Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6f63eb9f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6f63eb9f
编写于
2月 27, 2017
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into layer
上级
4781daa1
3c78b03b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
73 addition
and
15 deletion
+73
-15
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+3
-8
python/paddle/v2/event.py
python/paddle/v2/event.py
+50
-5
python/paddle/v2/trainer.py
python/paddle/v2/trainer.py
+20
-2
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
6f63eb9f
...
...
@@ -27,19 +27,14 @@ def main():
cost
=
paddle
.
layer
.
classification_cost
(
input
=
inference
,
label
=
label
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
for
param_name
in
parameters
.
keys
():
array
=
parameters
.
get
(
param_name
)
array
[:]
=
numpy
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
array
.
shape
)
parameters
.
set
(
parameter_name
=
param_name
,
value
=
array
)
adam_optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
para
=
parameters
.
get
(
'___fc_2__.w0'
)
print
"Pass %d, Batch %d, Cost %f, Weight Mean Of Fc 2 is %f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
para
.
mean
())
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
else
:
pass
...
...
python/paddle/v2/event.py
浏览文件 @
6f63eb9f
...
...
@@ -3,8 +3,6 @@ All training events.
There are:
* BeginTraining
* EndTraining
* BeginIteration
* EndIteration
* BeginPass
...
...
@@ -12,15 +10,62 @@ There are:
TODO(yuyang18): Complete it!
"""
__all__
=
[
'EndIteration'
]
import
py_paddle.swig_paddle
as
api
__all__
=
[
'EndIteration'
,
'BeginIteration'
,
'BeginPass'
,
'EndPass'
]
class
EndIteration
(
object
):
class
WithMetric
(
object
):
def
__init__
(
self
,
evaluator
):
if
not
isinstance
(
evaluator
,
api
.
Evaluator
):
raise
TypeError
(
"Evaluator should be api.Evaluator type"
)
self
.
__evaluator__
=
evaluator
@
property
def
metrics
(
self
):
names
=
self
.
__evaluator__
.
getNames
()
retv
=
dict
()
for
each_name
in
names
:
val
=
self
.
__evaluator__
.
getValue
(
each_name
)
retv
[
each_name
]
=
val
return
retv
class
BeginPass
(
object
):
"""
Event On One Pass Training Start.
"""
def
__init__
(
self
,
pass_id
):
self
.
pass_id
=
pass_id
class
EndPass
(
WithMetric
):
"""
Event On One Pass Training Complete.
"""
def
__init__
(
self
,
pass_id
,
evaluator
):
self
.
pass_id
=
pass_id
WithMetric
.
__init__
(
self
,
evaluator
)
class
BeginIteration
(
object
):
"""
Event On One Batch Training Start.
"""
def
__init__
(
self
,
pass_id
,
batch_id
):
self
.
pass_id
=
pass_id
self
.
batch_id
=
batch_id
class
EndIteration
(
WithMetric
):
"""
Event On One Batch Training Complete.
"""
def
__init__
(
self
,
pass_id
,
batch_id
,
cost
):
def
__init__
(
self
,
pass_id
,
batch_id
,
cost
,
evaluator
):
self
.
pass_id
=
pass_id
self
.
batch_id
=
batch_id
self
.
cost
=
cost
WithMetric
.
__init__
(
self
,
evaluator
)
python/paddle/v2/trainer.py
浏览文件 @
6f63eb9f
...
...
@@ -97,22 +97,34 @@ class SGD(ITrainer):
topology
,
api
.
CREATE_MODE_NORMAL
,
self
.
__optimizer__
.
enable_types
())
assert
isinstance
(
gm
,
api
.
GradientMachine
)
parameters
.
append_gradient_machine
(
gm
)
gm
.
randParameters
()
updater
=
self
.
__optimizer__
.
create_local_updater
()
updater
.
init
(
gm
)
gm
.
start
()
batch_evaluator
=
gm
.
makeEvaluator
()
assert
isinstance
(
batch_evaluator
,
api
.
Evaluator
)
pass_evaluator
=
gm
.
makeEvaluator
()
assert
isinstance
(
pass_evaluator
,
api
.
Evaluator
)
out_args
=
api
.
Arguments
.
createArguments
(
0
)
feeder
=
DataFeeder
(
data_types
,
reader_dict
)
for
pass_id
in
xrange
(
num_passes
):
event_handler
(
v2_event
.
BeginPass
(
pass_id
))
pass_evaluator
.
start
()
updater
.
startPass
()
for
batch_id
,
data_batch
in
enumerate
(
__data_reader_to_batch__
(
train_data_reader
,
batch_size
,
topology
)):
batch_evaluator
.
start
()
event_handler
(
v2_event
.
BeginIteration
(
pass_id
=
pass_id
,
batch_id
=
batch_id
))
pass_type
=
updater
.
startBatch
(
len
(
data_batch
))
gm
.
forwardBackward
(
feeder
(
data_batch
),
out_args
,
pass_type
)
gm
.
eval
(
pass_evaluator
)
gm
.
eval
(
batch_evaluator
)
for
each_param
in
gm
.
getParameters
():
updater
.
update
(
each_param
)
# Get cost. We use numpy to calculate total cost for this batch.
...
...
@@ -120,11 +132,17 @@ class SGD(ITrainer):
cost_vec
=
cost_vec
.
copyToNumpyMat
()
cost
=
cost_vec
.
sum
()
/
len
(
data_batch
)
updater
.
finishBatch
(
cost
)
batch_evaluator
.
finish
()
event_handler
(
v2_event
.
EndIteration
(
pass_id
=
pass_id
,
batch_id
=
batch_id
,
cost
=
cost
))
pass_id
=
pass_id
,
batch_id
=
batch_id
,
cost
=
cost
,
evaluator
=
batch_evaluator
))
updater
.
finishPass
()
pass_evaluator
.
finish
()
event_handler
(
v2_event
.
EndPass
(
pass_id
,
evaluator
=
pass_evaluator
))
gm
.
finish
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录