未验证 提交 6e442e6a 编写于 作者: Y yeliang2258 提交者: GitHub

Support npu kernel for eye op (#34543)

* add eye npu op

* remove useless headers

* code style

* Update eye_op_npu.cc

* Update eye_op_npu.cc

* remove useless code in test file

* code style check

* change Copyright to 2021

* add test case and do some fix

* fix

* update code

* fix for CI

* return

* fix
上级 c16421c2
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/eye_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class EyeNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto num_rows = ctx.Attr<int64_t>("num_rows");
auto d_nums = ctx.Attr<int>("dtype");
auto dtype =
ConvertToNpuDtype(static_cast<framework::proto::VarType::Type>(d_nums));
auto num_columns = ctx.Attr<int64_t>("num_columns");
if (num_columns == -1) num_columns = num_rows;
framework::NPUAttributeMap attr_input = {
{"num_rows", num_rows}, {"num_columns", num_columns}, {"dtype", dtype}};
auto* out = ctx.Output<framework::Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
const auto& runner = NpuOpRunner("Eye", {}, {*out}, attr_input);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
eye, ops::EyeNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::EyeNPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::EyeNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
import paddle.fluid.framework as framework
paddle.enable_static()
np.random.seed(10)
class TestEyeOp(OpTest):
def setUp(self):
'''
Test eye op with specified shape
'''
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "eye"
self.inputs = {}
self.num_rows = 0
self.num_columns = 0
self.dtype = np.float32
self.initTestCase()
if self.num_columns == 0:
self.attrs = {
'num_rows': self.num_rows,
'dtype': framework.convert_np_dtype_to_dtype_(self.dtype)
}
self.outputs = {'Out': np.eye(self.num_rows, dtype=self.dtype)}
else:
self.attrs = {
'num_rows': self.num_rows,
'num_columns': self.num_columns,
'dtype': framework.convert_np_dtype_to_dtype_(self.dtype)
}
self.outputs = {
'Out': np.eye(self.num_rows, self.num_columns, dtype=self.dtype)
}
def initTestCase(self):
self.num_rows = 219
self.num_columns = 319
self.dtype = np.int32
def set_npu(self):
self.__class__.use_npu = True
def test_check_output(self):
self.check_output_with_place(self.place)
class TestEyeOp1(TestEyeOp):
def initTestCase(self):
self.num_rows = 50
class TestEyeOp2(TestEyeOp):
def initTestCase(self):
self.num_rows = 50
self.dtype = np.int32
class TestEyeOp3(TestEyeOp):
def initTestCase(self):
self.num_rows = 50
self.dtype = np.float16
class TestEyeOp4(TestEyeOp):
def initTestCase(self):
self.num_rows = 1
self.num_columns = 99
class TestEyeOp5(TestEyeOp):
def initTestCase(self):
self.num_rows = 100
self.num_columns = 100
class TestEyeOp6(TestEyeOp):
def initTestCase(self):
self.num_rows = 100
self.num_columns = 100
self.dtype = np.float32
class API_TestTensorEye(unittest.TestCase):
def test_out(self):
with paddle.static.program_guard(paddle.static.Program()):
data = paddle.eye(10)
place = paddle.NPUPlace(0)
exe = paddle.static.Executor(place)
result, = exe.run(fetch_list=[data])
expected_result = np.eye(10, dtype="float32")
self.assertEqual((result == expected_result).all(), True)
with paddle.static.program_guard(paddle.static.Program()):
data = paddle.eye(10, num_columns=7, dtype="float16")
place = paddle.NPUPlace(0)
exe = paddle.static.Executor(place)
result, = exe.run(fetch_list=[data])
expected_result = np.eye(10, 7, dtype="float16")
self.assertEqual((result == expected_result).all(), True)
with paddle.static.program_guard(paddle.static.Program()):
data = paddle.eye(10, dtype="int32")
place = paddle.NPUPlace(0)
exe = paddle.static.Executor(place)
result, = exe.run(fetch_list=[data])
expected_result = np.eye(10, dtype="int32")
self.assertEqual((result == expected_result).all(), True)
paddle.disable_static(paddle.NPUPlace(0))
out = paddle.eye(10, dtype="int32")
expected_result = np.eye(10, dtype="int32")
paddle.enable_static()
self.assertEqual((out.numpy() == expected_result).all(), True)
paddle.disable_static(paddle.NPUPlace(0))
batch_shape = [2]
out = fluid.layers.eye(10, 10, dtype="int32", batch_shape=batch_shape)
result = np.eye(10, dtype="int32")
expected_result = []
for index in reversed(batch_shape):
tmp_result = []
for i in range(index):
tmp_result.append(result)
result = tmp_result
expected_result = np.stack(result, axis=0)
paddle.enable_static()
self.assertEqual(out.numpy().shape == np.array(expected_result).shape,
True)
self.assertEqual((out.numpy() == expected_result).all(), True)
paddle.disable_static(paddle.NPUPlace(0))
batch_shape = [3, 2]
out = fluid.layers.eye(10, 10, dtype="int32", batch_shape=batch_shape)
result = np.eye(10, dtype="int32")
expected_result = []
for index in reversed(batch_shape):
tmp_result = []
for i in range(index):
tmp_result.append(result)
result = tmp_result
expected_result = np.stack(result, axis=0)
paddle.enable_static()
self.assertEqual(out.numpy().shape == np.array(expected_result).shape,
True)
self.assertEqual((out.numpy() == expected_result).all(), True)
def test_errors(self):
with paddle.static.program_guard(paddle.static.Program()):
def test_num_rows_type_check():
paddle.eye(-1, dtype="int64")
self.assertRaises(TypeError, test_num_rows_type_check)
def test_num_columns_type_check():
paddle.eye(10, num_columns=5.2, dtype="int64")
self.assertRaises(TypeError, test_num_columns_type_check)
def test_num_columns_type_check1():
paddle.eye(10, num_columns=10, dtype="int8")
self.assertRaises(TypeError, test_num_columns_type_check1)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册