Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6eeb16b8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6eeb16b8
编写于
1月 17, 2022
作者:
S
sneaxiy
提交者:
GitHub
1月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add squared_l2_norm (#38968)
上级
ac933235
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
191 addition
and
30 deletion
+191
-30
paddle/fluid/memory/buffer.h
paddle/fluid/memory/buffer.h
+60
-0
paddle/fluid/operators/math/squared_l2_norm.h
paddle/fluid/operators/math/squared_l2_norm.h
+84
-0
paddle/fluid/operators/optimizers/lamb_op.h
paddle/fluid/operators/optimizers/lamb_op.h
+21
-22
paddle/fluid/operators/squared_l2_norm_op.h
paddle/fluid/operators/squared_l2_norm_op.h
+8
-8
python/paddle/fluid/tests/unittests/test_squared_l2_norm_op.py
...n/paddle/fluid/tests/unittests/test_squared_l2_norm_op.py
+18
-0
未找到文件。
paddle/fluid/memory/buffer.h
0 → 100644
浏览文件 @
6eeb16b8
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <type_traits>
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
memory
{
class
Buffer
{
public:
explicit
Buffer
(
const
platform
::
Place
&
place
)
:
place_
(
place
)
{}
template
<
typename
T
>
T
*
Alloc
(
size_t
size
)
{
using
AllocT
=
typename
std
::
conditional
<
std
::
is_same
<
T
,
void
>::
value
,
uint8_t
,
T
>::
type
;
if
(
UNLIKELY
(
size
==
0
))
return
nullptr
;
size
*=
sizeof
(
AllocT
);
if
(
allocation_
==
nullptr
||
allocation_
->
size
()
<
size
)
{
allocation_
=
memory
::
Alloc
(
place_
,
size
);
}
return
reinterpret_cast
<
T
*>
(
allocation_
->
ptr
());
}
template
<
typename
T
>
const
T
*
Get
()
const
{
return
reinterpret_cast
<
const
T
*>
(
allocation_
&&
allocation_
->
size
()
>
0
?
allocation_
->
ptr
()
:
nullptr
);
}
template
<
typename
T
>
T
*
GetMutable
()
{
return
reinterpret_cast
<
T
*>
(
allocation_
&&
allocation_
->
size
()
>
0
?
allocation_
->
ptr
()
:
nullptr
);
}
size_t
Size
()
const
{
return
allocation_
?
0
:
allocation_
->
size
();
}
private:
AllocationPtr
allocation_
;
platform
::
Place
place_
;
};
}
// namespace memory
}
// namespace paddle
paddle/fluid/operators/math/squared_l2_norm.h
0 → 100644
浏览文件 @
6eeb16b8
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/memory/buffer.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/fluid/operators/kernel_primitives/functor_primitives.h"
#ifdef __NVCC__
#include "cub/cub.cuh"
#else
#include <hipcub/hipcub.hpp>
namespace
cub
=
hipcub
;
#endif
#endif
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
T1
,
typename
T2
=
T1
>
void
SquaredL2Norm
(
const
platform
::
CPUDeviceContext
&
ctx
,
const
T1
*
x
,
T2
*
y
,
size_t
numel
,
memory
::
Buffer
*
buffer
=
nullptr
)
{
if
(
std
::
is_same
<
T1
,
T2
>::
value
)
{
using
EigenT
=
typename
framework
::
EigenTensor
<
T1
,
1
>::
Type
;
using
ConstEigenT
=
typename
framework
::
EigenTensor
<
T1
,
1
>::
ConstType
;
using
EigenDim
=
typename
framework
::
EigenDim
<
1
>::
Type
;
ConstEigenT
input
(
x
,
EigenDim
(
numel
));
EigenT
output
(
reinterpret_cast
<
T1
*>
(
y
),
EigenDim
(
1
));
output
.
device
(
*
ctx
.
eigen_device
())
=
input
.
square
().
sum
();
}
else
{
T2
ret
=
static_cast
<
T2
>
(
0
);
for
(
size_t
i
=
0
;
i
<
numel
;
++
i
)
{
auto
tmp
=
static_cast
<
T2
>
(
x
[
i
]);
ret
+=
tmp
*
tmp
;
}
*
y
=
ret
;
}
}
#if defined(__NVCC__) || defined(__HIPCC__)
template
<
typename
T1
,
typename
T2
=
T1
>
void
SquaredL2Norm
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T1
*
x
,
T2
*
y
,
size_t
numel
,
memory
::
Buffer
*
buffer
=
nullptr
)
{
if
(
UNLIKELY
(
buffer
==
nullptr
))
{
memory
::
Buffer
tmp_buffer
(
ctx
.
GetPlace
());
return
SquaredL2Norm
(
ctx
,
x
,
y
,
numel
,
&
tmp_buffer
);
}
using
FunctorT
=
kernel_primitives
::
SquareFunctor
<
T1
,
T2
>
;
cub
::
TransformInputIterator
<
T2
,
FunctorT
,
const
T1
*>
iter
(
x
,
FunctorT
());
size_t
temp_storage_bytes
=
0
;
void
*
d_temp_storage
=
nullptr
;
auto
stream
=
ctx
.
stream
();
#pragma unroll 2
for
(
size_t
i
=
0
;
i
<
2
;
++
i
)
{
if
(
temp_storage_bytes
>
0
)
{
d_temp_storage
=
buffer
->
Alloc
<
void
>
(
temp_storage_bytes
);
}
PADDLE_ENFORCE_GPU_SUCCESS
(
cub
::
DeviceReduce
::
Reduce
(
d_temp_storage
,
temp_storage_bytes
,
iter
,
y
,
numel
,
cub
::
Sum
(),
static_cast
<
T2
>
(
0
)));
}
}
#endif
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/optimizers/lamb_op.h
浏览文件 @
6eeb16b8
...
...
@@ -17,9 +17,11 @@ limitations under the License. */
#include <Eigen/Dense>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/buffer.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/operators/math/squared_l2_norm.h"
#include "paddle/fluid/platform/eigen_ext.h"
#include "paddle/fluid/platform/for_range.h"
...
...
@@ -383,8 +385,8 @@ struct LambParamUpateFunctor
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
if
(
skip_update_
&&
*
skip_update_
)
return
;
MT
lr
=
*
lr_
;
MT
pn
=
*
param_norm_
;
MT
tn
=
*
trust_ratio_div_norm_
;
MT
pn
=
Eigen
::
numext
::
sqrt
(
*
param_norm_
)
;
MT
tn
=
Eigen
::
numext
::
sqrt
(
*
trust_ratio_div_norm_
)
;
MT
r
=
(
pn
>
static_cast
<
MT
>
(
0
)
&&
tn
>
static_cast
<
MT
>
(
0
))
?
pn
/
tn
...
...
@@ -488,9 +490,11 @@ class LambOpKernel : public framework::OpKernel<T> {
}
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
param
.
numel
());
auto
numel
=
param
.
numel
();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
auto
trust_ratio_div
=
ctx
.
AllocateTmpTensor
<
MT
,
DeviceContext
>
(
param
.
dims
(),
dev_ctx
);
auto
*
trust_ratio_div_ptr
=
trust_ratio_div
.
template
data
<
MT
>();
const
void
*
param_ptr
=
param
.
data
();
const
void
*
master_param_ptr
=
...
...
@@ -521,7 +525,7 @@ class LambOpKernel : public framework::OpKernel<T> {
grad
.
template
data
<
T
>(),
static_cast
<
const
MT
*>
(
IsMultiPrecision
?
master_param_ptr
:
param_ptr
),
trust_ratio_div
.
template
data
<
MT
>()
,
skip_update_flag
);
trust_ratio_div
_ptr
,
skip_update_flag
);
for_range
(
moment_update_functor
);
beta1_pow_out
.
template
mutable_data
<
MT
>(
platform
::
CPUPlace
())[
0
]
=
beta1
*
beta1_pow
.
template
data
<
MT
>()[
0
];
...
...
@@ -545,7 +549,7 @@ class LambOpKernel : public framework::OpKernel<T> {
grad
.
template
data
<
T
>(),
static_cast
<
const
MT
*>
(
IsMultiPrecision
?
master_param_ptr
:
param_ptr
),
trust_ratio_div
.
template
data
<
MT
>()
,
skip_update_flag
);
trust_ratio_div
_ptr
,
skip_update_flag
);
for_range
(
moment_update_functor
);
}
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
...
...
@@ -638,34 +642,29 @@ class LambOpKernel : public framework::OpKernel<T> {
// Update parameter
auto
p_norm_t
=
ctx
.
AllocateTmpTensor
<
MT
,
DeviceContext
>
({
1
},
dev_ctx
);
auto
*
p_norm_ptr
=
p_norm_t
.
template
data
<
MT
>();
auto
trust_ratio_div_norm_t
=
ctx
.
AllocateTmpTensor
<
MT
,
DeviceContext
>
({
1
},
dev_ctx
);
auto
p_norm
=
framework
::
EigenScalar
<
MT
>::
From
(
p_norm_t
);
auto
trust_ratio_div_norm
=
framework
::
EigenScalar
<
MT
>::
From
(
trust_ratio_div_norm_t
);
auto
t
=
framework
::
EigenVector
<
MT
>::
Flatten
(
trust_ratio_div
);
auto
*
trust_ratio_div_norm_ptr
=
trust_ratio_div_norm_t
.
template
data
<
MT
>();
// TODO(zengjinle): remove the following Eigen operations when
// *skip_update == true.
auto
*
place
=
dev_ctx
.
eigen_device
();
if
(
IsMultiPrecision
)
{
auto
mp
=
framework
::
EigenVector
<
MT
>::
Flatten
(
*
master_param
);
p_norm
.
device
(
*
place
)
=
mp
.
square
().
sum
().
sqrt
();
}
else
{
auto
p
=
framework
::
EigenVector
<
MT
>::
Flatten
(
param
);
p_norm
.
device
(
*
place
)
=
p
.
square
().
sum
().
sqrt
();
}
trust_ratio_div_norm
.
device
(
*
place
)
=
t
.
square
().
sum
().
sqrt
();
memory
::
Buffer
buffer
(
dev_ctx
.
GetPlace
());
math
::
SquaredL2Norm
(
dev_ctx
,
reinterpret_cast
<
const
MT
*>
(
IsMultiPrecision
?
master_param_ptr
:
param_ptr
),
p_norm_ptr
,
numel
,
&
buffer
);
math
::
SquaredL2Norm
(
dev_ctx
,
trust_ratio_div_ptr
,
trust_ratio_div_norm_ptr
,
numel
,
&
buffer
);
#define CALL_PADDLE_UPDATE_LAMB_PARAM_FUNC(__should_update_beta_pow) \
do { \
LambParamUpateFunctor<T, MT, IsMultiPrecision, __should_update_beta_pow> \
param_update_functor( \
lr.template data<MT>(), static_cast<const T*>(param_ptr), \
static_cast<const MT*>(master_param_ptr), \
p_norm_t.template data<MT>(), trust_ratio_div.template data<MT>(), \
trust_ratio_div_norm_t.template data<MT>(), \
static_cast<const MT*>(master_param_ptr), p_norm_ptr, \
trust_ratio_div_ptr, trust_ratio_div_norm_ptr, \
static_cast<T*>(param_out_ptr), \
static_cast<MT*>(master_param_out_ptr), skip_update_flag); \
if (__should_update_beta_pow) { \
...
...
paddle/fluid/operators/squared_l2_norm_op.h
浏览文件 @
6eeb16b8
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/squared_l2_norm.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -24,16 +25,15 @@ template <typename DeviceContext, typename T>
class
SquaredL2NormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
framework
::
Tensor
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
framework
::
Tensor
*
Out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
()
);
const
framework
::
Tensor
*
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
const
auto
*
x_ptr
=
x
->
data
<
T
>
(
);
auto
numel
=
x
->
numel
(
);
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
out
=
framework
::
EigenScalar
<
T
>::
From
(
*
Out
);
auto
*
place
=
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
framework
::
Tensor
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out_ptr
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out
.
device
(
*
place
)
=
x
.
square
().
sum
();
math
::
SquaredL2Norm
(
context
.
template
device_context
<
DeviceContext
>(),
x_ptr
,
out_ptr
,
numel
);
}
};
...
...
python/paddle/fluid/tests/unittests/test_squared_l2_norm_op.py
浏览文件 @
6eeb16b8
...
...
@@ -18,6 +18,8 @@ import numpy as np
import
unittest
from
numpy
import
linalg
as
LA
from
op_test
import
OpTest
import
paddle
from
paddle
import
_C_ops
class
TestL2LossOp
(
OpTest
):
...
...
@@ -41,5 +43,21 @@ class TestL2LossOp(OpTest):
[
'X'
],
'Out'
,
max_relative_error
=
self
.
max_relative_error
)
class
TestL2LossDeterministic
(
unittest
.
TestCase
):
def
check_place
(
self
,
place
):
with
paddle
.
fluid
.
dygraph
.
guard
(
place
):
x_np
=
np
.
random
.
rand
(
5
,
11
,
13
).
astype
(
'float32'
)
x
=
paddle
.
to_tensor
(
x_np
)
y1
=
_C_ops
.
squared_l2_norm
(
x
)
y2
=
_C_ops
.
squared_l2_norm
(
x
)
self
.
assertTrue
(
np
.
array_equal
(
y1
.
numpy
(),
y2
.
numpy
()))
def
test_main
(
self
):
self
.
check_place
(
paddle
.
CPUPlace
())
if
paddle
.
is_compiled_with_cuda
():
self
.
check_place
(
paddle
.
CUDAPlace
(
0
))
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录