1
);
v1
->
outputs
.
push_back
(
o2
);
// o2->v2->o3
// o2->v2->o4
o2
->
outputs
.
push_back
(
v2
);
o3
->
inputs
.
push_back
(
v2
);
o4
->
inputs
.
push_back
(
v2
);
v2
->
inputs
.
push_back
(
o2
);
v2
->
outputs
.
push_back
(
o3
);
v2
->
outputs
.
push_back
(
o4
);
// o2->v3->o5
o2
->
outputs
.
push_back
(
v3
);
o5
->
inputs
.
push_back
(
v3
);
v3
->
inputs
.
push_back
(
o2
);
v3
->
outputs
.
push_back
(
o5
);
// o3-v4->o5
o3
->
outputs
.
push_back
(
v4
);
o5
->
inputs
.
push_back
(
v4
);
v4
->
inputs
.
push_back
(
o3
);
v4
->
outputs
.
push_back
(
o5
);
}
TEST
(
GraphHelperTest
,
Basic
)
{
ProgramDesc
prog
;
Graph
g
(
prog
);
BuildCircleGraph
(
&
g
);
ASSERT_TRUE
(
HasCircle
(
g
));
Graph
g2
(
prog
);
BuildCircleGraph2
(
&
g2
);
ASSERT_TRUE
(
HasCircle
(
g2
));
auto
adj_list
=
BuildOperationAdjList
(
g2
);
for
(
auto
&
adj
:
adj_list
)
{
auto
&
adj_set
=
adj
.
second
;
if
(
adj
.
first
->
Name
()
==
"op1"
)
{
ASSERT_EQ
((
*
adj_set
.
begin
())
->
Name
(),
"op2"
);
}
else
if
(
adj
.
first
->
Name
()
==
"op2"
)
{
ASSERT_EQ
((
*
adj_set
.
begin
())
->
Name
(),
"op1"
);
}
else
{
ASSERT_TRUE
(
false
);
}
}
Graph
g3
(
prog
);
BuildNoCircleGraph
(
&
g3
);
ASSERT_FALSE
(
HasCircle
(
g3
));
auto
sorted
=
TopologySortOperations
(
g3
);
std
::
map
<
std
::
string
,
size_t
>
node_map
;
for
(
size_t
i
=
0
;
i
<
sorted
.
size
();
++
i
)
{
node_map
[
sorted
[
i
]
->
Name
()]
=
i
;
}
ASSERT_EQ
(
node_map
.
at
(
"op1"
),
0
);
ASSERT_EQ
(
node_map
.
at
(
"op2"
),
1
);
ASSERT_TRUE
(
node_map
.
at
(
"op3"
)
<
node_map
.
at
(
"op5"
));
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_test.cc
浏览文件 @
6f6d5527
...
...
@@ -76,6 +76,7 @@ TEST(GraphTest, Basic) {
op
->
SetType
(
"sum"
);
op
->
SetInput
(
"X"
,
{
"test_a"
,
"test_b"
,
"test_c"
});
op
->
SetOutput
(
"Out"
,
{
"test_out"
});
op
->
SetAttr
(
"op_role"
,
1
);
prog
.
MutableBlock
(
0
)
->
Var
(
"test_a"
)
->
SetType
(
proto
::
VarType
::
SELECTED_ROWS
);
prog
.
MutableBlock
(
0
)
->
Var
(
"test_b"
)
->
SetType
(
proto
::
VarType
::
SELECTED_ROWS
);
...
...
@@ -92,21 +93,22 @@ TEST(GraphTest, Basic) {
ASSERT_EQ
(
proto
::
VarType
::
LOD_TENSOR
,
prog
.
MutableBlock
(
0
)
->
Var
(
"test_out"
)
->
GetType
());
std
::
unique_ptr
<
Graph
>
g
(
new
Graph
(
prog
));
ASSERT_EQ
(
g
->
nodes
[
0
]
->
Name
(),
"sum"
);
ASSERT_EQ
(
g
->
nodes
[
0
]
->
inputs
[
0
]
->
Name
(),
"test_a"
);
ASSERT_EQ
(
g
->
nodes
[
0
]
->
inputs
[
1
]
->
Name
(),
"test_b"
);
ASSERT_EQ
(
g
->
nodes
[
0
]
->
inputs
[
2
]
->
Name
(),
"test_c"
);
ASSERT_EQ
(
g
->
nodes
[
0
]
->
outputs
[
0
]
->
Name
(),
"test_out"
);
ASSERT_EQ
(
g
->
nodes
[
1
]
->
Name
(),
"test_a"
);
ASSERT_EQ
(
g
->
nodes
[
1
]
->
outputs
[
0
]
->
Name
(),
"sum"
);
ASSERT_EQ
(
g
->
nodes
[
2
]
->
Name
(),
"test_b"
);
ASSERT_EQ
(
g
->
nodes
[
2
]
->
outputs
[
0
]
->
Name
(),
"sum"
);
ASSERT_EQ
(
g
->
nodes
[
3
]
->
Name
(),
"test_c"
);
ASSERT_EQ
(
g
->
nodes
[
3
]
->
outputs
[
0
]
->
Name
(),
"sum"
);
ASSERT_EQ
(
g
->
nodes
[
4
]
->
Name
(),
"test_out"
);
ASSERT_EQ
(
g
->
nodes
[
4
]
->
inputs
[
0
]
->
Name
(),
"sum"
);
ASSERT_EQ
(
g
->
nodes
.
size
(),
5
);
std
::
unique_ptr
<
ir
::
Graph
>
g
(
new
ir
::
Graph
(
prog
));
std
::
vector
<
ir
::
Node
*>
nodes
(
g
->
Nodes
().
begin
(),
g
->
Nodes
().
end
());
for
(
ir
::
Node
*
n
:
nodes
)
{
if
(
n
->
Name
()
==
"sum"
)
{
ASSERT_EQ
(
n
->
inputs
.
size
(),
3
);
ASSERT_EQ
(
n
->
outputs
.
size
(),
1
);
}
else
if
(
n
->
Name
()
==
"test_a"
||
n
->
Name
()
==
"test_b"
||
n
->
Name
()
==
"test_c"
)
{
ASSERT_EQ
(
n
->
inputs
.
size
(),
0
);
ASSERT_EQ
(
n
->
outputs
.
size
(),
1
);
}
else
if
(
n
->
Name
()
==
"test_out"
)
{
ASSERT_EQ
(
n
->
inputs
.
size
(),
1
);
ASSERT_EQ
(
n
->
outputs
.
size
(),
0
);
}
}
ASSERT_EQ
(
nodes
.
size
(),
5
);
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/node.cc
浏览文件 @
6f6d5527
...
...
@@ -15,5 +15,9 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/node.h"
namespace
paddle
{
namespace
framework
{}
// namespace framework
namespace
framework
{
namespace
ir
{
const
char
Node
::
kControlDepVarName
[]
=
"__control_var"
;
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/node.h
浏览文件 @
6f6d5527
...
...
@@ -27,6 +27,8 @@ namespace ir {
class
Node
{
public:
enum
class
Type
{
kOperation
,
kVariable
};
static
const
char
kControlDepVarName
[];
explicit
Node
(
const
std
::
string
&
name
,
Type
type
)
:
name_
(
name
),
var_desc_
(
nullptr
),
op_desc_
(
nullptr
),
type_
(
type
)
{}
...
...
@@ -50,6 +52,7 @@ class Node {
PADDLE_ENFORCE
(
type_
==
Type
::
kVariable
);
return
var_desc_
;
}
OpDesc
*
Op
()
{
PADDLE_ENFORCE
(
type_
==
Type
::
kOperation
);
return
op_desc_
;
...
...
paddle/fluid/framework/mixed_vector.h
浏览文件 @
6f6d5527
...
...
@@ -16,6 +16,7 @@
#include <algorithm>
#include <initializer_list>
#include <memory>
#include <vector>
#include "paddle/fluid/framework/tensor.h"
...
...
@@ -386,13 +387,14 @@ template <typename T>
class
CPUVector
:
public
std
::
vector
<
T
,
std
::
allocator
<
T
>>
{
public:
CPUVector
()
:
std
::
vector
<
T
>
()
{}
CPUVector
(
size_t
count
,
const
T
&
value
=
T
())
CPUVector
(
size_t
count
,
const
T
&
value
=
T
())
// NOLINT
:
std
::
vector
<
T
>
(
count
,
value
)
{}
CPUVector
(
std
::
initializer_list
<
T
>
init
)
:
std
::
vector
<
T
>
(
init
)
{}
CPUVector
(
const
std
::
vector
<
T
>
&
other
)
:
std
::
vector
<
T
>
(
other
)
{}
explicit
CPUVector
(
const
CPUVector
<
T
>
&
other
)
:
std
::
vector
<
T
>
(
other
)
{}
CPUVector
(
const
std
::
vector
<
T
>
&
other
)
:
std
::
vector
<
T
>
(
other
)
{}
// NOLINT
CPUVector
(
const
CPUVector
<
T
>
&
other
)
:
std
::
vector
<
T
>
(
other
)
{}
CPUVector
(
CPUVector
<
T
>
&&
other
)
:
std
::
vector
<
T
>
(
std
::
move
(
other
))
{}
CPUVector
(
std
::
vector
<
T
>
&&
other
)
:
std
::
vector
<
T
>
(
std
::
move
(
other
))
{}
CPUVector
(
std
::
vector
<
T
>
&&
other
)
// NOLINT
:
std
::
vector
<
T
>
(
std
::
move
(
other
))
{}
CPUVector
&
operator
=
(
const
CPUVector
&
other
)
{
this
->
assign
(
other
.
begin
(),
other
.
end
());
return
*
this
;
...
...
@@ -410,8 +412,6 @@ class CPUVector : public std::vector<T, std::allocator<T>> {
return
os
;
}
void
resize
(
size_t
size
)
{
this
->
resize
(
size
);
}
T
&
operator
[](
size_t
id
)
{
return
this
->
at
(
id
);
}
const
T
&
operator
[](
size_t
id
)
const
{
return
this
->
at
(
id
);
}
...
...
paddle/fluid/framework/mixed_vector_test.cc
0 → 100644
浏览文件 @
6f6d5527
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/mixed_vector.h"
template
<
typename
T
>
using
vec
=
paddle
::
framework
::
Vector
<
T
>
;
TEST
(
mixed_vector
,
CPU_VECTOR
)
{
vec
<
int
>
tmp
;
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
tmp
.
push_back
(
i
);
}
ASSERT_EQ
(
tmp
.
size
(),
10UL
);
vec
<
int
>
tmp2
;
tmp2
=
tmp
;
ASSERT_EQ
(
tmp2
.
size
(),
10UL
);
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
ASSERT_EQ
(
tmp2
[
i
],
i
);
ASSERT_EQ
(
tmp2
[
i
],
tmp
[
i
]);
}
int
cnt
=
0
;
for
(
auto
&
t
:
tmp2
)
{
ASSERT_EQ
(
t
,
cnt
);
++
cnt
;
}
}
TEST
(
mixed_vector
,
InitWithCount
)
{
paddle
::
framework
::
Vector
<
int
>
vec
(
10
,
10
);
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
ASSERT_EQ
(
vec
[
i
],
10
);
}
}
TEST
(
mixed_vector
,
ForEach
)
{
vec
<
int
>
tmp
;
for
(
auto
&
v
:
tmp
)
{
VLOG
(
3
)
<<
v
;
}
}
TEST
(
mixed_vector
,
Reserve
)
{
paddle
::
framework
::
Vector
<
int
>
vec
;
vec
.
reserve
(
1
);
vec
.
push_back
(
0
);
vec
.
push_back
(
0
);
vec
.
push_back
(
0
);
}
TEST
(
mixed_vector
,
Resize
)
{
paddle
::
framework
::
Vector
<
int
>
vec
;
vec
.
resize
(
1
);
vec
.
push_back
(
0
);
vec
.
push_back
(
0
);
vec
.
push_back
(
0
);
}
paddle/fluid/framework/mixed_vector_test.cu
浏览文件 @
6f6d5527
...
...
@@ -11,7 +11,9 @@
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cuda_runtime.h>
#include <memory>
#include "glog/logging.h"
#include "gtest/gtest.h"
...
...
@@ -21,26 +23,6 @@
template
<
typename
T
>
using
vec
=
paddle
::
framework
::
Vector
<
T
>
;
TEST
(
mixed_vector
,
CPU_VECTOR
)
{
vec
<
int
>
tmp
;
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
tmp
.
push_back
(
i
);
}
ASSERT_EQ
(
tmp
.
size
(),
10UL
);
vec
<
int
>
tmp2
;
tmp2
=
tmp
;
ASSERT_EQ
(
tmp2
.
size
(),
10UL
);
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
ASSERT_EQ
(
tmp2
[
i
],
i
);
ASSERT_EQ
(
tmp2
[
i
],
tmp
[
i
]);
}
int
cnt
=
0
;
for
(
auto
&
t
:
tmp2
)
{
ASSERT_EQ
(
t
,
cnt
);
++
cnt
;
}
}
static
__global__
void
multiply_10
(
int
*
ptr
)
{
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
ptr
[
i
]
*=
10
;
...
...
@@ -91,24 +73,3 @@ TEST(mixed_vector, MultiGPU) {
ASSERT_EQ
(
tmp
[
i
],
i
*
100
);
}
}
TEST
(
mixed_vector
,
InitWithCount
)
{
paddle
::
framework
::
Vector
<
int
>
vec
(
10
,
10
);
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
ASSERT_EQ
(
vec
[
i
],
10
);
}
}
TEST
(
mixed_vector
,
ForEach
)
{
vec
<
int
>
tmp
;
for
(
auto
&
v
:
tmp
)
{
}
}
TEST
(
mixed_vector
,
Reserve
)
{
paddle
::
framework
::
Vector
<
int
>
vec
;
vec
.
reserve
(
1
);
vec
.
push_back
(
0
);
vec
.
push_back
(
0
);
vec
.
push_back
(
0
);
}
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
6f6d5527
...
...
@@ -132,7 +132,7 @@ ParallelExecutor::ParallelExecutor(
#endif
}
builder_
=
builder_factory
.
Create
();
std
::
unique_ptr
<
Graph
>
graph
(
new
Graph
(
main_program
));
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
main_program
));
graph
=
builder_
->
Apply
(
std
::
move
(
graph
));
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
places
,
std
::
move
(
graph
)));
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
6f6d5527
...
...
@@ -137,6 +137,7 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
executor_
->
RunPreparedContext
(
ctx_
.
get
(),
sub_scope_
!=
nullptr
?
sub_scope_
:
scope_
.
get
(),
&
feed_targets
,
&
fetch_targets
,
false
,
/* don't create local scope each time*/
false
/* don't create variable eatch time */
);
VLOG
(
4
)
<<
"Finish prepared context"
;
if
(
!
GetFetch
(
fetchs
,
output_data
))
{
...
...
paddle/fluid/inference/api/demo_ci/clean.sh
0 → 100755
浏览文件 @
6f6d5527
set
-x
cd
`
dirname
$0
`
rm
-rf
build/ data/
set
+x
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
6f6d5527
# Add TRT tests
nv_library
(
tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc
SRCS mul_op.cc conv2d_op.cc fc_op.cc
pool2d_op.cc
DEPS tensorrt_engine mul_op
)
nv_test
(
test_op_converter SRCS test_op_converter.cc DEPS
...
...
@@ -13,6 +13,7 @@ nv_test(test_trt_fc_op SRCS test_fc_op.cc fc_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine mul_op SERIAL
)
nv_test
(
test_trt_activation_op SRCS test_activation_op.cc activation_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine activation_op SERIAL
)
nv_test
(
test_trt_conv_op SRCS test_conv2d_op.cc conv2d_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine conv_op SERIAL
)
nv_test
(
test_trt_pool2d_op SRCS test_pool2d_op.cc pool2d_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine pool_op SERIAL
)
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
浏览文件 @
6f6d5527
...
...
@@ -37,7 +37,7 @@ class Conv2dOpConverter : public OpConverter {
auto
*
Y_t
=
Y_v
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
weight_data
=
Y_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
PADDLE_ENFORCE
(
Y_t
->
dims
().
size
(),
4UL
);
PADDLE_ENFORCE
_EQ
(
Y_t
->
dims
().
size
(),
4UL
);
const
int
n_output
=
Y_t
->
dims
()[
0
];
const
int
filter_h
=
Y_t
->
dims
()[
2
];
const
int
filter_w
=
Y_t
->
dims
()[
3
];
...
...
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
0 → 100644
浏览文件 @
6f6d5527
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
/*
* Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
*/
class
Pool2dOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert a fluid pool2d op to tensorrt pool2d layer without bias"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// Declare inputs
PADDLE_ENFORCE_EQ
(
op_desc
.
Input
(
"X"
).
size
(),
1
);
PADDLE_ENFORCE_EQ
(
op_desc
.
Output
(
"Out"
).
size
(),
1
);
auto
*
input1
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
std
::
string
pool_type
=
boost
::
get
<
std
::
string
>
(
op_desc
.
GetAttr
(
"pooling_type"
));
std
::
vector
<
int
>
ksize
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"ksize"
));
std
::
vector
<
int
>
strides
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"strides"
));
std
::
vector
<
int
>
paddings
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"paddings"
));
const
nvinfer1
::
DimsHW
nv_ksize
(
ksize
[
0
],
ksize
[
1
]);
const
nvinfer1
::
DimsHW
nv_strides
(
strides
[
0
],
strides
[
1
]);
const
nvinfer1
::
DimsHW
nv_paddings
(
paddings
[
0
],
paddings
[
1
]);
PADDLE_ENFORCE_EQ
(
input1
->
getDimensions
().
nbDims
,
3UL
);
nvinfer1
::
PoolingType
nv_pool_type
=
nvinfer1
::
PoolingType
::
kMAX
;
if
(
pool_type
==
"max"
)
{
nv_pool_type
=
nvinfer1
::
PoolingType
::
kMAX
;
}
else
if
(
pool_type
==
"avg"
)
{
nv_pool_type
=
nvinfer1
::
PoolingType
::
kAVERAGE
;
}
else
{
PADDLE_THROW
(
"TensorRT unsupported pooling type!"
);
}
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Pooling
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input1
),
nv_pool_type
,
nv_ksize
);
PADDLE_ENFORCE_NOT_NULL
(
layer
,
"pool layer could not be created."
);
layer
->
setStride
(
nv_strides
);
layer
->
setPadding
(
nv_paddings
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
engine_
->
DeclareOutput
(
output_name
);
}
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
USE_OP
(
pool2d
);
REGISTER_TRT_OP_CONVERTER
(
pool2d
,
Pool2dOpConverter
);
paddle/fluid/inference/tensorrt/convert/test_activation_op.cc
浏览文件 @
6f6d5527
...
...
@@ -37,7 +37,7 @@ TEST(ReluOpConverter, main) {
validator
.
SetOp
(
*
desc
.
Proto
());
LOG
(
INFO
)
<<
"execute"
;
validator
.
Execute
(
1
);
validator
.
Execute
(
5
);
}
}
// namespace tensorrt
...
...
paddle/fluid/inference/tensorrt/convert/test_conv2d_op.cc
浏览文件 @
6f6d5527
...
...
@@ -23,11 +23,11 @@ namespace tensorrt {
TEST
(
conv2d_op
,
test
)
{
std
::
unordered_set
<
std
::
string
>
parameters
({
"conv2d-Y"
});
framework
::
Scope
scope
;
TRTConvertValidation
validator
(
2
,
parameters
,
scope
,
1
<<
15
);
TRTConvertValidation
validator
(
5
,
parameters
,
scope
,
1
<<
15
);
validator
.
DeclInputVar
(
"conv2d-X"
,
nvinfer1
::
Dims
4
(
1
,
2
,
5
,
5
));
validator
.
DeclInputVar
(
"conv2d-X"
,
nvinfer1
::
Dims
3
(
2
,
5
,
5
));
validator
.
DeclParamVar
(
"conv2d-Y"
,
nvinfer1
::
Dims4
(
3
,
2
,
3
,
3
));
validator
.
DeclOutputVar
(
"conv2d-Out"
,
nvinfer1
::
Dims
4
(
1
,
3
,
5
,
5
));
validator
.
DeclOutputVar
(
"conv2d-Out"
,
nvinfer1
::
Dims
3
(
3
,
5
,
5
));
// Prepare Op description
framework
::
OpDesc
desc
;
...
...
@@ -48,7 +48,7 @@ TEST(conv2d_op, test) {
validator
.
SetOp
(
*
desc
.
Proto
());
validator
.
Execute
(
1
);
validator
.
Execute
(
3
);
}
}
// namespace tensorrt
...
...
paddle/fluid/inference/tensorrt/convert/test_fc_op.cc
浏览文件 @
6f6d5527
...
...
@@ -24,9 +24,8 @@ TEST(fc_op, test) {
std
::
unordered_set
<
std
::
string
>
parameters
({
"mul-Y"
});
framework
::
Scope
scope
;
TRTConvertValidation
validator
(
10
,
parameters
,
scope
,
1000
);
validator
.
DeclInputVar
(
"mul-X"
,
nvinfer1
::
Dims
4
(
1
,
10
,
1
,
1
));
validator
.
DeclInputVar
(
"mul-X"
,
nvinfer1
::
Dims
3
(
10
,
1
,
1
));
validator
.
DeclParamVar
(
"mul-Y"
,
nvinfer1
::
Dims2
(
10
,
2
));
// validator.DeclParamVar("mul-Y", nvinfer1::Dims2(8, 2));
validator
.
DeclOutputVar
(
"mul-Out"
,
nvinfer1
::
Dims2
(
1
,
2
));
// Prepare Op description
...
...
@@ -38,7 +37,7 @@ TEST(fc_op, test) {
validator
.
SetOp
(
*
desc
.
Proto
());
validator
.
Execute
(
1
);
validator
.
Execute
(
1
0
);
}
}
// namespace tensorrt
...
...
paddle/fluid/inference/tensorrt/convert/test_mul_op.cc
浏览文件 @
6f6d5527
...
...
@@ -23,7 +23,7 @@ namespace tensorrt {
TEST
(
MulOpConverter
,
main
)
{
framework
::
Scope
scope
;
std
::
unordered_set
<
std
::
string
>
parameters
;
TRTConvertValidation
validator
(
10
,
parameters
,
scope
,
1000
);
TRTConvertValidation
validator
(
10
,
parameters
,
scope
,
1000
,
false
);
validator
.
DeclInputVar
(
"mul-X"
,
nvinfer1
::
Dims2
(
10
,
6
));
validator
.
DeclInputVar
(
"mul-Y"
,
nvinfer1
::
Dims2
(
6
,
10
));
validator
.
DeclOutputVar
(
"mul-Out"
,
nvinfer1
::
Dims2
(
10
,
10
));
...
...
@@ -39,7 +39,7 @@ TEST(MulOpConverter, main) {
validator
.
SetOp
(
*
desc
.
Proto
());
LOG
(
INFO
)
<<
"execute"
;
validator
.
Execute
(
1
);
validator
.
Execute
(
2
);
}
}
// namespace tensorrt
...
...
paddle/fluid/inference/tensorrt/convert/test_pool2d_op.cc
0 → 100644
浏览文件 @
6f6d5527
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <fstream>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
TEST
(
Pool2dOpConverter
,
main
)
{
framework
::
Scope
scope
;
std
::
unordered_set
<
std
::
string
>
parameters
;
TRTConvertValidation
validator
(
5
,
parameters
,
scope
,
1
<<
15
);
// The ITensor's Dims should not contain the batch size.
// So, the ITensor's Dims of input and output should be C * H * W.
validator
.
DeclInputVar
(
"pool2d-X"
,
nvinfer1
::
Dims3
(
3
,
4
,
4
));
validator
.
DeclOutputVar
(
"pool2d-Out"
,
nvinfer1
::
Dims3
(
3
,
2
,
2
));
// Prepare Op description
framework
::
OpDesc
desc
;
desc
.
SetType
(
"pool2d"
);
desc
.
SetInput
(
"X"
,
{
"pool2d-X"
});
desc
.
SetOutput
(
"Out"
,
{
"pool2d-Out"
});
std
::
vector
<
int
>
ksize
({
2
,
2
});
std
::
vector
<
int
>
strides
({
2
,
2
});
std
::
vector
<
int
>
paddings
({
0
,
0
});
std
::
string
pooling_t
=
"max"
;
desc
.
SetAttr
(
"pooling_type"
,
pooling_t
);
desc
.
SetAttr
(
"ksize"
,
ksize
);
desc
.
SetAttr
(
"strides"
,
strides
);
desc
.
SetAttr
(
"paddings"
,
paddings
);
LOG
(
INFO
)
<<
"set OP"
;
validator
.
SetOp
(
*
desc
.
Proto
());
LOG
(
INFO
)
<<
"execute"
;
validator
.
Execute
(
3
);
}
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
USE_OP
(
pool2d
);
paddle/fluid/inference/tensorrt/convert/ut_helper.h
浏览文件 @
6f6d5527
...
...
@@ -63,13 +63,16 @@ class TRTConvertValidation {
public:
TRTConvertValidation
()
=
delete
;
TRTConvertValidation
(
int
batch_size
,
TRTConvertValidation
(
int
max_
batch_size
,
const
std
::
unordered_set
<
std
::
string
>&
parameters
,
framework
::
Scope
&
scope
,
// NOLINT
int
workspace_size
=
1
<<
10
)
:
parameters_
(
parameters
),
scope_
(
scope
)
{
int
workspace_size
=
1
<<
10
,
bool
if_add_batch
=
true
)
:
parameters_
(
parameters
),
scope_
(
scope
),
if_add_batch_
(
if_add_batch
),
max_batch_size_
(
max_batch_size
)
{
// create engine.
engine_
.
reset
(
new
TensorRTEngine
(
batch_size
,
workspace_size
,
&
stream_
));
engine_
.
reset
(
new
TensorRTEngine
(
max_
batch_size
,
workspace_size
,
&
stream_
));
engine_
->
InitNetwork
();
PADDLE_ENFORCE_EQ
(
cudaStreamCreate
(
&
stream_
),
0
);
...
...
@@ -84,7 +87,7 @@ class TRTConvertValidation {
// Declare a parameter varaible in the scope.
void
DeclParamVar
(
const
std
::
string
&
name
,
const
nvinfer1
::
Dims
&
dims
)
{
DeclVar
(
name
,
dims
);
DeclVar
(
name
,
dims
,
true
);
}
void
DeclOutputVar
(
const
std
::
string
&
name
,
const
nvinfer1
::
Dims
&
dims
)
{
...
...
@@ -92,12 +95,18 @@ class TRTConvertValidation {
}
// Declare a variable in a fluid Scope.
void
DeclVar
(
const
std
::
string
&
name
,
const
nvinfer1
::
Dims
&
dims
)
{
void
DeclVar
(
const
std
::
string
&
name
,
const
nvinfer1
::
Dims
&
dims
,
bool
is_param
=
false
)
{
platform
::
CPUPlace
place
;
platform
::
CPUDeviceContext
ctx
(
place
);
// Init Fluid tensor.
std
::
vector
<
int
>
dim_vec
(
dims
.
d
,
dims
.
d
+
dims
.
nbDims
);
// There is no batchsize in ITensor's shape, but We should add it to
// tensor's shape of fluid. If the variable is not parameter and the
// if_add_batch_ flag is true, add the max batchsize to dim_vec.
if
(
is_param
!=
true
&&
if_add_batch_
==
true
)
dim_vec
.
insert
(
dim_vec
.
begin
(),
max_batch_size_
);
auto
*
x
=
scope_
.
Var
(
name
);
auto
*
x_tensor
=
x
->
GetMutable
<
framework
::
LoDTensor
>
();
x_tensor
->
Resize
(
framework
::
make_ddim
(
dim_vec
));
...
...
@@ -131,6 +140,7 @@ class TRTConvertValidation {
void
Execute
(
int
batch_size
)
{
// Execute Fluid Op
PADDLE_ENFORCE_LE
(
batch_size
,
max_batch_size_
);
platform
::
CPUPlace
place
;
platform
::
CPUDeviceContext
ctx
(
place
);
op_
->
Run
(
scope_
,
place
);
...
...
@@ -149,9 +159,15 @@ class TRTConvertValidation {
auto
*
var
=
scope_
.
FindVar
(
output
);
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
TensorToVector
(
*
tensor
,
ctx
,
&
fluid_out
);
size_t
fluid_out_size
=
fluid_out
.
size
();
if
(
if_add_batch_
==
true
)
{
fluid_out_size
=
batch_size
*
(
framework
::
product
(
tensor
->
dims
())
/
max_batch_size_
);
}
// Compare two output
ASSERT_FALSE
(
fluid_out
.
empty
());
for
(
size_t
i
=
0
;
i
<
fluid_out
.
size
()
;
i
++
)
{
for
(
size_t
i
=
0
;
i
<
fluid_out
_size
;
i
++
)
{
// Loose the threshold for CI in different machine model.
EXPECT_LT
(
std
::
abs
(
fluid_out
[
i
]
-
trt_out
[
i
]),
2e-5
);
}
...
...
@@ -167,6 +183,12 @@ class TRTConvertValidation {
std
::
unique_ptr
<
framework
::
OpDesc
>
op_desc_
;
const
std
::
unordered_set
<
std
::
string
>&
parameters_
;
framework
::
Scope
&
scope_
;
// The ITensor of trt does not cotain the batch size,
// bug, in most cases, we need to set batch size for
// fluid's tensor shape. This variable indicates
// whether to add batch size to tensor shape of fluid.
bool
if_add_batch_
;
int
max_batch_size_
;
};
}
// namespace tensorrt
...
...
paddle/fluid/inference/tensorrt/test_engine.cc
浏览文件 @
6f6d5527
...
...
@@ -113,7 +113,7 @@ TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
ASSERT_EQ
(
y_cpu
[
1
],
14.5
);
}
TEST_F
(
TensorRTEngineTest
,
test_conv2d
_temp
)
{
TEST_F
(
TensorRTEngineTest
,
test_conv2d
)
{
// Weight in CPU memory.
float
raw_weight
[
9
]
=
{
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
};
float
raw_bias
[
1
]
=
{
0
};
...
...
@@ -146,6 +146,37 @@ TEST_F(TensorRTEngineTest, test_conv2d_temp) {
ASSERT_EQ
(
y_cpu
[
1
],
6.0
);
}
TEST_F
(
TensorRTEngineTest
,
test_pool2d
)
{
// Weight in CPU memory.
auto
*
x
=
engine_
->
DeclareInput
(
"x"
,
nvinfer1
::
DataType
::
kFLOAT
,
nvinfer1
::
Dims3
{
1
,
2
,
2
});
nvinfer1
::
PoolingType
pool_t
=
nvinfer1
::
PoolingType
::
kAVERAGE
;
auto
*
pool_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Pooling
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
x
),
pool_t
,
nvinfer1
::
DimsHW
{
2
,
2
});
PADDLE_ENFORCE
(
pool_layer
!=
nullptr
);
pool_layer
->
setStride
(
nvinfer1
::
DimsHW
{
1
,
1
});
pool_layer
->
setPadding
(
nvinfer1
::
DimsHW
{
0
,
0
});
engine_
->
DeclareOutput
(
pool_layer
,
0
,
"y"
);
engine_
->
FreezeNetwork
();
ASSERT_EQ
(
engine_
->
engine
()
->
getNbBindings
(),
2
);
float
x_v
[
8
]
=
{
1.0
,
2.0
,
5.0
,
0.0
,
2.0
,
3.0
,
5.0
,
10.0
};
engine_
->
SetInputFromCPU
(
"x"
,
reinterpret_cast
<
void
*>
(
&
x_v
),
8
*
sizeof
(
float
));
engine_
->
Execute
(
2
);
LOG
(
INFO
)
<<
"to get output"
;
float
*
y_cpu
=
new
float
[
2
];
engine_
->
GetOutputInCPU
(
"y"
,
&
y_cpu
[
0
],
2
*
sizeof
(
float
));
ASSERT_EQ
(
y_cpu
[
0
],
2.0
);
ASSERT_EQ
(
y_cpu
[
1
],
5.0
);
}
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/book/test_inference_nlp.cc
浏览文件 @
6f6d5527
...
...
@@ -20,9 +20,6 @@ limitations under the License. */
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
#include "paddle/fluid/platform/cpu_helper.h"
#ifdef PADDLE_WITH_MKLML
#include <omp.h>
#endif
DEFINE_string
(
model_path
,
""
,
"Directory of the inference model."
);
DEFINE_string
(
data_file
,
""
,
"File of input index data."
);
...
...
@@ -30,6 +27,7 @@ DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool
(
prepare_vars
,
true
,
"Prepare variables before executor"
);
DEFINE_int32
(
num_threads
,
1
,
"Number of threads should be used"
);
DECLARE_bool
(
use_mkldnn
);
DECLARE_int32
(
paddle_num_threads
);
inline
double
GetCurrentMs
()
{
struct
timeval
time
;
...
...
@@ -160,12 +158,7 @@ TEST(inference, nlp) {
std
::
unique_ptr
<
paddle
::
framework
::
Scope
>
scope
(
new
paddle
::
framework
::
Scope
());
#ifdef PADDLE_WITH_MKLML
// only use 1 thread number per std::thread
omp_set_dynamic
(
0
);
omp_set_num_threads
(
1
);
paddle
::
platform
::
SetNumThreads
(
1
);
#endif
paddle
::
platform
::
SetNumThreads
(
FLAGS_paddle_num_threads
);
double
start_ms
=
0
,
stop_ms
=
0
;
if
(
FLAGS_num_threads
>
1
)
{
...
...
paddle/fluid/inference/tests/test_helper.h
浏览文件 @
6f6d5527
...
...
@@ -210,13 +210,14 @@ void TestInference(const std::string& dirname,
// Ignore the profiling results of the first run
std
::
unique_ptr
<
paddle
::
framework
::
ExecutorPrepareContext
>
ctx
;
bool
CreateLocalScope
=
CreateVars
;
if
(
PrepareContext
)
{
ctx
=
executor
.
Prepare
(
*
inference_program
,
0
);
executor
.
RunPreparedContext
(
ctx
.
get
(),
scope
,
&
feed_targets
,
&
fetch_targets
,
tru
e
,
CreateVars
);
&
fetch_targets
,
CreateLocalScop
e
,
CreateVars
);
}
else
{
executor
.
Run
(
*
inference_program
,
scope
,
&
feed_targets
,
&
fetch_targets
,
tru
e
,
CreateVars
);
CreateLocalScop
e
,
CreateVars
);
}
// Enable the profiler
...
...
@@ -232,10 +233,11 @@ void TestInference(const std::string& dirname,
// Note: if you change the inference_program, you need to call
// executor.Prepare() again to get a new ExecutorPrepareContext.
executor
.
RunPreparedContext
(
ctx
.
get
(),
scope
,
&
feed_targets
,
&
fetch_targets
,
CreateVars
);
&
fetch_targets
,
CreateLocalScope
,
CreateVars
);
}
else
{
executor
.
Run
(
*
inference_program
,
scope
,
&
feed_targets
,
&
fetch_targets
,
CreateVars
);
Create
LocalScope
,
Create
Vars
);
}
}
...
...
paddle/fluid/memory/detail/buddy_allocator.cc
浏览文件 @
6f6d5527
...
...
@@ -15,6 +15,10 @@ limitations under the License. */
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "glog/logging.h"
DEFINE_bool
(
free_idle_memory
,
false
,
"If it is true, Paddle will try to free idle memory trunks during "
"running time."
);
namespace
paddle
{
namespace
memory
{
namespace
detail
{
...
...
@@ -152,13 +156,14 @@ void BuddyAllocator::Free(void* p) {
pool_
.
insert
(
IndexSizeAddress
(
block
->
index
(
cache_
),
block
->
total_size
(
cache_
),
block
));
// Clean up if existing too much free memory
// Prefer freeing fallback allocation first
CleanIdleFallBackAlloc
();
if
(
FLAGS_free_idle_memory
)
{
// Clean up if existing too much free memory
// Prefer freeing fallback allocation first
CleanIdleFallBackAlloc
();
// Free normal allocation
CleanIdleNormalAlloc
();
// Free normal allocation
CleanIdleNormalAlloc
();
}
}
size_t
BuddyAllocator
::
Used
()
{
return
total_used_
;
}
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
6f6d5527
...
...
@@ -192,9 +192,9 @@ if(WITH_DISTRIBUTE)
set
(
DISTRIBUTE_DEPS
""
)
if
(
WITH_GRPC
)
set
(
DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf
)
set
(
DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf
node
)
else
()
set
(
DISTRIBUTE_DEPS sendrecvop_brpc brpc leveldb snappystream snappy protobuf ssl crypto zlib
)
set
(
DISTRIBUTE_DEPS sendrecvop_brpc brpc leveldb snappystream snappy protobuf ssl crypto zlib
node
)
if
(
WITH_BRPC_RDMA
)
find_library
(
IBVERBS_LIBRARY NAMES ibverbs
)
ADD_LIBRARY
(
ibverbs SHARED IMPORTED GLOBAL
)
...
...
@@ -270,6 +270,7 @@ op_library(cos_sim_op DEPS cos_sim_functor)
op_library
(
parallel_do_op DEPS executor
)
op_library
(
unsqueeze_op DEPS reshape_op
)
op_library
(
squeeze_op DEPS reshape_op
)
op_library
(
extract_rows_op DEPS memory
)
if
(
WITH_GPU
)
op_library
(
conv_op DEPS vol2col depthwise_conv im2col
)
...
...
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
6f6d5527
...
...
@@ -77,7 +77,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
// cudnn 7 can support groups, no need to do it mannually
// FIXME(typhoonzero): find a better way to disable groups
// rather than setting it to 1.
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionGroupCount
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionGroupCount
(
cudnn_conv_desc
,
groups
));
groups
=
1
;
#endif
...
...
@@ -129,7 +129,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardAlgorithm
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardAlgorithm
(
handle
,
cudnn_input_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_output_desc
,
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT
,
workspace_size_limit
,
&
algo
));
...
...
@@ -140,18 +140,18 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
if
(
dev_ctx
.
GetComputeCapability
()
>=
70
&&
std
::
type_index
(
typeid
(
T
))
==
std
::
type_index
(
typeid
(
platform
::
float16
)))
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionMathType
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionMathType
(
cudnn_conv_desc
,
CUDNN_TENSOR_OP_MATH
));
// Currently tensor core is only enabled using this algo
algo
=
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
;
}
else
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionMathType
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionMathType
(
cudnn_conv_desc
,
CUDNN_DEFAULT_MATH
));
}
#endif
// get workspace size able to allocate
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardWorkspaceSize
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardWorkspaceSize
(
handle
,
cudnn_input_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_output_desc
,
algo
,
&
workspace_size_in_bytes
));
// It is possible for float16 on Volta GPU to allocate more memory than
...
...
@@ -165,7 +165,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn conv forward ---------------------
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
+
i
*
group_offset_in
,
cudnn_filter_desc
,
filter_data
+
i
*
group_offset_filter
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
...
...
@@ -218,7 +218,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
// cudnn 7 can support groups, no need to do it mannually
// FIXME(typhoonzero): find a better way to disable groups
// rather than setting it to 1.
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionGroupCount
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionGroupCount
(
cudnn_conv_desc
,
groups
));
groups
=
1
;
#endif
...
...
@@ -273,7 +273,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
auto
handle
=
dev_ctx
.
cudnn_handle
();
if
(
input_grad
)
{
if
(
FLAGS_cudnn_deterministic
)
{
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardDataAlgorithm
(
handle
,
cudnn_filter_desc
,
// dyDesc: Handle to the previously initialized input
...
...
@@ -289,7 +289,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
data_algo
=
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1
;
}
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardDataWorkspaceSize
(
handle
,
cudnn_filter_desc
,
cudnn_output_grad_desc
,
cudnn_conv_desc
,
cudnn_input_desc
,
data_algo
,
&
tmp_size
));
...
...
@@ -298,7 +298,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
if
(
filter_grad
)
{
if
(
FLAGS_cudnn_deterministic
)
{
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterAlgorithm
(
handle
,
cudnn_input_desc
,
cudnn_output_grad_desc
,
cudnn_conv_desc
,
cudnn_filter_desc
,
...
...
@@ -308,7 +308,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
filter_algo
=
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1
;
}
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterWorkspaceSize
(
handle
,
cudnn_input_desc
,
cudnn_output_grad_desc
,
cudnn_conv_desc
,
cudnn_filter_desc
,
filter_algo
,
&
tmp_size
));
...
...
@@ -326,7 +326,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
// Because beta is zero, it is unnecessary to reset input_grad.
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
handle
,
&
alpha
,
cudnn_filter_desc
,
filter_data
+
i
*
group_offset_filter
,
cudnn_output_grad_desc
,
output_grad_data
+
i
*
group_offset_out
,
cudnn_conv_desc
,
data_algo
,
...
...
@@ -339,7 +339,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset filter_grad.
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
+
i
*
group_offset_in
,
cudnn_output_grad_desc
,
output_grad_data
+
i
*
group_offset_out
,
cudnn_conv_desc
,
filter_algo
,
cudnn_workspace
,
...
...
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
浏览文件 @
6f6d5527
...
...
@@ -87,7 +87,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
// Get the algorithm
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardDataAlgorithm
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardDataAlgorithm
(
handle
,
cudnn_filter_desc
,
cudnn_input_desc
,
cudnn_conv_desc
,
// dxDesc: Handle to the previously initialized output tensor
// descriptor.
...
...
@@ -95,7 +95,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
workspace_size_limit
,
&
algo
));
// get workspace size able to allocate
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardDataWorkspaceSize
(
handle
,
cudnn_filter_desc
,
cudnn_input_desc
,
cudnn_conv_desc
,
cudnn_output_desc
,
algo
,
&
workspace_size_in_bytes
));
...
...
@@ -110,7 +110,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
int
filter_offset
=
filter
->
numel
()
/
groups
;
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
handle
,
&
alpha
,
cudnn_filter_desc
,
filter_data
+
filter_offset
*
g
,
cudnn_input_desc
,
input_data
+
input_offset
*
g
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
...
...
@@ -178,11 +178,11 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
auto
handle
=
dev_ctx
.
cudnn_handle
();
if
(
input_grad
)
{
// choose backward algorithm for data
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardAlgorithm
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardAlgorithm
(
handle
,
cudnn_output_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_input_desc
,
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT
,
workspace_size_limit
,
&
data_algo
));
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardWorkspaceSize
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardWorkspaceSize
(
handle
,
cudnn_output_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_input_desc
,
data_algo
,
&
fwd_ws_size
));
workspace_size_in_bytes
=
std
::
max
(
workspace_size_in_bytes
,
fwd_ws_size
);
...
...
@@ -190,7 +190,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
if
(
filter_grad
)
{
// choose backward algorithm for filter
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterAlgorithm
(
handle
,
cudnn_output_desc
,
cudnn_input_desc
,
cudnn_conv_desc
,
cudnn_filter_desc
,
...
...
@@ -198,7 +198,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
workspace_size_limit
,
&
filter_algo
));
// get workspace for backwards filter algorithm
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterWorkspaceSize
(
handle
,
cudnn_output_desc
,
cudnn_input_desc
,
cudnn_conv_desc
,
cudnn_filter_desc
,
filter_algo
,
&
bwd_filter_ws_size
));
...
...
@@ -222,7 +222,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset input_grad.
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
+
output_grad_offset
*
g
,
cudnn_filter_desc
,
filter_data
+
filter_offset
*
g
,
cudnn_conv_desc
,
data_algo
,
...
...
@@ -237,7 +237,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
// Because beta is zero, it is unnecessary to reset filter_grad.
// Gradient with respect to the filter
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
+
output_grad_offset
*
g
,
cudnn_input_desc
,
input_data
+
input_offset
*
g
,
cudnn_conv_desc
,
filter_algo
,
...
...
paddle/fluid/operators/distributed/CMakeLists.txt
浏览文件 @
6f6d5527
...
...
@@ -17,9 +17,9 @@ if(WITH_GRPC)
set
(
DISTRIBUTE_COMPILE_FLAGS
"-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor"
)
set_source_files_properties
(
grpc_serde_test.cc rpc_server_test.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
cc_test
(
grpc_serde_test SRCS grpc_serde_test.cc
DEPS grpc++_unsecure grpc_unsecure gpr cares zlib protobuf sendrecvop_grpc scope profiler math_function SERIAL
)
cc_test
(
grpc_server_test SRCS rpc_server_test.cc
DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf executor proto_desc lookup_table_op SERIAL
)
DEPS grpc++_unsecure grpc_unsecure gpr cares zlib protobuf sendrecvop_grpc scope profiler math_function SERIAL
)
cc_test
(
rpc_server_test SRCS rpc_server_test.cc
DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf executor proto_desc lookup_
sparse_
table_op SERIAL
)
return
()
endif
()
...
...
paddle/fluid/operators/distributed/grpc_client.cc
浏览文件 @
6f6d5527
...
...
@@ -36,20 +36,16 @@ void GRPCClient::InitEventLoop() {
client_thread_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
GRPCClient
::
Proceed
,
this
)));
}
void
GRPCClient
::
SendBeginPass
()
{
for
(
auto
&
it
:
channels_
)
{
VLOG
(
3
)
<<
"send begin pass to: "
<<
it
.
first
;
this
->
AsyncSendBeginPass
(
it
.
first
);
}
this
->
Wait
();
}
void
GRPCClient
::
SendEndPass
()
{
for
(
auto
&
it
:
channels_
)
{
VLOG
(
3
)
<<
"send end pass to "
<<
it
.
first
;
this
->
AsyncSendEndPass
(
it
.
first
);
void
GRPCClient
::
SendComplete
()
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
completed_mutex_
);
if
(
!
completed_
)
{
for
(
auto
&
it
:
channels_
)
{
VLOG
(
3
)
<<
"send complete message to "
<<
it
.
first
;
this
->
AsyncSendComplete
(
it
.
first
);
}
PADDLE_ENFORCE
(
this
->
Wait
(),
"internal grpc error"
);
completed_
=
true
;
}
this
->
Wait
();
}
GRPCClient
::~
GRPCClient
()
{
...
...
@@ -239,32 +235,19 @@ void GRPCClient::AsyncSendFetchBarrier(const std::string& ep,
req_count_
++
;
}
void
GRPCClient
::
AsyncSend
BeginPass
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
void
GRPCClient
::
AsyncSend
Complete
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
BatchBarrierProcessor
*
s
=
new
BatchBarrierProcessor
(
ch
);
s
->
Prepare
(
time_out
);
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
BEGIN_PASS
_MESSAGE
);
req
.
set_varname
(
COMPLETE
_MESSAGE
);
auto
rpc
=
s
->
stub_
->
AsyncSendVariable
(
s
->
context_
.
get
(),
req
,
&
cq_
);
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
req_count_
++
;
}
void
GRPCClient
::
AsyncSendEndPass
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
FetchBarrierProcessor
*
s
=
new
FetchBarrierProcessor
(
ch
);
s
->
Prepare
(
time_out
);
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
END_PASS_MESSAGE
);
auto
rpc
=
s
->
stub_
->
AsyncGetVariable
(
s
->
context_
.
get
(),
req
,
&
cq_
);
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
req_count_
++
;
}
void
GRPCClient
::
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
const
std
::
string
&
dir
,
int64_t
time_out
)
{
...
...
paddle/fluid/operators/distributed/grpc_client.h
浏览文件 @
6f6d5527
...
...
@@ -174,7 +174,7 @@ class CheckpointNotifyProcessor : public BaseProcessor {
class
GRPCClient
:
public
RPCClient
{
public:
GRPCClient
()
:
ok_
(
true
)
{}
GRPCClient
()
:
ok_
(
true
)
,
completed_
(
false
)
{}
virtual
~
GRPCClient
();
bool
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
...
...
@@ -201,17 +201,12 @@ class GRPCClient : public RPCClient {
void
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
const
std
::
string
&
dir
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
void
AsyncSendBeginPass
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
void
AsyncSendEndPass
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
void
AsyncSendComplete
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
bool
Wait
()
override
;
void
SendBeginPass
()
override
;
void
SendEndPass
()
override
;
void
SendComplete
()
override
;
protected:
void
InitImpl
()
override
;
...
...
@@ -238,6 +233,10 @@ class GRPCClient : public RPCClient {
// mutex for GetChannel thread safety
std
::
mutex
chan_mutex_
;
DISABLE_COPY_AND_ASSIGN
(
GRPCClient
);
// mutex for sending complete message only once
std
::
mutex
completed_mutex_
;
bool
completed_
;
};
}
// namespace distributed
...
...
paddle/fluid/operators/distributed/request_handler.h
浏览文件 @
6f6d5527
...
...
@@ -43,8 +43,6 @@ constexpr char kRequestPassBarrier[] = "RequestPassBarrier";
#define BATCH_BARRIER_MESSAGE "BATCH_BARRIER@RECV"
#define FETCH_BARRIER_MESSAGE "FETCH_BARRIER@RECV"
#define COMPLETE_MESSAGE "COMPLETE@RECV"
#define BEGIN_PASS_MESSAGE "BEGIN_PASS@RECV"
#define END_PASS_MESSAGE "END_PASS@RECV"
#define CHECKPOINT_SAVE_MESSAGE "SAVE@CHECKPOINTNOTIFY"
#define CHECKPOINT_LOAD_MESSAGE "LOAD@CHECKPOINTNOTIFY"
...
...
paddle/fluid/operators/distributed/request_handler_impl.cc
浏览文件 @
6f6d5527
...
...
@@ -55,10 +55,9 @@ bool RequestSendHandler::Handle(const std::string& varname,
if
(
varname
==
BATCH_BARRIER_MESSAGE
)
{
VLOG
(
3
)
<<
"sync: recv BATCH_BARRIER_MESSAGE"
;
rpc_server_
->
IncreaseBatchBarrier
(
kRequestSend
);
}
else
if
(
varname
==
BEGIN_PASS_MESSAGE
)
{
VLOG
(
3
)
<<
"sync: recv begin pass message"
;
rpc_server_
->
WaitCond
(
kRequestSend
);
rpc_server_
->
BeginPass
();
}
else
if
(
varname
==
COMPLETE_MESSAGE
)
{
VLOG
(
3
)
<<
"sync: recv complete message"
;
rpc_server_
->
Complete
();
}
else
{
VLOG
(
3
)
<<
"sync: received var_name: "
<<
varname
;
rpc_server_
->
WaitCond
(
kRequestSend
);
...
...
@@ -94,14 +93,12 @@ bool RequestGetHandler::Handle(const std::string& varname,
if
(
varname
==
FETCH_BARRIER_MESSAGE
)
{
VLOG
(
3
)
<<
"sync: recv fetch barrier message"
;
rpc_server_
->
IncreaseBatchBarrier
(
kRequestGet
);
}
else
if
(
varname
==
END_PASS_MESSAGE
)
{
rpc_server_
->
EndPass
();
}
else
{
rpc_server_
->
WaitCond
(
kRequestGet
);
*
outvar
=
scope_
->
FindVar
(
varname
);
}
}
else
{
if
(
varname
!=
FETCH_BARRIER_MESSAGE
&&
varname
!=
END_PASS
_MESSAGE
)
{
if
(
varname
!=
FETCH_BARRIER_MESSAGE
&&
varname
!=
COMPLETE
_MESSAGE
)
{
*
outvar
=
scope_
->
FindVar
(
varname
);
}
}
...
...
paddle/fluid/operators/distributed/rpc_client.h
浏览文件 @
6f6d5527
...
...
@@ -60,17 +60,13 @@ class RPCClient {
const
std
::
string
&
dir
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
void
AsyncSend
BeginPass
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
void
AsyncSend
Complete
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
void
AsyncSendEndPass
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
// BeginePass/EndPass tells all the pserver that start/end a pass, so that
// the pserver can increase/reduce it's barrier count, and continue to train
// Complete tells all the pserver instances that finishe the training,
// the pserver can reduce it's barrier count, and continue to train
// with other trainers.
virtual
void
SendBeginPass
()
=
0
;
virtual
void
SendEndPass
()
=
0
;
virtual
void
SendComplete
()
=
0
;
virtual
bool
Wait
()
=
0
;
...
...
paddle/fluid/operators/distributed/rpc_server.cc
浏览文件 @
6f6d5527
...
...
@@ -64,18 +64,7 @@ void RPCServer::IncreaseBatchBarrier(const std::string rpc_name) {
}
}
void
RPCServer
::
BeginPass
()
{
VLOG
(
4
)
<<
"RPCServer begin increase pass barrier"
;
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
client_num_
++
;
VLOG
(
4
)
<<
"increase client_num to: "
<<
client_num_
;
}
barrier_cond_
.
notify_all
();
}
void
RPCServer
::
EndPass
()
{
VLOG
(
4
)
<<
"RPCServer begin increase pass barrier"
;
void
RPCServer
::
Complete
()
{
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
client_num_
--
;
...
...
@@ -87,6 +76,11 @@ void RPCServer::EndPass() {
barrier_cond_
.
notify_all
();
}
int
RPCServer
::
GetClientNum
()
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
return
client_num_
;
}
void
RPCServer
::
ResetBarrierCounter
()
{
VLOG
(
3
)
<<
"RPCServer ResetBarrierCounter "
;
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
...
...
paddle/fluid/operators/distributed/rpc_server.h
浏览文件 @
6f6d5527
...
...
@@ -44,7 +44,7 @@ class RPCServer {
int
GetSelectedPort
()
const
{
return
selected_port_
;
}
int
GetClientNum
()
const
;
int
GetClientNum
();
void
SavePort
()
const
;
...
...
@@ -64,8 +64,7 @@ class RPCServer {
void
WaitCond
(
const
std
::
string
&
rpc_name
);
void
IncreaseBatchBarrier
(
const
std
::
string
rpc_name
);
void
BeginPass
();
void
EndPass
();
void
Complete
();
void
ResetBarrierCounter
();
...
...
paddle/fluid/operators/distributed/rpc_server_test.cc
浏览文件 @
6f6d5527
...
...
@@ -30,7 +30,7 @@ namespace framework = paddle::framework;
namespace
platform
=
paddle
::
platform
;
namespace
distributed
=
paddle
::
operators
::
distributed
;
USE_
OP
(
lookup
_table
);
USE_
NO_KERNEL_OP
(
lookup_sparse
_table
);
std
::
unique_ptr
<
distributed
::
RPCServer
>
g_rpc_service
;
std
::
unique_ptr
<
distributed
::
RequestHandler
>
g_req_handler
;
...
...
@@ -42,13 +42,13 @@ framework::BlockDesc* AppendPrefetchBlcok(framework::ProgramDesc* program) {
framework
::
VariableNameMap
input
({{
"W"
,
{
"w"
}},
{
"Ids"
,
{
"ids"
}}});
framework
::
VariableNameMap
output
({{
"Output"
,
{
"out"
}}});
auto
op
=
block
->
AppendOp
();
op
->
SetType
(
"lookup_table"
);
op
->
SetType
(
"lookup_
sparse_
table"
);
op
->
SetInput
(
"W"
,
{
"w"
});
op
->
SetInput
(
"Ids"
,
{
"ids"
});
op
->
SetOutput
(
"Out"
,
{
"out"
});
auto
&
out
=
*
root_block
->
Var
(
"out"
);
out
.
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
out
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
out
.
SetShape
({
10
,
10
});
return
block
;
...
...
@@ -59,20 +59,19 @@ void CreateVarsOnScope(framework::Scope* scope, platform::CPUPlace* place) {
w_var
->
GetMutable
<
framework
::
SelectedRows
>
();
auto
out_var
=
scope
->
Var
(
"out"
);
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
ids_var
=
scope
->
Var
(
"ids"
);
ids_var
->
GetMutable
<
framework
::
SelectedRows
>
();
ids_var
->
GetMutable
<
framework
::
LoDTensor
>
();
}
void
InitTensorsOnClient
(
framework
::
Scope
*
scope
,
platform
::
CPUPlace
*
place
,
int64_t
rows_numel
)
{
CreateVarsOnScope
(
scope
,
place
);
auto
ids_var
=
scope
->
Var
(
"ids"
)
->
GetMutable
<
framework
::
SelectedRows
>
();
auto
rows
=
ids_var
->
mutable_rows
();
for
(
int64_t
i
=
0
;
i
<
rows_numel
;
++
i
)
rows
->
push_back
(
i
*
2
);
ids_var
->
mutable_value
()
->
Resize
({
rows_numel
,
1
});
ids_var
->
mutable_value
()
->
mutable_data
<
float
>
(
*
place
);
auto
ids_var
=
scope
->
Var
(
"ids"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
int64_t
*
ids_ptr
=
ids_var
->
mutable_data
<
int64_t
>
(
framework
::
DDim
({
rows_numel
,
1
}),
*
place
);
for
(
int64_t
i
=
0
;
i
<
rows_numel
;
++
i
)
ids_ptr
[
i
]
=
i
*
2
;
}
void
InitTensorsOnServer
(
framework
::
Scope
*
scope
,
platform
::
CPUPlace
*
place
,
...
...
@@ -91,7 +90,7 @@ void InitTensorsOnServer(framework::Scope* scope, platform::CPUPlace* place,
}
}
void
StartServer
()
{
void
StartServer
(
const
std
::
string
&
rpc_name
)
{
framework
::
ProgramDesc
program
;
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
...
...
@@ -107,14 +106,14 @@ void StartServer() {
std
::
shared_ptr
<
framework
::
ExecutorPrepareContext
>>
prefetch_var_name_to_prepared
;
prefetch_var_name_to_prepared
[
in_var_name
]
=
prepared
[
0
];
g_req_handler
->
SetProgram
(
&
program
);
g_req_handler
->
SetPrefetchPreparedCtx
(
&
prefetch_var_name_to_prepared
);
g_req_handler
->
SetDevCtx
(
&
ctx
);
g_req_handler
->
SetScope
(
&
scope
);
g_req_handler
->
SetExecutor
(
&
exe
);
g_rpc_service
->
RegisterRPC
(
distributed
::
kRequestPrefetch
,
g_req_handler
.
get
());
g_rpc_service
->
RegisterRPC
(
rpc_name
,
g_req_handler
.
get
());
g_req_handler
->
SetRPCServer
(
g_rpc_service
.
get
());
std
::
thread
server_thread
(
...
...
@@ -129,7 +128,7 @@ TEST(PREFETCH, CPU) {
distributed
::
RPCClient
*
client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
std
::
thread
server_thread
(
StartServer
);
std
::
thread
server_thread
(
StartServer
,
distributed
::
kRequestPrefetch
);
g_rpc_service
->
WaitServerReady
();
int
port
=
g_rpc_service
->
GetSelectedPort
();
...
...
@@ -148,11 +147,11 @@ TEST(PREFETCH, CPU) {
client
->
AsyncPrefetchVar
(
ep
,
ctx
,
scope
,
in_var_name
,
out_var_name
);
client
->
Wait
();
auto
var
=
scope
.
Var
(
out_var_name
);
auto
value
=
var
->
GetMutable
<
framework
::
SelectedRows
>
()
->
value
();
auto
ptr
=
value
.
mutable_data
<
float
>
(
place
);
auto
value
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
ptr
=
value
->
mutable_data
<
float
>
(
place
);
for
(
int64_t
i
=
0
;
i
<
rows_numel
;
++
i
)
{
EXPECT_EQ
(
ptr
[
0
+
i
*
value
.
dims
()[
1
]],
static_cast
<
float
>
(
i
*
2
));
EXPECT_EQ
(
ptr
[
0
+
i
*
value
->
dims
()[
1
]],
static_cast
<
float
>
(
i
*
2
));
}
}
...
...
@@ -162,3 +161,24 @@ TEST(PREFETCH, CPU) {
g_rpc_service
.
reset
(
nullptr
);
g_req_handler
.
reset
(
nullptr
);
}
TEST
(
COMPLETE
,
CPU
)
{
g_req_handler
.
reset
(
new
distributed
::
RequestSendHandler
(
true
));
g_rpc_service
.
reset
(
new
RPCSERVER_T
(
"127.0.0.1:0"
,
2
));
distributed
::
RPCClient
*
client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
PADDLE_ENFORCE
(
client
!=
nullptr
);
std
::
thread
server_thread
(
StartServer
,
distributed
::
kRequestSend
);
g_rpc_service
->
WaitServerReady
();
int
port
=
g_rpc_service
->
GetSelectedPort
();
std
::
string
ep
=
paddle
::
string
::
Sprintf
(
"127.0.0.1:%d"
,
port
);
client
->
AsyncSendComplete
(
ep
);
client
->
Wait
();
EXPECT_EQ
(
g_rpc_service
->
GetClientNum
(),
1
);
g_rpc_service
->
ShutDown
();
server_thread
.
join
();
g_rpc_service
.
reset
(
nullptr
);
g_req_handler
.
reset
(
nullptr
);
}
paddle/fluid/operators/extract_rows_op.cc
0 → 100644
浏览文件 @
6f6d5527
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
class
ExtractRowsOpInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of ExtractRowsOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of ExtractRowsOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputsVarType
(
"X"
)[
0
],
framework
::
proto
::
VarType
::
SELECTED_ROWS
,
"The type of input(X) must be SelectedRows."
);
auto
in_dims
=
ctx
->
GetInputDim
(
"X"
);
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
std
::
vector
<
int64_t
>
{
in_dims
[
0
],
1
}));
}
};
class
ExtractRowsOp
:
public
framework
::
OperatorBase
{
public:
ExtractRowsOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
framework
::
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
in
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
SelectedRows
>
();
auto
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
in_rows
=
in
.
rows
();
auto
out_dim
=
framework
::
make_ddim
(
std
::
vector
<
int64_t
>
{
static_cast
<
int64_t
>
(
in_rows
.
size
()),
1
});
auto
dst_ptr
=
out
->
mutable_data
<
int64_t
>
(
out_dim
,
in
.
place
());
if
(
paddle
::
platform
::
is_gpu_place
(
in
.
place
()))
{
#ifdef PADDLE_WITH_CUDA
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
in
.
place
());
auto
src_ptr
=
in_rows
.
Data
(
in
.
place
());
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
*
dev_ctx
)
.
stream
();
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
out
->
place
()),
dst_ptr
,
boost
::
get
<
platform
::
CUDAPlace
>
(
in
.
place
()),
src_ptr
,
in_rows
.
size
()
*
sizeof
(
int64_t
),
stream
);
#else
PADDLE_THROW
(
"Not compiled with CUDA."
);
#endif
}
else
{
memory
::
Copy
(
platform
::
CPUPlace
(),
dst_ptr
,
platform
::
CPUPlace
(),
in_rows
.
data
(),
in_rows
.
size
()
*
sizeof
(
int64_t
));
}
}
};
class
ExtractRowsOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(SelectedRows). The input tensor of extract_rows operator,"
" and its type is SelectedRows."
);
AddOutput
(
"Out"
,
"(Tensor). The the rows of input(X)."
);
AddComment
(
R"DOC(
ExtractRows Operator.
The function of extract_rows_op is extracting the rows from the input(X)
whose type is SelectedRows.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
extract_rows
,
ops
::
ExtractRowsOp
,
ops
::
ExtractRowsOpMaker
,
ops
::
ExtractRowsOpInferShape
);
paddle/fluid/operators/lookup_table_op.cc
浏览文件 @
6f6d5527
...
...
@@ -33,19 +33,15 @@ class LookupTableOp : public framework::OperatorWithKernel {
auto
table_dims
=
ctx
->
GetInputDim
(
"W"
);
auto
ids_dims
=
ctx
->
GetInputDim
(
"Ids"
);
auto
ids_var_type
=
ctx
->
GetInputsVarType
(
"Ids"
).
front
();
// The type of Ids(Input) is SelectedRows or LoDTensor, when Ids's type
// is LoDTensor, this tensor contains the ids to be looked up in W
// and it must be a column vector with rank = 2 while the 2nd dimension
// size must be 1, when Ids's type is SelectedRows, the rows of Ids
// contains the ids to be looked up in W;
if
(
ids_var_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
PADDLE_ENFORCE_EQ
(
ids_dims
.
size
(),
2
);
PADDLE_ENFORCE_EQ
(
ids_dims
[
1
],
1
);
}
PADDLE_ENFORCE_EQ
(
ids_dims
.
size
(),
2
);
PADDLE_ENFORCE_EQ
(
ids_dims
[
1
],
1
);
ctx
->
SetOutputDim
(
"Out"
,
{
ids_dims
[
0
],
table_dims
[
1
]});
ctx
->
ShareLoD
(
"Ids"
,
/*->*/
"Out"
);
if
(
ctx
->
GetOutputsVarType
(
"Out"
)[
0
]
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
ctx
->
ShareLoD
(
"Ids"
,
/*->*/
"Out"
);
}
}
protected:
...
...
@@ -62,17 +58,12 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"W"
,
"(Tensor) The input represents embedding tensors, "
"which is a learnable parameter."
);
AddInput
(
"Ids"
,
"(Tensor or SelectedRows) Ids's type can be Tensor or "
"SelectedRows, when Ids's type is Tensor, this tensor contains "
"the ids to be looked up in W and it must be a column vector with "
"rank = 2 while the 2nd dimension size must be 1; when Ids's type is "
"SelectedRows, the rows of Ids contains the ids to be looked up "
"in W."
);
AddOutput
(
"Out"
,
"(Tensor or SelectedRows) The lookup results, which have the "
"same type as W."
);
AddInput
(
"Ids"
,
"An input with type int32 or int64 "
"contains the ids to be looked up in W. "
"Ids must be a column vector with rank = 2. "
"The 2nd dimension size must be 1."
);
AddOutput
(
"Out"
,
"The lookup results, which have the same type as W."
);
AddAttr
<
bool
>
(
"is_sparse"
,
"(boolean, default false) "
"Sparse update."
)
...
...
@@ -90,15 +81,10 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
Lookup Table Operator.
This operator is used to perform lookups on the parameter W,
then concatenated into a dense or sparse tensor.
The type of Ids(Input) is SelectedRows, Tensor or LoDTensor, when Ids's
type is SelectedRows, the rows of Ids contains the ids to be looked up in W;
when Ids's type is Tensor, this tensor contains the ids to be looked up in W
and it must be a column vector with rank = 2 while the 2nd dimension size must be 1,
at this time, Ids can carry the LoD (Level of Details) information, or not, and
the output only shares the LoD information with input Ids.
then concatenated into a dense tensor.
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
)DOC"
);
}
...
...
paddle/fluid/operators/lookup_table_op.cu
浏览文件 @
6f6d5527
...
...
@@ -23,7 +23,7 @@ namespace operators {
template
<
typename
T
,
int
BlockDimX
,
int
BlockDimY
,
int
GridDimX
,
bool
PaddingFlag
>
__global__
void
LookupTable
(
T
*
output
,
const
T
*
table
,
const
int64_t
*
ids
,
__global__
void
LookupTable
(
T
*
output
,
const
T
*
table
,
const
int64_t
*
ids
,
const
int64_t
N
,
const
int64_t
K
,
const
int64_t
D
,
const
int64_t
padding_idx
)
{
int
idx
=
threadIdx
.
x
;
...
...
@@ -33,8 +33,8 @@ __global__ void LookupTable(T* output, const T* table, const int64_t* ids,
int64_t
id
=
ids
[
idy
];
PADDLE_ASSERT
(
id
>=
0
);
PADDLE_ASSERT
(
id
<
N
);
T
*
out
=
output
+
idy
*
D
;
const
T
*
tab
=
table
+
id
*
D
;
T
*
out
=
output
+
idy
*
D
;
const
T
*
tab
=
table
+
id
*
D
;
for
(
int
i
=
idx
;
i
<
D
;
i
+=
BlockDimX
)
{
if
(
PaddingFlag
)
{
if
(
id
==
padding_idx
)
...
...
@@ -50,7 +50,7 @@ __global__ void LookupTable(T* output, const T* table, const int64_t* ids,
}
template
<
typename
T
,
int
BlockDimX
,
int
BlockDimY
,
int
GridDimX
>
__global__
void
LookupTableGrad
(
T
*
table
,
const
T
*
output
,
const
int64_t
*
ids
,
__global__
void
LookupTableGrad
(
T
*
table
,
const
T
*
output
,
const
int64_t
*
ids
,
const
int64_t
N
,
const
int64_t
K
,
const
int64_t
D
)
{
int
idx
=
threadIdx
.
x
;
...
...
@@ -60,8 +60,8 @@ __global__ void LookupTableGrad(T* table, const T* output, const int64_t* ids,
int
id
=
ids
[
idy
];
PADDLE_ASSERT
(
id
>=
0
);
PADDLE_ASSERT
(
id
<
N
);
const
T
*
out
=
output
+
idy
*
D
;
T
*
tab
=
table
+
id
*
D
;
const
T
*
out
=
output
+
idy
*
D
;
T
*
tab
=
table
+
id
*
D
;
for
(
int
i
=
idx
;
i
<
D
;
i
+=
BlockDimX
)
{
paddle
::
platform
::
CudaAtomicAdd
(
&
tab
[
i
],
out
[
i
]);
}
...
...
@@ -72,36 +72,19 @@ __global__ void LookupTableGrad(T* table, const T* output, const int64_t* ids,
template
<
typename
T
>
class
LookupTableCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
table_t
=
context
.
Input
<
LoDTensor
>
(
"W"
);
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
table_t
=
context
.
Input
<
LoDTensor
>
(
"W"
);
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int64_t
padding_idx
=
context
.
Attr
<
int64_t
>
(
"padding_idx"
);
auto
*
ids_var
=
context
.
InputVar
(
"Ids"
);
Tensor
*
output_t
=
context
.
Output
<
Tensor
>
(
"Out"
);
int64_t
*
ids
;
int64_t
K
;
// The type of Ids(Input) is SelectedRows or LoDTensor, when Ids's type
// is LoDTensor, this tensor contains the ids to be looked up in W;
// when Ids's type is SelectedRows, the rows of Ids contains the
// ids to be looked up in W.
if
(
ids_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
K
=
ids_t
->
numel
();
}
else
if
(
ids_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
*
ids_t
=
context
.
Input
<
framework
::
SelectedRows
>
(
"Ids"
);
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
rows
().
CUDAData
(
context
.
GetPlace
()));
K
=
ids_t
->
rows
().
size
();
output_t
->
Resize
({
K
,
table_t
->
dims
()[
1
]});
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Ids"
);
}
size_t
N
=
table_t
->
dims
()[
0
];
size_t
D
=
table_t
->
dims
()[
1
];
auto
*
table
=
table_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
size_t
K
=
ids_t
->
numel
();
auto
*
ids
=
ids_t
->
data
<
int64_t
>
();
auto
*
table
=
table_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
dim3
threads
(
128
,
8
);
dim3
grids
(
8
,
1
);
...
...
@@ -122,19 +105,19 @@ class LookupTableCUDAKernel : public framework::OpKernel<T> {
template
<
typename
T
>
class
LookupTableGradCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
bool
is_sparse
=
context
.
Attr
<
bool
>
(
"is_sparse"
);
// Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward.
if
(
is_sparse
)
{
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
table
=
context
.
Input
<
LoDTensor
>
(
"W"
);
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_table
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
table
=
context
.
Input
<
LoDTensor
>
(
"W"
);
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_table
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
auto
ids_dim
=
ids
->
dims
();
auto
stream
=
dev_ctx
.
stream
();
...
...
@@ -150,12 +133,12 @@ class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
d_table
->
set_rows
(
new_rows
);
auto
*
d_table_value
=
d_table
->
mutable_value
();
auto
*
d_table_value
=
d_table
->
mutable_value
();
d_table_value
->
Resize
({
ids_dim
[
0
],
table
->
dims
()[
1
]});
d_table_value
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
d_table_data
=
d_table_value
->
data
<
T
>
();
auto
*
d_output_data
=
d_output
->
data
<
T
>
();
auto
*
d_table_data
=
d_table_value
->
data
<
T
>
();
auto
*
d_output_data
=
d_output
->
data
<
T
>
();
PADDLE_ENFORCE_EQ
(
d_table_value
->
dims
(),
d_output
->
dims
());
memory
::
Copy
(
gpu_place
,
d_table_data
,
gpu_place
,
d_output_data
,
d_output
->
numel
()
*
sizeof
(
T
),
stream
);
...
...
@@ -168,9 +151,9 @@ class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
int
N
=
d_table_t
->
dims
()[
0
];
int
D
=
d_table_t
->
dims
()[
1
];
int
K
=
ids_t
->
numel
();
const
int64_t
*
ids
=
ids_t
->
data
<
int64_t
>
();
const
T
*
d_output
=
d_output_t
->
data
<
T
>
();
T
*
d_table
=
d_table_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int64_t
*
ids
=
ids_t
->
data
<
int64_t
>
();
const
T
*
d_output
=
d_output_t
->
data
<
T
>
();
T
*
d_table
=
d_table_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_table_t
);
t
.
device
(
*
dev_ctx
.
eigen_device
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
...
...
paddle/fluid/operators/lookup_table_op.h
浏览文件 @
6f6d5527
...
...
@@ -36,43 +36,13 @@ template <typename T>
class
LookupTableKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
auto
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
auto
*
table_var
=
context
.
InputVar
(
"W"
);
auto
*
ids_var
=
context
.
InputVar
(
"Ids"
);
Tensor
*
output_t
=
context
.
Output
<
Tensor
>
(
"Out"
);
int64_t
padding_idx
=
context
.
Attr
<
int64_t
>
(
"padding_idx"
);
DDim
table_dim
;
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
table_dim
=
context
.
Input
<
LoDTensor
>
(
"W"
)
->
dims
();
}
else
if
(
table_var
->
IsType
<
SelectedRows
>
())
{
auto
*
table_t
=
context
.
Input
<
SelectedRows
>
(
"W"
);
table_dim
=
table_t
->
value
().
dims
();
}
else
{
PADDLE_THROW
(
"The parameter W of a LookupTable "
"must be either LoDTensor or SelectedRows"
);
}
int64_t
*
ids
;
int64_t
ids_numel
;
// The type of Ids(Input) is SelectedRows or LoDTensor, when Ids's type
// is LoDTensor, this tensor contains the ids to be looked up in W;
// when Ids's type is SelectedRows, the rows of Ids contains the
// ids to be looked up in W.
if
(
ids_var
->
IsType
<
LoDTensor
>
())
{
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
ids_numel
=
ids_t
->
numel
();
}
else
if
(
ids_var
->
IsType
<
SelectedRows
>
())
{
auto
*
ids_t
=
context
.
Input
<
SelectedRows
>
(
"Ids"
);
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
rows
().
data
());
ids_numel
=
ids_t
->
rows
().
size
();
output_t
->
Resize
({
ids_numel
,
table_dim
[
1
]});
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Ids"
);
}
int64_t
padding_idx
=
context
.
Attr
<
int64_t
>
(
"padding_idx"
);
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
int64_t
ids_numel
=
ids_t
->
numel
();
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
auto
*
table_t
=
context
.
Input
<
LoDTensor
>
(
"W"
);
...
...
paddle/fluid/operators/math/im2col.cc
浏览文件 @
6f6d5527
...
...
@@ -40,22 +40,47 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
int
im_width
=
im
.
dims
()[
2
];
int
filter_height
=
col
->
dims
()[
1
];
int
filter_width
=
col
->
dims
()[
2
];
int
col
_height
=
col
->
dims
()[
3
];
int
col
_width
=
col
->
dims
()[
4
];
int
output
_height
=
col
->
dims
()[
3
];
int
output
_width
=
col
->
dims
()[
4
];
int
channels_col
=
im_channels
*
filter_height
*
filter_width
;
const
T
*
im_data
=
im
.
data
<
T
>
();
T
*
col_data
=
col
->
data
<
T
>
();
// TODO(TJ): change me to template
// further optimaze:
// 1. padding != 1
// 2. could also support stride_h != 1
if
(
stride
[
0
]
==
1
&&
stride
[
1
]
==
1
&&
dilation
[
0
]
==
1
&&
dilation
[
1
]
==
1
&&
padding
[
0
]
==
0
&&
padding
[
1
]
==
0
)
{
int
col_matrix_width
=
output_width
*
output_height
;
size_t
copy_size
=
sizeof
(
T
)
*
output_width
;
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
const
T
*
im_data_start
=
im_data
+
oh
*
im_width
;
T
*
dst_data
=
col_data
+
oh
*
output_width
;
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
const
T
*
src_data
=
im_data_start
+
ic
*
im_height
*
im_width
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
std
::
memcpy
(
dst_data
,
src_data
+
kw
,
copy_size
);
dst_data
=
dst_data
+
col_matrix_width
;
}
src_data
=
src_data
+
im_width
;
}
}
}
return
;
}
for
(
int
c
=
0
;
c
<
channels_col
;
++
c
)
{
int
w_offset
=
c
%
filter_width
;
int
h_offset
=
(
c
/
filter_width
)
%
filter_height
;
int
c_im
=
c
/
(
filter_width
*
filter_height
);
for
(
int
h
=
0
;
h
<
col
_height
;
++
h
)
{
for
(
int
h
=
0
;
h
<
output
_height
;
++
h
)
{
int
im_row_idx
=
h
*
stride
[
0
]
-
padding
[
0
]
+
h_offset
*
dilation
[
0
];
for
(
int
w
=
0
;
w
<
col
_width
;
++
w
)
{
for
(
int
w
=
0
;
w
<
output
_width
;
++
w
)
{
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
int
col_idx
=
(
c
*
col_height
+
h
)
*
col
_width
+
w
;
int
col_idx
=
(
c
*
output_height
+
h
)
*
output
_width
+
w
;
int
im_idx
=
(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
;
col_data
[
col_idx
]
=
(
im_row_idx
<
0
||
im_row_idx
>=
im_height
||
...
...
paddle/fluid/operators/math/im2col_test.cc
浏览文件 @
6f6d5527
...
...
@@ -160,8 +160,80 @@ void testIm2col() {
delete
context
;
}
void
testIm2colCPU
(
int
ic
,
int
ih
,
int
iw
,
int
fh
,
int
fw
,
int
ph
,
int
pw
)
{
paddle
::
framework
::
Tensor
input
;
paddle
::
framework
::
Tensor
output
;
paddle
::
framework
::
Tensor
ref_output
;
std
::
vector
<
int
>
padding
({
ph
,
pw
});
std
::
vector
<
int
>
stride
({
1
,
1
});
// stride_y, stride_x
std
::
vector
<
int
>
dilation
({
1
,
1
});
// dilation_y, dilation_x
int
output_height
=
(
ih
-
fh
+
padding
[
0
]
*
2
)
/
stride
[
0
]
+
1
;
int
output_width
=
(
iw
-
fw
+
padding
[
1
]
*
2
)
/
stride
[
1
]
+
1
;
float
*
input_ptr
=
input
.
mutable_data
<
float
>
({
ic
,
ih
,
iw
},
paddle
::
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
input
.
numel
();
++
i
)
{
input_ptr
[
i
]
=
static_cast
<
float
>
(
i
+
1
);
}
paddle
::
platform
::
CPUPlace
place
;
paddle
::
platform
::
CPUDeviceContext
context
(
place
);
output
.
mutable_data
<
float
>
({
ic
,
fh
,
fw
,
output_height
,
output_width
},
place
);
ref_output
.
mutable_data
<
float
>
({
ic
,
fh
,
fw
,
output_height
,
output_width
},
place
);
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
paddle
::
platform
::
CPUDeviceContext
,
float
>
im2col
;
im2col
(
context
,
input
,
dilation
,
stride
,
padding
,
&
output
);
auto
ref_im2col
=
[
&
](
const
paddle
::
framework
::
Tensor
&
im
,
const
std
::
vector
<
int
>&
dilation
,
const
std
::
vector
<
int
>&
stride
,
const
std
::
vector
<
int
>&
padding
,
paddle
::
framework
::
Tensor
*
col
)
{
int
im_channels
=
im
.
dims
()[
0
];
int
im_height
=
im
.
dims
()[
1
];
int
im_width
=
im
.
dims
()[
2
];
int
filter_height
=
col
->
dims
()[
1
];
int
filter_width
=
col
->
dims
()[
2
];
int
output_height
=
col
->
dims
()[
3
];
int
output_width
=
col
->
dims
()[
4
];
int
channels_col
=
im_channels
*
filter_height
*
filter_width
;
const
float
*
im_data
=
im
.
data
<
float
>
();
float
*
col_data
=
col
->
data
<
float
>
();
for
(
int
c
=
0
;
c
<
channels_col
;
++
c
)
{
int
w_offset
=
c
%
filter_width
;
int
h_offset
=
(
c
/
filter_width
)
%
filter_height
;
int
c_im
=
c
/
(
filter_width
*
filter_height
);
for
(
int
h
=
0
;
h
<
output_height
;
++
h
)
{
int
im_row_idx
=
h
*
stride
[
0
]
-
padding
[
0
]
+
h_offset
*
dilation
[
0
];
for
(
int
w
=
0
;
w
<
output_width
;
++
w
)
{
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
int
col_idx
=
(
c
*
output_height
+
h
)
*
output_width
+
w
;
int
im_idx
=
(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
;
col_data
[
col_idx
]
=
(
im_row_idx
<
0
||
im_row_idx
>=
im_height
||
im_col_idx
<
0
||
im_col_idx
>=
im_width
)
?
0.
f
:
im_data
[
im_idx
];
}
}
}
};
ref_im2col
(
input
,
dilation
,
stride
,
padding
,
&
ref_output
);
float
*
out_cfo_ptr
=
output
.
data
<
float
>
();
float
*
out_ref_ptr
=
ref_output
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
output
.
numel
();
++
i
)
{
EXPECT_EQ
(
out_cfo_ptr
[
i
],
out_ref_ptr
[
i
]);
}
}
TEST
(
math
,
im2col
)
{
testIm2col
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
CPUPlace
>
();
testIm2colCPU
(
/*ic*/
3
,
/*ih*/
5
,
/*iw*/
5
,
/*fh*/
3
,
/*fw*/
2
,
/*ph*/
0
,
/*pw*/
0
);
testIm2colCPU
(
/*ic*/
2
,
/*ih*/
5
,
/*iw*/
4
,
/*fh*/
3
,
/*fw*/
3
,
/*ph*/
1
,
/*pw*/
1
);
#ifdef PADDLE_WITH_CUDA
testIm2col
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
CUDAPlace
>
();
...
...
paddle/fluid/operators/math/softmax.cu
浏览文件 @
6f6d5527
...
...
@@ -52,7 +52,7 @@ void SoftmaxCUDNNFunctor<T>::operator()(
xDesc
.
descriptor
<
T
>
(
layout
,
cudnn_tensor_dims
);
cudnnTensorDescriptor_t
cudnn_y_desc
=
xDesc
.
descriptor
<
T
>
(
layout
,
cudnn_tensor_dims
);
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnSoftmaxForward
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnSoftmaxForward
(
context
.
cudnn_handle
(),
CUDNN_SOFTMAX_ACCURATE
,
CUDNN_SOFTMAX_MODE_INSTANCE
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_x_desc
,
X
->
data
<
T
>
(),
CudnnDataType
<
T
>::
kZero
(),
cudnn_y_desc
,
...
...
@@ -83,7 +83,7 @@ void SoftmaxGradCUDNNFunctor<T>::operator()(
dxDesc
.
descriptor
<
T
>
(
layout
,
cudnn_tensor_dims
);
cudnnTensorDescriptor_t
cudnn_ygrad_desc
=
dyDesc
.
descriptor
<
T
>
(
layout
,
cudnn_tensor_dims
);
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnSoftmaxBackward
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnSoftmaxBackward
(
context
.
cudnn_handle
(),
CUDNN_SOFTMAX_ACCURATE
,
CUDNN_SOFTMAX_MODE_INSTANCE
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_y_desc
,
Y
->
data
<
T
>
(),
cudnn_ygrad_desc
,
YGrad
->
data
<
T
>
(),
...
...
paddle/fluid/operators/pool_cudnn_op.cu.cc
浏览文件 @
6f6d5527
...
...
@@ -81,7 +81,7 @@ class PoolCUDNNOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn pool algorithm ---------------------
auto
handle
=
ctx
.
cuda_device_context
().
cudnn_handle
();
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnPoolingForward
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnPoolingForward
(
handle
,
cudnn_pool_desc
,
&
alpha
,
cudnn_input_desc
,
input_data
,
&
beta
,
cudnn_output_desc
,
output_data
));
}
...
...
@@ -154,7 +154,7 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset input_grad.
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnPoolingBackward
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnPoolingBackward
(
handle
,
cudnn_pool_desc
,
&
alpha
,
cudnn_output_desc
,
output_data
,
cudnn_output_desc
,
output_grad_data
,
cudnn_input_desc
,
input_data
,
&
beta
,
cudnn_input_desc
,
input_grad_data
));
...
...
paddle/fluid/operators/send_recv_util.h
浏览文件 @
6f6d5527
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/node.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -22,7 +23,10 @@ inline bool NeedSend(const framework::Scope& scope,
const
std
::
string
&
varname
)
{
// dummy variable is only used in parallel executor to represent
// some dependency relationship, we don't need to send/recv it.
if
(
varname
==
"dummy"
)
return
false
;
// TODO(paddle-dev): Why would parallel executor logic leaked into here?
if
(
varname
.
find
(
framework
::
ir
::
Node
::
kControlDepVarName
)
!=
std
::
string
::
npos
)
return
false
;
auto
*
var
=
scope
.
FindVar
(
varname
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
"Can not find variable '%s' in the send side."
,
varname
);
...
...
paddle/fluid/platform/cpu_helper.cc
浏览文件 @
6f6d5527
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_MKLML
#include <omp.h>
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
...
...
@@ -33,6 +34,7 @@ void SetNumThreads(int num_threads) {
#elif defined(PADDLE_WITH_MKLML)
int
real_num_threads
=
num_threads
>
1
?
num_threads
:
1
;
platform
::
dynload
::
MKL_Set_Num_Threads
(
real_num_threads
);
omp_set_num_threads
(
num_threads
);
#else
PADDLE_ENFORCE
(
false
,
"To be implemented."
);
#endif
...
...
paddle/fluid/platform/cudnn_helper.h
浏览文件 @
6f6d5527
...
...
@@ -59,13 +59,12 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) {
#define CUDNN_VERSION_MIN(major, minor, patch) \
(CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))
#define CUDNN_ENFORCE(condition) \
do { \
cudnnStatus_t status = condition; \
if (status != CUDNN_STATUS_SUCCESS) { \
VLOG(1) << ::paddle::platform::cudnnGetErrorString(status); \
PADDLE_THROW("cuDNN call failed"); \
} \
#define CUDNN_ENFORCE(condition) \
do { \
cudnnStatus_t status = condition; \
if (UNLIKELY(status != CUDNN_STATUS_SUCCESS)) { \
PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
} \
} while (false)
enum
class
DataLayout
{
// Not use
...
...
paddle/fluid/platform/init.cc
浏览文件 @
6f6d5527
...
...
@@ -23,6 +23,9 @@ limitations under the License. */
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/piece.h"
DEFINE_int32
(
paddle_num_threads
,
1
,
"Number of threads for each paddle instance."
);
namespace
paddle
{
namespace
framework
{
...
...
@@ -115,7 +118,7 @@ void InitDevices(bool init_p2p, const std::vector<int> devices) {
places
.
emplace_back
(
platform
::
CPUPlace
());
platform
::
DeviceContextPool
::
Init
(
places
);
#ifndef PADDLE_WITH_MKLDNN
platform
::
SetNumThreads
(
1
);
platform
::
SetNumThreads
(
FLAGS_paddle_num_threads
);
#endif
}
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
6f6d5527
...
...
@@ -498,10 +498,7 @@ All parameter, weight, gradient are variables in Paddle.
py
::
class_
<
framework
::
Executor
>
(
m
,
"Executor"
)
.
def
(
py
::
init
<
const
platform
::
Place
&>
())
#ifdef PADDLE_WITH_DISTRIBUTE
.
def
(
"begin_pass"
,
&
Executor
::
BeginPass
)
.
def
(
"end_pass"
,
&
Executor
::
EndPass
)
#endif
.
def
(
"close"
,
&
Executor
::
Close
)
.
def
(
"run"
,
[](
Executor
&
self
,
const
ProgramDesc
&
prog
,
Scope
*
scope
,
int
block_id
,
bool
create_local_scope
,
bool
create_vars
)
{
pybind11
::
gil_scoped_release
release
;
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
6f6d5527
...
...
@@ -547,6 +547,7 @@ function test_fluid_inference_lib() {
EOF
cd
${
PADDLE_ROOT
}
/paddle/fluid/inference/api/demo_ci
./run.sh
${
PADDLE_ROOT
}
${
WITH_MKL
:-
ON
}
${
WITH_GPU
:-
OFF
}
./clean.sh
fi
}
...
...
python/paddle/fluid/__init__.py
浏览文件 @
6f6d5527
...
...
@@ -62,33 +62,33 @@ from paddle.fluid.layers.math_op_patch import monkey_patch_variable
Tensor
=
LoDTensor
__all__
=
framework
.
__all__
+
executor
.
__all__
+
concurrency
.
__all__
+
\
trainer
.
__all__
+
inferencer
.
__all__
+
transpiler
.
__all__
+
\
parallel_executor
.
__all__
+
lod_tensor
.
__all__
+
[
'io'
,
'initializer'
,
'layers'
,
'contrib'
,
'transpiler'
,
'nets'
,
'optimizer'
,
'learning_rate_decay'
,
'backward'
,
'regularizer'
,
'LoDTensor'
,
'LoDTensorArray'
,
'CPUPlace'
,
'CUDAPlace'
,
'CUDAPinnedPlace'
,
'Tensor'
,
'ParamAttr'
,
'WeightNormParamAttr'
,
'DataFeeder'
,
'clip'
,
'profiler'
,
'unique_name'
,
'recordio_writer'
,
'Scope'
,
]
trainer
.
__all__
+
inferencer
.
__all__
+
transpiler
.
__all__
+
\
parallel_executor
.
__all__
+
lod_tensor
.
__all__
+
[
'io'
,
'initializer'
,
'layers'
,
'contrib'
,
'transpiler'
,
'nets'
,
'optimizer'
,
'learning_rate_decay'
,
'backward'
,
'regularizer'
,
'LoDTensor'
,
'LoDTensorArray'
,
'CPUPlace'
,
'CUDAPlace'
,
'CUDAPinnedPlace'
,
'Tensor'
,
'ParamAttr'
,
'WeightNormParamAttr'
,
'DataFeeder'
,
'clip'
,
'profiler'
,
'unique_name'
,
'recordio_writer'
,
'Scope'
,
]
def
__bootstrap__
():
...
...
@@ -123,7 +123,7 @@ def __bootstrap__():
read_env_flags
=
[
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
]
if
core
.
is_compiled_with_dist
():
read_env_flags
.
append
(
'rpc_deadline'
)
...
...
python/paddle/fluid/executor.py
浏览文件 @
6f6d5527
...
...
@@ -247,6 +247,7 @@ class Executor(object):
p
.
set_place
(
place
)
self
.
executor
=
core
.
Executor
(
p
)
self
.
program_caches
=
dict
()
self
.
_closed
=
False
def
as_lodtensor
(
self
,
data
):
"""
...
...
@@ -348,11 +349,23 @@ class Executor(object):
]
return
outs
def
begin_pass
(
self
):
self
.
executor
.
begin_pass
()
def
close
(
self
):
"""
Close this executor.
def
end_pass
(
self
):
self
.
executor
.
end_pass
()
You can no long use this executor after calling this method.
For the distributed training, this method would free the resource on PServers related to
the current Trainer.
Example:
>>> cpu = core.CPUPlace()
>>> exe = Executor(cpu)
>>> ...
>>> exe.close()
"""
if
not
self
.
_closed
:
self
.
executor
.
close
()
self
.
_closed
=
True
def
run
(
self
,
program
=
None
,
...
...
@@ -405,6 +418,10 @@ class Executor(object):
>>> feed={'X': x},
>>> fetch_list=[loss.name])
"""
if
self
.
_closed
:
raise
RuntimeError
(
"Attempted to use a closed Executor"
)
if
feed
is
None
:
feed
=
{}
if
not
isinstance
(
feed
,
dict
):
...
...
python/paddle/fluid/framework.py
浏览文件 @
6f6d5527
...
...
@@ -1540,7 +1540,12 @@ class Program(object):
def
inference_optimize
(
self
):
"""
This method will create a new program and change the :code:`is_test`
This method will create a new program and do following adjustments on it:
1. Remove all reader variables and their creator ops if exist.
2. Remove the :code:`read_op` if exists.
3. change the :code:`is_test`
attribute of operators to :code:`True`. All the :code:`Parameter`
information will be lost.
...
...
@@ -1554,6 +1559,22 @@ class Program(object):
# core.inference_optimize being fixed.
res
=
Program
()
res
.
desc
=
core
.
ProgramDesc
(
self
.
desc
)
# remove all readers and the read_op if exist
read_op_idx
=
0
root_block
=
res
.
desc
.
block
(
0
)
while
True
:
if
read_op_idx
>=
root_block
.
op_size
()
or
root_block
.
op
(
read_op_idx
).
type
()
==
'read'
:
break
read_op_idx
+=
1
if
read_op_idx
<
root_block
.
op_size
():
root_block
.
_remove_op
(
0
,
read_op_idx
+
1
)
for
var
in
root_block
.
all_vars
():
if
var
.
type
()
==
core
.
VarDesc
.
VarType
.
READER
:
root_block
.
_remove_var
(
var
.
name
())
# change all `is_test` attributes to True
for
i
in
xrange
(
res
.
desc
.
num_blocks
()):
block
=
res
.
desc
.
block
(
i
)
for
j
in
xrange
(
block
.
op_size
()):
...
...
python/paddle/fluid/io.py
浏览文件 @
6f6d5527
...
...
@@ -790,101 +790,3 @@ def get_parameter_value_by_name(name, executor, program=None):
program
=
default_main_program
()
var
=
program
.
global_block
().
var
(
name
)
return
get_parameter_value
(
var
,
executor
)
def
get_test_program
(
filelist
,
program
=
None
,
startup_program
=
None
):
"""
Transpile current train program to a program to read test dataset
if the program is using reader ops like "open_files_op".
"""
def
_copy_reader_var_
(
block
,
var
,
new_name
=
None
):
if
new_name
==
None
:
new_name
=
var
.
name
new_var
=
block
.
create_var
(
name
=
str
(
new_name
),
type
=
core
.
VarDesc
.
VarType
.
READER
)
new_var
.
desc
.
set_shapes
(
var
.
desc
.
shapes
())
new_var
.
desc
.
set_dtypes
(
var
.
desc
.
dtypes
())
new_var
.
persistable
=
True
return
new_var
def
_get_test_reader_name
(
train_reader_name
):
return
train_reader_name
+
"_test"
def
_is_reader_op
(
op
):
block
=
op
.
block
if
"Out"
in
op
.
output_names
:
reader_out
=
block
.
vars
[
op
.
output
(
"Out"
)[
0
]]
if
reader_out
.
type
==
core
.
VarDesc
.
VarType
.
READER
:
return
True
return
False
if
program
==
None
:
program
=
default_main_program
()
if
startup_program
==
None
:
startup_program
=
default_startup_program
()
startup_block
=
startup_program
.
global_block
()
# 1. find out the orignal reader var name
startup_reader_op_list
=
[]
for
op
in
startup_block
.
ops
:
if
_is_reader_op
(
op
):
startup_reader_op_list
.
append
(
op
)
if
len
(
startup_reader_op_list
)
==
0
:
return
program
root_reader_op
=
startup_reader_op_list
[
0
]
train_test_reader_map
=
{}
# 2. add operators to startup to read open and read test data files
for
op
in
startup_reader_op_list
:
assert
(
len
(
op
.
output
(
"Out"
))
==
1
)
train_reader_name
=
op
.
output
(
"Out"
)[
0
]
train_reader
=
startup_block
.
vars
[
train_reader_name
]
test_reader
=
_copy_reader_var_
(
startup_block
,
train_reader
,
new_name
=
_get_test_reader_name
(
train_reader_name
))
train_test_reader_map
[
train_reader
.
name
]
=
test_reader
test_op_inputs
=
{}
for
name
in
op
.
input_names
:
train_arg_names
=
op
.
input
(
name
)
test_arg_vars
=
[]
for
arg_name
in
train_arg_names
:
arg_var
=
train_test_reader_map
[
arg_name
]
if
name
==
"UnderlyingReader"
else
startup_block
.
vars
[
arg_name
]
test_arg_vars
.
append
(
arg_var
)
test_op_inputs
[
name
]
=
test_arg_vars
test_op
=
startup_block
.
append_op
(
type
=
op
.
type
,
inputs
=
test_op_inputs
,
outputs
=
{
'Out'
:
[
test_reader
]},
attrs
=
op
.
attrs
)
# root reader op's filelist attr for read test files
if
op
.
type
==
root_reader_op
.
type
:
test_op
.
set_attr
(
"file_names"
,
filelist
)
if
op
.
type
==
"create_multi_pass_reader"
:
test_op
.
set_attr
(
"pass_num"
,
1
)
# 3. rename reader vars in inference program to different name
# to avoid read from train data.
main_block
=
program
.
global_block
()
for
var
in
main_block
.
vars
.
values
():
if
var
.
type
==
core
.
VarDesc
.
VarType
.
READER
:
main_block
.
_rename_var
(
str
(
var
.
name
),
str
(
_get_test_reader_name
(
var
.
name
)))
for
op
in
main_block
.
ops
:
if
op
.
type
==
root_reader_op
.
type
:
test_op
.
set_attr
(
"file_names"
,
filelist
)
if
op
.
type
==
"create_multi_pass_reader"
:
test_op
.
set_attr
(
"pass_num"
,
1
)
startup_program
.
_sync_with_cpp
()
program
.
_sync_with_cpp
()
return
program
python/paddle/fluid/layers/control_flow.py
浏览文件 @
6f6d5527
...
...
@@ -23,25 +23,17 @@ from ops import logical_and, logical_not, logical_or
import
numpy
__all__
=
[
'split_lod_tensor'
,
'merge_lod_tensor'
,
'While'
,
'Switch'
,
'lod_rank_table'
,
'max_sequence_len'
,
'lod_tensor_to_array'
,
'array_to_lod_tensor'
,
'increment'
,
'array_write'
,
'create_array'
,
'less_than'
,
'equal'
,
'array_read'
,
'shrink_memory'
,
'array_length'
,
'IfElse'
,
'DynamicRNN'
,
'ConditionalBlock'
,
'StaticRNN'
,
'reorder_lod_tensor_by_rank'
,
'ParallelDo'
,
...
...
@@ -1457,7 +1449,7 @@ class IfElse(object):
if
self
.
status
==
IfElse
.
OUT_IF_ELSE_BLOCKS
:
raise
ValueError
(
"input must in true/false blocks"
)
if
id
(
x
)
not
in
self
.
input_table
:
parent_block
=
self
.
parent_block
()
parent_block
=
self
.
_
parent_block
()
out_true
=
parent_block
.
create_var
(
name
=
unique_name
.
generate
(
'ifelse_input'
+
self
.
helper
.
name
),
dtype
=
x
.
dtype
)
...
...
@@ -1483,7 +1475,7 @@ class IfElse(object):
else
:
return
out_false
def
parent_block
(
self
):
def
_
parent_block
(
self
):
current_block
=
self
.
helper
.
main_program
.
current_block
()
return
self
.
helper
.
main_program
.
block
(
current_block
.
parent_idx
)
...
...
@@ -1499,7 +1491,7 @@ class IfElse(object):
out_table
=
self
.
output_table
[
1
if
self
.
status
==
self
.
IN_IF_ELSE_TRUE_BLOCKS
else
0
]
parent_block
=
self
.
parent_block
()
parent_block
=
self
.
_
parent_block
()
for
each_out
in
outs
:
if
not
isinstance
(
each_out
,
Variable
):
raise
TypeError
(
"Each output should be a variable"
)
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
6f6d5527
...
...
@@ -443,9 +443,6 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
main_prog_var
=
_copy_reader_var_
(
default_main_program
().
current_block
(),
startup_var
)
if
for_parallel
:
main_prog_var
=
parallel
(
reader
=
main_prog_var
)
return
monkey_patch_reader_methods
(
main_prog_var
)
...
...
python/paddle/fluid/regularizer.py
浏览文件 @
6f6d5527
...
...
@@ -142,14 +142,20 @@ class L2DecayRegularizer(WeightDecayRegularizer):
dtype
=
"float32"
,
shape
=
param
.
shape
,
lod_level
=
param
.
lod_level
)
if
grad
.
type
==
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
:
idx
=
block
.
create_var
(
dtype
=
"int64"
,
shape
=
param
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
decay
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
param
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
)
block
.
append_op
(
type
=
'extract_rows'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
idx
})
block
.
append_op
(
type
=
'lookup_table'
,
inputs
=
{
'W'
:
param
,
'Ids'
:
grad
},
'Ids'
:
idx
},
outputs
=
{
'Out'
:
decay
},
attrs
=
{
'is_sparse'
:
True
})
param
=
decay
...
...
@@ -216,14 +222,20 @@ class L1DecayRegularizer(WeightDecayRegularizer):
dtype
=
"float32"
,
shape
=
param
.
shape
,
lod_level
=
param
.
lod_level
)
if
grad
.
type
==
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
:
idx
=
block
.
create_var
(
dtype
=
"int64"
,
shape
=
param
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
decay
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
param
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
)
block
.
append_op
(
type
=
'extract_rows'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
idx
})
block
.
append_op
(
type
=
'lookup_table'
,
inputs
=
{
'W'
:
param
,
'Ids'
:
grad
},
'Ids'
:
idx
},
outputs
=
{
'Out'
:
decay
},
attrs
=
{
'is_sparse'
:
True
})
...
...
python/paddle/fluid/tests/demo/
text_classification
/.gitignore
→
python/paddle/fluid/tests/demo/
file_reader
/.gitignore
浏览文件 @
6f6d5527
文件已移动
python/paddle/fluid/tests/demo/
text_classification
/convert_data_to_recordio.py
→
python/paddle/fluid/tests/demo/
file_reader
/convert_data_to_recordio.py
浏览文件 @
6f6d5527
...
...
@@ -35,7 +35,7 @@ if len(sys.argv) == 1:
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
else
:
word_dict
=
load_vocab
(
sys
.
argv
[
1
])
word_dict
[
"<unk>"
]
=
len
(
word_dict
)
word_dict
[
"<unk>"
]
=
len
(
word_dict
)
print
"Dict dim = "
,
len
(
word_dict
)
# input text data
...
...
@@ -50,7 +50,7 @@ feeder = fluid.DataFeeder(feed_list=[data, label], place=fluid.CPUPlace())
BATCH_SIZE
=
128
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
10
000
),
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
25
000
),
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
...
...
python/paddle/fluid/tests/demo/
text_classification
/train.py
→
python/paddle/fluid/tests/demo/
file_reader
/train.py
浏览文件 @
6f6d5527
...
...
@@ -19,7 +19,7 @@ import sys
TRAIN_FILES
=
[
'train.recordio'
]
TEST_FILES
=
[
'test.recordio'
]
DICT_DIM
=
89528
DICT_DIM
=
5147
# embedding dim
emb_dim
=
128
...
...
@@ -27,58 +27,46 @@ emb_dim = 128
# hidden dim
hid_dim
=
128
# hidden dim2
hid_dim2
=
96
# class num
class_dim
=
2
# epoch num
epoch_num
=
10
def
network_cfg
(
is_train
,
pass_num
=
100
):
with
fluid
.
unique_name
.
guard
():
train_file_obj
=
fluid
.
layers
.
open_files
(
filenames
=
TRAIN_FILES
,
pass_num
=
pass_num
,
shapes
=
[[
-
1
,
1
],
[
-
1
,
1
]],
lod_levels
=
[
1
,
0
],
dtypes
=
[
'int64'
,
'int64'
])
test_file_obj
=
fluid
.
layers
.
open_files
(
filenames
=
TEST_FILES
,
pass_num
=
1
,
shapes
=
[[
-
1
,
1
],
[
-
1
,
1
]],
lod_levels
=
[
1
,
0
],
dtypes
=
[
'int64'
,
'int64'
])
if
is_train
:
file_obj
=
fluid
.
layers
.
shuffle
(
train_file_obj
,
buffer_size
=
1000
)
else
:
file_obj
=
test_file_obj
def
build_program
(
is_train
):
file_obj_handle
=
fluid
.
layers
.
io
.
open_files
(
filenames
=
TRAIN_FILES
if
is_train
else
TEST_FILES
,
shapes
=
[[
-
1
,
1
],
[
-
1
,
1
]],
lod_levels
=
[
1
,
0
],
dtypes
=
[
'int64'
,
'int64'
])
file_obj
=
fluid
.
layers
.
double_buffer
(
file_obj
,
name
=
"train_double_buffer"
if
is_train
else
'test_double_buffer'
)
file_obj
=
fluid
.
layers
.
io
.
double_buffer
(
file_obj_handle
)
with
fluid
.
unique_name
.
guard
():
data
,
label
=
fluid
.
layers
.
read_file
(
file_obj
)
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
DICT_DIM
,
emb_dim
])
# sequence conv with window size = 3
win_size
=
3
conv_3
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
num_filters
=
hid_dim
,
filter_size
=
win_size
,
filter_size
=
3
,
act
=
"tanh"
,
pool_type
=
"
max
"
)
pool_type
=
"
sqrt
"
)
# fc layer after conv
fc_1
=
fluid
.
layers
.
fc
(
input
=
[
conv_3
],
size
=
hid_dim2
)
conv_4
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
num_filters
=
hid_dim
,
filter_size
=
4
,
act
=
"tanh"
,
pool_type
=
"sqrt"
)
# probability of each class
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_1
],
prediction
=
fluid
.
layers
.
fc
(
input
=
[
conv_3
,
conv_4
],
size
=
class_dim
,
act
=
"softmax"
)
# cross entropy loss
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
...
...
@@ -88,58 +76,62 @@ def network_cfg(is_train, pass_num=100):
if
is_train
:
# SGD optimizer
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.01
)
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.0
0
1
)
sgd_optimizer
.
minimize
(
avg_cost
)
return
{
'loss'
:
avg_cost
,
'log'
:
[
avg_cost
,
acc
],
'file'
:
train_file_obj
if
is_train
else
test_file_obj
}
return
{
'loss'
:
avg_cost
,
'log'
:
[
avg_cost
,
acc
],
'file'
:
file_obj_handle
}
def
main
():
train
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
test
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train
,
startup
):
train_args
=
network_cfg
(
is_train
=
True
)
test
=
fluid
.
Program
()
train_args
=
build_program
(
is_train
=
True
)
with
fluid
.
program_guard
(
test
,
fluid
.
Program
()
):
test_args
=
network_cfg
(
is_train
=
False
)
with
fluid
.
program_guard
(
test
,
startup
):
test_args
=
build_program
(
is_train
=
False
)
use_cuda
=
fluid
.
core
.
is_compiled_with_cuda
()
# startup
place
=
fluid
.
CUDAPlace
(
0
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
=
place
)
exe
.
run
(
startup
)
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
train_args
[
'loss'
].
name
,
main_program
=
train
)
use_cuda
=
use_cuda
,
loss_name
=
train_args
[
'loss'
].
name
,
main_program
=
train
)
test_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
use_cuda
,
main_program
=
test
,
share_vars_from
=
train_exe
)
fetch_var_list
=
[
var
.
name
for
var
in
train_args
[
'log'
]]
for
i
in
xrange
(
sys
.
maxint
):
result
=
map
(
numpy
.
array
,
train_exe
.
run
(
fetch_list
=
fetch_var_list
if
i
%
1000
==
0
else
[]))
if
len
(
result
)
!=
0
:
print
'Train: '
,
result
if
i
%
1000
==
0
:
test_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
main_program
=
test
,
share_vars_from
=
train_exe
)
loss
=
[]
acc
=
[]
try
:
while
True
:
loss_np
,
acc_np
=
map
(
numpy
.
array
,
test_exe
.
run
(
fetch_list
=
fetch_var_list
))
loss
.
append
(
loss_np
[
0
])
acc
.
append
(
acc_np
[
0
])
except
:
test_args
[
'file'
].
reset
()
print
'TEST: '
,
numpy
.
mean
(
loss
),
numpy
.
mean
(
acc
)
for
epoch_id
in
range
(
epoch_num
):
# train
try
:
batch_id
=
0
while
True
:
loss
,
acc
=
map
(
numpy
.
array
,
train_exe
.
run
(
fetch_list
=
fetch_var_list
))
print
'Train epoch'
,
epoch_id
,
'batch'
,
batch_id
,
'loss:'
,
loss
,
'acc:'
,
acc
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
print
'End of epoch'
,
epoch_id
train_args
[
'file'
].
reset
()
# test
loss
=
[]
acc
=
[]
try
:
while
True
:
loss_np
,
acc_np
=
map
(
numpy
.
array
,
test_exe
.
run
(
fetch_list
=
fetch_var_list
))
loss
.
append
(
loss_np
[
0
])
acc
.
append
(
acc_np
[
0
])
except
:
test_args
[
'file'
].
reset
()
print
'Test loss:'
,
numpy
.
mean
(
loss
),
'acc:'
,
numpy
.
mean
(
acc
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/test_if_else_op.py
浏览文件 @
6f6d5527
...
...
@@ -19,6 +19,10 @@ from paddle.fluid.executor import Executor
from
paddle.fluid.optimizer
import
MomentumOptimizer
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid.layers.control_flow
import
split_lod_tensor
from
paddle.fluid.layers.control_flow
import
merge_lod_tensor
from
paddle.fluid.layers.control_flow
import
ConditionalBlock
import
unittest
import
numpy
as
np
...
...
@@ -34,11 +38,10 @@ class TestMNISTIfElseOp(unittest.TestCase):
limit
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
5
)
cond
=
layers
.
less_than
(
x
=
label
,
y
=
limit
)
true_image
,
false_image
=
layers
.
split_lod_tensor
(
input
=
image
,
mask
=
cond
)
true_image
,
false_image
=
split_lod_tensor
(
input
=
image
,
mask
=
cond
)
true_out
=
layers
.
create_tensor
(
dtype
=
'float32'
)
true_cond
=
layers
.
ConditionalBlock
([
cond
])
true_cond
=
ConditionalBlock
([
cond
])
with
true_cond
.
block
():
hidden
=
layers
.
fc
(
input
=
true_image
,
size
=
100
,
act
=
'tanh'
)
...
...
@@ -46,14 +49,14 @@ class TestMNISTIfElseOp(unittest.TestCase):
layers
.
assign
(
input
=
prob
,
output
=
true_out
)
false_out
=
layers
.
create_tensor
(
dtype
=
'float32'
)
false_cond
=
layers
.
ConditionalBlock
([
cond
])
false_cond
=
ConditionalBlock
([
cond
])
with
false_cond
.
block
():
hidden
=
layers
.
fc
(
input
=
false_image
,
size
=
200
,
act
=
'tanh'
)
prob
=
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
layers
.
assign
(
input
=
prob
,
output
=
false_out
)
prob
=
layers
.
merge_lod_tensor
(
prob
=
merge_lod_tensor
(
in_true
=
true_out
,
in_false
=
false_out
,
mask
=
cond
,
x
=
image
)
loss
=
layers
.
cross_entropy
(
input
=
prob
,
label
=
label
)
avg_loss
=
layers
.
mean
(
loss
)
...
...
python/paddle/fluid/tests/unittests/test_conditional_block.py
浏览文件 @
6f6d5527
...
...
@@ -18,14 +18,15 @@ import paddle.fluid.core as core
from
paddle.fluid.framework
import
default_startup_program
,
default_main_program
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.backward
import
append_backward
from
paddle.fluid.layers.control_flow
import
ConditionalBlock
import
numpy
class
ConditionalBlock
(
unittest
.
TestCase
):
class
ConditionalBlock
Test
(
unittest
.
TestCase
):
def
test_forward
(
self
):
data
=
layers
.
data
(
name
=
'X'
,
shape
=
[
1
],
dtype
=
'float32'
)
data
.
stop_gradient
=
False
cond
=
layers
.
ConditionalBlock
(
inputs
=
[
data
])
cond
=
ConditionalBlock
(
inputs
=
[
data
])
out
=
layers
.
create_tensor
(
dtype
=
'float32'
)
with
cond
.
block
():
hidden
=
layers
.
fc
(
input
=
data
,
size
=
10
)
...
...
python/paddle/fluid/tests/unittests/test_const_value.py
浏览文件 @
6f6d5527
...
...
@@ -16,7 +16,7 @@ import unittest
import
paddle.fluid.framework
as
framework
class
Con
ditionalBlock
(
unittest
.
TestCase
):
class
Con
stantTest
(
unittest
.
TestCase
):
def
test_const_value
(
self
):
self
.
assertEqual
(
framework
.
GRAD_VAR_SUFFIX
,
"@GRAD"
)
self
.
assertEqual
(
framework
.
TEMP_VAR_NAME
,
"@TEMP@"
)
...
...
python/paddle/fluid/tests/unittests/test_dyn_rnn.py
浏览文件 @
6f6d5527
...
...
@@ -17,6 +17,12 @@ import paddle
import
unittest
import
numpy
from
paddle.fluid.layers.control_flow
import
lod_rank_table
from
paddle.fluid.layers.control_flow
import
max_sequence_len
from
paddle.fluid.layers.control_flow
import
lod_tensor_to_array
from
paddle.fluid.layers.control_flow
import
array_to_lod_tensor
from
paddle.fluid.layers.control_flow
import
shrink_memory
class
TestDynRNN
(
unittest
.
TestCase
):
def
setUp
(
self
):
...
...
@@ -38,12 +44,11 @@ class TestDynRNN(unittest.TestCase):
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'float32'
)
rank_table
=
fluid
.
layers
.
lod_rank_table
(
x
=
sent_emb
)
rank_table
=
lod_rank_table
(
x
=
sent_emb
)
sent_emb_array
=
fluid
.
layers
.
lod_tensor_to_array
(
x
=
sent_emb
,
table
=
rank_table
)
sent_emb_array
=
lod_tensor_to_array
(
x
=
sent_emb
,
table
=
rank_table
)
seq_len
=
fluid
.
layers
.
max_sequence_len
(
rank_table
=
rank_table
)
seq_len
=
max_sequence_len
(
rank_table
=
rank_table
)
i
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
0
)
i
.
stop_gradient
=
False
...
...
@@ -66,7 +71,7 @@ class TestDynRNN(unittest.TestCase):
mem
=
fluid
.
layers
.
array_read
(
array
=
mem_array
,
i
=
i
)
ipt
=
fluid
.
layers
.
array_read
(
array
=
sent_emb_array
,
i
=
i
)
mem
=
fluid
.
layers
.
shrink_memory
(
x
=
mem
,
i
=
i
,
table
=
rank_table
)
mem
=
shrink_memory
(
x
=
mem
,
i
=
i
,
table
=
rank_table
)
hidden
=
fluid
.
layers
.
fc
(
input
=
[
mem
,
ipt
],
size
=
100
,
act
=
'tanh'
)
...
...
@@ -75,8 +80,7 @@ class TestDynRNN(unittest.TestCase):
fluid
.
layers
.
array_write
(
x
=
hidden
,
i
=
i
,
array
=
mem_array
)
fluid
.
layers
.
less_than
(
x
=
i
,
y
=
seq_len
,
cond
=
cond
)
all_timesteps
=
fluid
.
layers
.
array_to_lod_tensor
(
x
=
out
,
table
=
rank_table
)
all_timesteps
=
array_to_lod_tensor
(
x
=
out
,
table
=
rank_table
)
last
=
fluid
.
layers
.
sequence_last_step
(
input
=
all_timesteps
)
logits
=
fluid
.
layers
.
fc
(
input
=
last
,
size
=
1
,
act
=
None
)
loss
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
...
...
python/paddle/fluid/tests/unittests/test_extract_rows_op.py
0 → 100644
浏览文件 @
6f6d5527
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
from
op_test
import
OpTest
class
TestExtractRows
(
OpTest
):
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
# create and initialize Variable
feature_len
=
12
rows
=
[
0
,
4
,
4
,
7
]
np_array
=
np
.
ones
((
len
(
rows
),
feature_len
)).
astype
(
"float32"
)
in_x
=
scope
.
var
(
'X'
).
get_selected_rows
()
in_x
.
set_height
(
len
(
rows
))
in_x
.
set_rows
(
rows
)
in_x_tensor
=
in_x
.
get_tensor
()
in_x_tensor
.
set
(
np_array
,
place
)
# create Out Variable
out_tensor
=
scope
.
var
(
'Out'
).
get_tensor
()
# create and run lookup_table operator
extract_rows_op
=
Operator
(
"extract_rows"
,
X
=
'X'
,
Out
=
'Out'
)
extract_rows_op
.
run
(
scope
,
place
)
# get result from Out
result_array
=
np
.
array
(
out_tensor
)
result_array
=
[
ele
[
0
]
for
ele
in
result_array
]
assert
result_array
==
rows
def
test_concat_rows
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_with_place
(
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_lod_rank_table.py
浏览文件 @
6f6d5527
...
...
@@ -12,7 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.fluid.layers
import
lod_rank_table
,
data
from
paddle.fluid.layers
import
data
from
paddle.fluid.layers.control_flow
import
lod_rank_table
from
paddle.fluid.executor
import
Executor
import
paddle.fluid.core
as
core
import
numpy
...
...
python/paddle/fluid/tests/unittests/test_lod_tensor_array_ops.py
浏览文件 @
6f6d5527
...
...
@@ -20,6 +20,11 @@ from paddle.fluid.framework import Program, program_guard
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.backward
import
append_backward
from
paddle.fluid.layers.control_flow
import
lod_rank_table
from
paddle.fluid.layers.control_flow
import
max_sequence_len
from
paddle.fluid.layers.control_flow
import
lod_tensor_to_array
from
paddle.fluid.layers.control_flow
import
array_to_lod_tensor
class
TestCPULoDTensorArrayOps
(
unittest
.
TestCase
):
def
place
(
self
):
...
...
@@ -137,13 +142,13 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
10
])
x
.
persistable
=
True
table
=
l
ayers
.
l
od_rank_table
(
x
,
level
=
level
)
max_len
=
layers
.
max_sequence_len
(
table
)
table
=
lod_rank_table
(
x
,
level
=
level
)
max_len
=
max_sequence_len
(
table
)
max_len
.
persistable
=
True
array
=
l
ayers
.
l
od_tensor_to_array
(
x
,
table
)
array
=
lod_tensor_to_array
(
x
,
table
)
array
.
persistable
=
True
result
=
layers
.
array_to_lod_tensor
(
array
,
table
)
result
=
array_to_lod_tensor
(
array
,
table
)
result
.
persistable
=
True
exe
=
Executor
(
place
)
scope
=
core
.
Scope
()
...
...
@@ -181,9 +186,9 @@ class TestCPULoDTensorArrayOpGrad(unittest.TestCase):
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
1
],
dtype
=
'float32'
,
stop_gradient
=
False
)
table
=
l
ayers
.
l
od_rank_table
(
x
,
level
=
0
)
array
=
l
ayers
.
l
od_tensor_to_array
(
x
,
table
)
result
=
layers
.
array_to_lod_tensor
(
array
,
table
)
table
=
lod_rank_table
(
x
,
level
=
0
)
array
=
lod_tensor_to_array
(
x
,
table
)
result
=
array_to_lod_tensor
(
array
,
table
)
mean
=
layers
.
mean
(
result
)
...
...
python/paddle/fluid/tests/unittests/test_lookup_table_op.py
浏览文件 @
6f6d5527
...
...
@@ -49,53 +49,6 @@ class TestLookupTableOpWithPadding(TestLookupTableOp):
pass
class
TestLookupTableIdsIsSelectedRows
(
OpTest
):
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
# create and initialize Variable
height
=
10
rows
=
[
0
,
4
,
4
,
7
]
row_numel
=
12
# create and initialize W Variable
W
=
scope
.
var
(
'W'
).
get_tensor
()
W_array
=
np
.
full
((
height
,
row_numel
),
1.0
).
astype
(
"float32"
)
for
i
in
range
(
height
):
W_array
[
i
]
*=
i
W
.
set
(
W_array
,
place
)
# create and initialize Ids Variable
ids_selected_rows
=
scope
.
var
(
'Ids'
).
get_selected_rows
()
ids_selected_rows
.
set_height
(
len
(
rows
))
ids_selected_rows
.
set_rows
(
rows
)
np_array
=
np
.
ones
((
len
(
rows
),
row_numel
)).
astype
(
"float32"
)
ids_tensor
=
ids_selected_rows
.
get_tensor
()
ids_tensor
.
set
(
np_array
,
place
)
# create Out Variable
Out
=
scope
.
var
(
'Out'
).
get_selected_rows
()
# create and run lookup_table operator
concat_rows_op
=
Operator
(
"lookup_table"
,
W
=
'W'
,
Ids
=
'Ids'
,
Out
=
'Out'
)
concat_rows_op
.
run
(
scope
,
place
)
# get result from Out
Out_tensor
=
Out
.
get_tensor
()
result_array
=
np
.
array
(
Out_tensor
)
# all(): return True if all elements of the iterable are true (or if the iterable is empty)
for
idx
,
row
in
enumerate
(
rows
):
assert
(
row
==
result_array
[
idx
]).
all
()
def
test_concat_rows
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_with_place
(
place
)
class
TestLookupTableWIsSelectedRows
(
OpTest
):
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
浏览文件 @
6f6d5527
...
...
@@ -107,44 +107,24 @@ class TestMNIST(TestParallelExecutorBase):
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
return
img
,
label
# simple_fc
def
check_simple_fc_convergence
(
self
,
use_cuda
,
use_reduce
=
False
):
def
_compare_reduce_and_allreduce
(
self
,
model
,
use_cuda
,
random_data
=
True
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
self
.
check_network_convergence
(
simple_fc_net
,
use_cuda
=
use_cuda
)
self
.
check_network_convergence
(
simple_fc_net
,
use_cuda
=
use_cuda
,
allow_op_delay
=
True
)
img
,
label
=
self
.
_init_data
()
model
,
use_cuda
=
use_cuda
,
use_reduce
=
True
)
self
.
check_network_convergence
(
simple_fc_net
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
use_reduce
)
model
,
use_cuda
=
use_cuda
,
allow_op_delay
=
True
,
use_reduce
=
True
)
def
check_simple_fc_convergence_with_Reduce
(
self
,
use_cuda
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
self
.
check_network_convergence
(
simple_fc_net
,
use_cuda
=
use_cuda
,
use_reduce
=
True
)
self
.
check_network_convergence
(
simple_fc_net
,
use_cuda
=
use_cuda
,
allow_op_delay
=
True
,
use_reduce
=
True
)
img
,
label
=
self
.
_init_data
()
img
,
label
=
self
.
_init_data
(
random_data
)
all_reduce_first_loss
,
all_reduce_last_loss
=
self
.
check_network_convergence
(
simple_fc_net
,
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
False
)
reduce_first_loss
,
reduce_last_loss
=
self
.
check_network_convergence
(
simple_fc_net
,
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
...
...
@@ -153,7 +133,24 @@ class TestMNIST(TestParallelExecutorBase):
for
loss
in
zip
(
all_reduce_first_loss
,
reduce_first_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-6
)
for
loss
in
zip
(
all_reduce_last_loss
,
reduce_last_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-6
)
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-4
)
# simple_fc
def
check_simple_fc_convergence
(
self
,
use_cuda
,
use_reduce
=
False
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
self
.
check_network_convergence
(
simple_fc_net
,
use_cuda
=
use_cuda
)
self
.
check_network_convergence
(
simple_fc_net
,
use_cuda
=
use_cuda
,
allow_op_delay
=
True
)
img
,
label
=
self
.
_init_data
()
self
.
check_network_convergence
(
simple_fc_net
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
use_reduce
)
def
test_simple_fc
(
self
):
# use_cuda
...
...
@@ -162,8 +159,8 @@ class TestMNIST(TestParallelExecutorBase):
def
test_simple_fc_with_new_strategy
(
self
):
# use_cuda, use_reduce
self
.
check_simple_fc_convergence_with_Reduce
(
True
)
self
.
check_simple_fc_convergence_with_Reduce
(
False
)
self
.
_compare_reduce_and_allreduce
(
simple_fc_net
,
True
)
self
.
_compare_reduce_and_allreduce
(
simple_fc_net
,
False
)
def
check_simple_fc_parallel_accuracy
(
self
,
use_cuda
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
...
...
@@ -209,39 +206,13 @@ class TestMNIST(TestParallelExecutorBase):
"label"
:
label
},
use_cuda
=
use_cuda
)
def
check_batchnorm_fc_convergence_use_reduce
(
self
,
use_cuda
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
self
.
check_network_convergence
(
fc_with_batchnorm
,
use_cuda
=
use_cuda
,
use_reduce
=
True
)
img
,
label
=
self
.
_init_data
()
all_reduce_first_loss
,
all_reduce_last_loss
=
self
.
check_network_convergence
(
fc_with_batchnorm
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
False
)
reduce_first_loss
,
reduce_last_loss
=
self
.
check_network_convergence
(
fc_with_batchnorm
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
True
)
for
loss
in
zip
(
all_reduce_first_loss
,
reduce_first_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-6
)
for
loss
in
zip
(
all_reduce_last_loss
,
reduce_last_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-4
)
def
test_batchnorm_fc
(
self
):
self
.
check_batchnorm_fc_convergence
(
True
)
self
.
check_batchnorm_fc_convergence
(
False
)
def
test_batchnorm_fc_with_new_strategy
(
self
):
self
.
check_batchnorm_fc_convergence_use_reduce
(
True
)
self
.
check_batchnorm_fc_convergence_use_reduce
(
False
)
self
.
_compare_reduce_and_allreduce
(
fc_with_batchnorm
,
True
)
self
.
_compare_reduce_and_allreduce
(
fc_with_batchnorm
,
False
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_reorder_lod_tensor.py
浏览文件 @
6f6d5527
...
...
@@ -15,6 +15,7 @@
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.layers.control_flow
import
lod_rank_table
import
numpy
...
...
@@ -34,7 +35,7 @@ class TestReorderLoDTensor(unittest.TestCase):
dat
.
stop_gradient
=
False
rank_dat
=
fluid
.
layers
.
data
(
name
=
cls
.
data_desc
[
1
][
0
],
shape
=
cls
.
data_desc
[
1
][
1
])
table
=
fluid
.
layers
.
lod_rank_table
(
rank_dat
)
table
=
lod_rank_table
(
rank_dat
)
new_dat
=
fluid
.
layers
.
reorder_lod_tensor_by_rank
(
x
=
dat
,
rank_table
=
table
)
loss
=
fluid
.
layers
.
reduce_sum
(
new_dat
)
...
...
python/paddle/fluid/tests/unittests/test_shrink_rnn_memory.py
浏览文件 @
6f6d5527
...
...
@@ -21,6 +21,9 @@ from paddle.fluid.framework import default_main_program, switch_main_program
from
paddle.fluid.framework
import
Program
import
numpy
as
np
from
paddle.fluid.layers.control_flow
import
shrink_memory
from
paddle.fluid.layers.control_flow
import
lod_rank_table
class
TestShrinkRNNMemoryBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
...
...
@@ -30,15 +33,15 @@ class TestShrinkRNNMemoryBase(unittest.TestCase):
x
.
stop_gradient
=
False
rank_table_tensor
=
layers
.
data
(
'rank_table_tensor'
,
shape
=
[
1
],
dtype
=
'float32'
,
lod_level
=
1
)
table
=
l
ayers
.
l
od_rank_table
(
x
=
rank_table_tensor
)
table
=
lod_rank_table
(
x
=
rank_table_tensor
)
i
=
layers
.
zeros
(
dtype
=
'int64'
,
shape
=
[
1
])
self
.
mem1
=
layers
.
shrink_memory
(
x
=
x
,
i
=
i
,
table
=
table
)
self
.
mem1
=
shrink_memory
(
x
=
x
,
i
=
i
,
table
=
table
)
i
=
layers
.
increment
(
x
=
i
)
i
.
stop_gradient
=
True
self
.
mem2
=
layers
.
shrink_memory
(
x
=
self
.
mem1
,
i
=
i
,
table
=
table
)
self
.
mem2
=
shrink_memory
(
x
=
self
.
mem1
,
i
=
i
,
table
=
table
)
i
=
layers
.
increment
(
x
=
i
)
i
.
stop_gradient
=
True
self
.
mem3
=
layers
.
shrink_memory
(
x
=
self
.
mem2
,
i
=
i
,
table
=
table
)
self
.
mem3
=
shrink_memory
(
x
=
self
.
mem2
,
i
=
i
,
table
=
table
)
mem3_mean
=
layers
.
mean
(
self
.
mem3
)
append_backward
(
loss
=
mem3_mean
)
self
.
x_grad
=
self
.
main_program
.
global_block
().
var
(
'x@GRAD'
)
...
...
python/paddle/fluid/tests/unittests/test_split_and_merge_lod_tensor_op.py
浏览文件 @
6f6d5527
...
...
@@ -19,6 +19,8 @@ import paddle.fluid.layers as layers
from
paddle.fluid.framework
import
Program
,
program_guard
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.backward
import
append_backward
from
paddle.fluid.layers.control_flow
import
split_lod_tensor
from
paddle.fluid.layers.control_flow
import
merge_lod_tensor
class
TestCPULoDTensorArrayOps
(
unittest
.
TestCase
):
...
...
@@ -96,12 +98,11 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
])
y
.
persistable
=
True
out_true
,
out_false
=
layers
.
split_lod_tensor
(
input
=
x
,
mask
=
y
,
level
=
level
)
out_true
,
out_false
=
split_lod_tensor
(
input
=
x
,
mask
=
y
,
level
=
level
)
out_true
.
persistable
=
True
out_false
.
persistable
=
True
out
=
layers
.
merge_lod_tensor
(
out
=
merge_lod_tensor
(
in_true
=
out_true
,
in_false
=
out_false
,
mask
=
y
,
x
=
x
,
level
=
level
)
out
.
persistable
=
True
...
...
@@ -142,9 +143,8 @@ class TestCPUSplitMergeLoDTensorGrad(unittest.TestCase):
level
=
0
out_true
,
out_false
=
layers
.
split_lod_tensor
(
input
=
x
,
mask
=
y
,
level
=
level
)
out
=
layers
.
merge_lod_tensor
(
out_true
,
out_false
=
split_lod_tensor
(
input
=
x
,
mask
=
y
,
level
=
level
)
out
=
merge_lod_tensor
(
in_true
=
out_true
,
in_false
=
out_false
,
mask
=
y
,
x
=
x
,
level
=
level
)
mean
=
layers
.
mean
(
out
)
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
6f6d5527
...
...
@@ -779,7 +779,9 @@ class DistributeTranspiler(object):
outputs
=
{
"Out"
:
prefetch_output_vars
},
attrs
=
{
"epmap"
:
pserver_endpoints
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
# FIXME(qiao) temporarily disable this config because prefetch
# is not act as other rpc op, it's more like a forward op
# RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
})
# insert concat_op
...
...
@@ -887,7 +889,8 @@ class DistributeTranspiler(object):
# create table optimize block in pserver program
table_opt_op
=
[
op
for
op
in
self
.
optimize_ops
if
op
.
input
(
"Param"
)[
0
]
==
self
.
table_name
if
'Param'
in
op
.
input_names
and
op
.
input
(
"Param"
)[
0
]
==
self
.
table_name
][
0
]
table_opt_block
=
pserver_program
.
create_block
(
pre_block_idx
)
# only support sgd now
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录