提交 6df24d03 编写于 作者: Y Yu Yang

Merge branch 'develop' of github.com:baidu/Paddle into feature/change_get_attr_to_attr

此差异已折叠。
...@@ -21,16 +21,16 @@ namespace framework { ...@@ -21,16 +21,16 @@ namespace framework {
/// @cond HIDDEN /// @cond HIDDEN
template <int i> template <int i>
Dim<i> make_dim(const int* d) { Dim<i> make_dim(const int64_t* d) {
return Dim<i>(*d, make_dim<i - 1>(d + 1)); return Dim<i>(*d, make_dim<i - 1>(d + 1));
} }
template <> template <>
Dim<1> make_dim<1>(const int* d) { Dim<1> make_dim<1>(const int64_t* d) {
return Dim<1>(*d); return Dim<1>(*d);
} }
void make_ddim(DDim& ddim, const int* dims, int n) { void make_ddim(DDim& ddim, const int64_t* dims, int n) {
switch (n) { switch (n) {
case 1: case 1:
ddim = make_dim<1>(dims); ddim = make_dim<1>(dims);
...@@ -67,13 +67,13 @@ void make_ddim(DDim& ddim, const int* dims, int n) { ...@@ -67,13 +67,13 @@ void make_ddim(DDim& ddim, const int* dims, int n) {
/// @endcond /// @endcond
DDim make_ddim(std::initializer_list<int> dims) { DDim make_ddim(std::initializer_list<int64_t> dims) {
DDim result(make_dim(0)); DDim result(make_dim(0));
make_ddim(result, dims.begin(), dims.size()); make_ddim(result, dims.begin(), dims.size());
return result; return result;
} }
DDim make_ddim(const std::vector<int>& dims) { DDim make_ddim(const std::vector<int64_t>& dims) {
DDim result(make_dim(0)); DDim result(make_dim(0));
make_ddim(result, &dims[0], dims.size()); make_ddim(result, &dims[0], dims.size());
return result; return result;
...@@ -81,12 +81,12 @@ DDim make_ddim(const std::vector<int>& dims) { ...@@ -81,12 +81,12 @@ DDim make_ddim(const std::vector<int>& dims) {
/// @cond HIDDEN /// @cond HIDDEN
// XXX For some reason, putting this in an anonymous namespace causes errors // XXX For some reason, putting this in an anonymous namespace causes errors
class DynamicMutableIndexer : public boost::static_visitor<int&> { class DynamicMutableIndexer : public boost::static_visitor<int64_t&> {
public: public:
explicit DynamicMutableIndexer(int idx) : idx_(idx) {} explicit DynamicMutableIndexer(int idx) : idx_(idx) {}
template <int D> template <int D>
int& operator()(Dim<D>& dim) const { int64_t& operator()(Dim<D>& dim) const {
return dim[idx_]; return dim[idx_];
} }
...@@ -94,12 +94,12 @@ class DynamicMutableIndexer : public boost::static_visitor<int&> { ...@@ -94,12 +94,12 @@ class DynamicMutableIndexer : public boost::static_visitor<int&> {
int idx_; int idx_;
}; };
class DynamicConstIndexer : public boost::static_visitor<int> { class DynamicConstIndexer : public boost::static_visitor<int64_t> {
public: public:
explicit DynamicConstIndexer(int idx) : idx_(idx) {} explicit DynamicConstIndexer(int idx) : idx_(idx) {}
template <int D> template <int D>
int operator()(const Dim<D>& dim) const { int64_t operator()(const Dim<D>& dim) const {
return dim[idx_]; return dim[idx_];
} }
...@@ -109,22 +109,22 @@ class DynamicConstIndexer : public boost::static_visitor<int> { ...@@ -109,22 +109,22 @@ class DynamicConstIndexer : public boost::static_visitor<int> {
/// @endcond /// @endcond
int& DDim::operator[](int idx) { int64_t& DDim::operator[](int idx) {
return boost::apply_visitor(DynamicMutableIndexer(idx), var); return boost::apply_visitor(DynamicMutableIndexer(idx), var);
} }
int DDim::operator[](int idx) const { int64_t DDim::operator[](int idx) const {
return boost::apply_visitor(DynamicConstIndexer(idx), var); return boost::apply_visitor(DynamicConstIndexer(idx), var);
} }
ssize_t DDim::size() const { return arity(*this); } int64_t DDim::size() const { return arity(*this); }
bool DDim::operator==(DDim d) const { bool DDim::operator==(DDim d) const {
if (var.which() != d.getVar().which()) { if (var.which() != d.getVar().which()) {
return false; return false;
} else { } else {
std::vector<int> v1 = vectorize(*this); std::vector<int64_t> v1 = vectorize(*this);
std::vector<int> v2 = vectorize(d); std::vector<int64_t> v2 = vectorize(d);
for (unsigned int i = 0; i < v1.size(); i++) { for (unsigned int i = 0; i < v1.size(); i++) {
if (v1[i] != v2[i]) { if (v1[i] != v2[i]) {
...@@ -139,10 +139,10 @@ bool DDim::operator==(DDim d) const { ...@@ -139,10 +139,10 @@ bool DDim::operator==(DDim d) const {
bool DDim::operator!=(DDim d) const { return !(*this == d); } bool DDim::operator!=(DDim d) const { return !(*this == d); }
DDim DDim::operator+(DDim d) const { DDim DDim::operator+(DDim d) const {
std::vector<int> v1 = vectorize(*this); std::vector<int64_t> v1 = vectorize(*this);
std::vector<int> v2 = vectorize(d); std::vector<int64_t> v2 = vectorize(d);
std::vector<int> v3; std::vector<int64_t> v3;
assert(v1.size() == v2.size()); assert(v1.size() == v2.size());
...@@ -154,10 +154,10 @@ DDim DDim::operator+(DDim d) const { ...@@ -154,10 +154,10 @@ DDim DDim::operator+(DDim d) const {
} }
DDim DDim::operator*(DDim d) const { DDim DDim::operator*(DDim d) const {
std::vector<int> v1 = vectorize(*this); std::vector<int64_t> v1 = vectorize(*this);
std::vector<int> v2 = vectorize(d); std::vector<int64_t> v2 = vectorize(d);
std::vector<int> v3; std::vector<int64_t> v3;
assert(v1.size() == v2.size()); assert(v1.size() == v2.size());
...@@ -168,15 +168,15 @@ DDim DDim::operator*(DDim d) const { ...@@ -168,15 +168,15 @@ DDim DDim::operator*(DDim d) const {
return make_ddim(v3); return make_ddim(v3);
} }
int get(const DDim& ddim, int idx) { return ddim[idx]; } int64_t get(const DDim& ddim, int idx) { return ddim[idx]; }
void set(DDim& ddim, int idx, int value) { ddim[idx] = value; } void set(DDim& ddim, int idx, int value) { ddim[idx] = value; }
/// @cond HIDDEN /// @cond HIDDEN
struct VectorizeVisitor : public boost::static_visitor<> { struct VectorizeVisitor : public boost::static_visitor<> {
std::vector<int>& vector; std::vector<int64_t>& vector;
explicit VectorizeVisitor(std::vector<int>& v) : vector(v) {} explicit VectorizeVisitor(std::vector<int64_t>& v) : vector(v) {}
template <typename T> template <typename T>
void operator()(const T& t) { void operator()(const T& t) {
...@@ -188,31 +188,31 @@ struct VectorizeVisitor : public boost::static_visitor<> { ...@@ -188,31 +188,31 @@ struct VectorizeVisitor : public boost::static_visitor<> {
}; };
/// @endcond /// @endcond
std::vector<int> vectorize(const DDim& ddim) { std::vector<int64_t> vectorize(const DDim& ddim) {
std::vector<int> result; std::vector<int64_t> result;
VectorizeVisitor visitor(result); VectorizeVisitor visitor(result);
boost::apply_visitor(visitor, ddim); boost::apply_visitor(visitor, ddim);
return result; return result;
} }
struct ProductVisitor : public boost::static_visitor<ssize_t> { struct ProductVisitor : public boost::static_visitor<int64_t> {
template <int D> template <int D>
ssize_t operator()(const Dim<D>& dim) { int64_t operator()(const Dim<D>& dim) {
return product(dim); return product(dim);
} }
}; };
ssize_t product(const DDim& ddim) { int64_t product(const DDim& ddim) {
ProductVisitor visitor; ProductVisitor visitor;
return boost::apply_visitor(visitor, ddim); return boost::apply_visitor(visitor, ddim);
} }
struct SliceVectorizeVisitor : public boost::static_visitor<> { struct SliceVectorizeVisitor : public boost::static_visitor<> {
std::vector<int>& vector; std::vector<int64_t>& vector;
int begin; int begin;
int end; int end;
SliceVectorizeVisitor(std::vector<int>& v, int b, int e) SliceVectorizeVisitor(std::vector<int64_t>& v, int b, int e)
: vector(v), begin(b), end(e) { : vector(v), begin(b), end(e) {
PADDLE_ENFORCE(begin < end, PADDLE_ENFORCE(begin < end,
"Begin index must be less than end index in ddim slice."); "Begin index must be less than end index in ddim slice.");
...@@ -240,7 +240,7 @@ struct SliceVectorizeVisitor : public boost::static_visitor<> { ...@@ -240,7 +240,7 @@ struct SliceVectorizeVisitor : public boost::static_visitor<> {
}; };
DDim slice_ddim(const DDim& dim, int begin, int end) { DDim slice_ddim(const DDim& dim, int begin, int end) {
std::vector<int> vec; std::vector<int64_t> vec;
vec.reserve(end - begin); vec.reserve(end - begin);
SliceVectorizeVisitor visitor(vec, begin, end); SliceVectorizeVisitor visitor(vec, begin, end);
boost::apply_visitor(visitor, dim); boost::apply_visitor(visitor, dim);
...@@ -280,7 +280,7 @@ std::ostream& operator<<(std::ostream& os, const DDim& ddim) { ...@@ -280,7 +280,7 @@ std::ostream& operator<<(std::ostream& os, const DDim& ddim) {
return os; return os;
} }
DDim::DDim(std::initializer_list<int> init_list) { DDim::DDim(std::initializer_list<int64_t> init_list) {
*this = make_ddim(init_list); *this = make_ddim(init_list);
} }
} // namespace framework } // namespace framework
......
...@@ -40,7 +40,7 @@ struct DDim { ...@@ -40,7 +40,7 @@ struct DDim {
template <int D> template <int D>
explicit DDim(const Dim<D>& in) : var(in) {} explicit DDim(const Dim<D>& in) : var(in) {}
/*implicit*/ DDim(std::initializer_list<int> init_list); /*implicit*/ DDim(std::initializer_list<int64_t> init_list);
template <int D> template <int D>
DDim& operator=(const Dim<D>& in) { DDim& operator=(const Dim<D>& in) {
...@@ -48,8 +48,8 @@ struct DDim { ...@@ -48,8 +48,8 @@ struct DDim {
return *this; return *this;
} }
int& operator[](int idx); int64_t& operator[](int idx);
int operator[](int idx) const; int64_t operator[](int idx) const;
template <typename Visitor> template <typename Visitor>
typename Visitor::result_type apply_visitor(Visitor& visitor) { typename Visitor::result_type apply_visitor(Visitor& visitor) {
...@@ -71,15 +71,15 @@ struct DDim { ...@@ -71,15 +71,15 @@ struct DDim {
DDim operator*(DDim d) const; DDim operator*(DDim d) const;
ssize_t size() const; int64_t size() const;
}; };
/** /**
* \brief Make a DDim from std::vector<int> * \brief Make a DDim from std::vector<int64_t>
* *
* \param dims An vector of ints. Must be sized between [1, 9] * \param dims An vector of ints. Must be sized between [1, 9]
*/ */
DDim make_ddim(const std::vector<int>& dims); DDim make_ddim(const std::vector<int64_t>& dims);
/** /**
* \brief Make a DDim from an initializer list * \brief Make a DDim from an initializer list
...@@ -87,14 +87,14 @@ DDim make_ddim(const std::vector<int>& dims); ...@@ -87,14 +87,14 @@ DDim make_ddim(const std::vector<int>& dims);
* \param dims An initializer list of ints. Must be sized between [1, 9] * \param dims An initializer list of ints. Must be sized between [1, 9]
* *
*/ */
DDim make_ddim(std::initializer_list<int> dims); DDim make_ddim(std::initializer_list<int64_t> dims);
int get(const DDim& dim, int idx); int64_t get(const DDim& dim, int idx);
void set(DDim& dim, int idx, int val); void set(DDim& dim, int idx, int val);
std::vector<int> vectorize(const DDim& ddim); std::vector<int64_t> vectorize(const DDim& ddim);
ssize_t product(const DDim& ddim); int64_t product(const DDim& ddim);
/** /**
* \brief Slice a ddim * \brief Slice a ddim
......
...@@ -12,7 +12,7 @@ TEST(DDim, Equality) { ...@@ -12,7 +12,7 @@ TEST(DDim, Equality) {
EXPECT_EQ(ddim[2], 5); EXPECT_EQ(ddim[2], 5);
// construct a DDim from a vector // construct a DDim from a vector
std::vector<int> vec({9, 1, 5}); std::vector<int64_t> vec({9, 1, 5});
paddle::framework::DDim vddim = paddle::framework::make_ddim(vec); paddle::framework::DDim vddim = paddle::framework::make_ddim(vec);
EXPECT_EQ(ddim[0], 9); EXPECT_EQ(ddim[0], 9);
EXPECT_EQ(ddim[1], 1); EXPECT_EQ(ddim[1], 1);
...@@ -25,7 +25,7 @@ TEST(DDim, Equality) { ...@@ -25,7 +25,7 @@ TEST(DDim, Equality) {
EXPECT_EQ(paddle::framework::get(ddim, 0), 6); EXPECT_EQ(paddle::framework::get(ddim, 0), 6);
// vectorize a DDim // vectorize a DDim
std::vector<int> res_vec = paddle::framework::vectorize(vddim); std::vector<int64_t> res_vec = paddle::framework::vectorize(vddim);
EXPECT_EQ(res_vec[0], 9); EXPECT_EQ(res_vec[0], 9);
EXPECT_EQ(res_vec[1], 1); EXPECT_EQ(res_vec[1], 1);
EXPECT_EQ(res_vec[2], 5); EXPECT_EQ(res_vec[2], 5);
......
...@@ -17,13 +17,13 @@ struct Dim { ...@@ -17,13 +17,13 @@ struct Dim {
static constexpr int dimensions = i; static constexpr int dimensions = i;
template <typename... Args> template <typename... Args>
HOSTDEVICE Dim(int _head, Args... _tail) : head(_head), tail(_tail...) { HOSTDEVICE Dim(int64_t _head, Args... _tail) : head(_head), tail(_tail...) {
static_assert(sizeof...(_tail) == i - 1, static_assert(sizeof...(_tail) == i - 1,
"Dim initialized with the wrong number of parameters"); "Dim initialized with the wrong number of parameters");
} }
HOSTDEVICE HOSTDEVICE
Dim(int _head, const Dim<i - 1>& _tail) : head(_head), tail(_tail) {} Dim(int64_t _head, const Dim<i - 1>& _tail) : head(_head), tail(_tail) {}
HOSTDEVICE HOSTDEVICE
Dim() : head(0), tail() {} Dim() : head(0), tail() {}
...@@ -31,12 +31,12 @@ struct Dim { ...@@ -31,12 +31,12 @@ struct Dim {
/** Construct a Dim from a linear index and size. Uses Fortran order /** Construct a Dim from a linear index and size. Uses Fortran order
* indexing. */ * indexing. */
HOSTDEVICE HOSTDEVICE
Dim(int idx, const Dim<i>& size) Dim(int64_t idx, const Dim<i>& size)
: head(idx % size.head), tail(idx / size.head, size.tail) {} : head(idx % size.head), tail(idx / size.head, size.tail) {}
/** Construct a Dim with each dimension set to the given index */ /** Construct a Dim with each dimension set to the given index */
HOSTDEVICE HOSTDEVICE
Dim(int idx) : head(idx), tail(idx) {} Dim(int64_t idx) : head(idx), tail(idx) {}
HOSTDEVICE HOSTDEVICE
bool operator==(const Dim<i>& o) const { bool operator==(const Dim<i>& o) const {
...@@ -47,13 +47,13 @@ struct Dim { ...@@ -47,13 +47,13 @@ struct Dim {
bool operator!=(const Dim<i>& o) const { return !(*this == o); } bool operator!=(const Dim<i>& o) const { return !(*this == o); }
HOSTDEVICE HOSTDEVICE
int& operator[](int idx); int64_t& operator[](int idx);
HOSTDEVICE HOSTDEVICE
int operator[](int idx) const; int64_t operator[](int idx) const;
HOST std::string to_string() const; HOST std::string to_string() const;
int head; int64_t head;
Dim<i - 1> tail; Dim<i - 1> tail;
}; };
...@@ -63,7 +63,7 @@ struct Dim<1> { ...@@ -63,7 +63,7 @@ struct Dim<1> {
static constexpr int dimensions = 1; static constexpr int dimensions = 1;
HOSTDEVICE HOSTDEVICE
Dim(int _head) : head(_head) {} Dim(int64_t _head) : head(_head) {}
HOSTDEVICE HOSTDEVICE
Dim() : head(0) {} Dim() : head(0) {}
...@@ -86,11 +86,11 @@ struct Dim<1> { ...@@ -86,11 +86,11 @@ struct Dim<1> {
bool operator!=(const Dim<1>& o) const { return !(*this == o); } bool operator!=(const Dim<1>& o) const { return !(*this == o); }
HOSTDEVICE HOSTDEVICE
int& operator[](int idx); int64_t& operator[](int idx);
HOSTDEVICE HOSTDEVICE
int operator[](int idx) const; int64_t operator[](int idx) const;
int head; int64_t head;
}; };
namespace { namespace {
...@@ -100,12 +100,12 @@ template <int i> ...@@ -100,12 +100,12 @@ template <int i>
struct DimGetter { struct DimGetter {
// Return a copy if Dim is const // Return a copy if Dim is const
template <typename D> template <typename D>
HOSTDEVICE static int impl(const D& d) { HOSTDEVICE static int64_t impl(const D& d) {
return DimGetter<i - 1>::impl(d.tail); return DimGetter<i - 1>::impl(d.tail);
} }
// Return a reference if Dim is mutable // Return a reference if Dim is mutable
template <typename D> template <typename D>
HOSTDEVICE static int& impl(D& d) { HOSTDEVICE static int64_t& impl(D& d) {
return DimGetter<i - 1>::impl(d.tail); return DimGetter<i - 1>::impl(d.tail);
} }
}; };
...@@ -115,18 +115,18 @@ template <> ...@@ -115,18 +115,18 @@ template <>
struct DimGetter<0> { struct DimGetter<0> {
// Return a copy if Dim is const // Return a copy if Dim is const
template <typename D> template <typename D>
HOSTDEVICE static int impl(const D& d) { HOSTDEVICE static int64_t impl(const D& d) {
return d.head; return d.head;
} }
// Return a reference if Dim is mutable // Return a reference if Dim is mutable
template <typename D> template <typename D>
HOSTDEVICE static int& impl(D& d) { HOSTDEVICE static int64_t& impl(D& d) {
return d.head; return d.head;
} }
}; };
template <int D> template <int D>
HOSTDEVICE int& indexer(Dim<D>& dim, int idx) { HOSTDEVICE int64_t& indexer(Dim<D>& dim, int idx) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
if (idx < 0) { if (idx < 0) {
throw std::invalid_argument("Tried to access a negative dimension"); throw std::invalid_argument("Tried to access a negative dimension");
...@@ -141,7 +141,7 @@ HOSTDEVICE int& indexer(Dim<D>& dim, int idx) { ...@@ -141,7 +141,7 @@ HOSTDEVICE int& indexer(Dim<D>& dim, int idx) {
} }
template <> template <>
HOSTDEVICE int& indexer<1>(Dim<1>& dim, int idx) { HOSTDEVICE int64_t& indexer<1>(Dim<1>& dim, int idx) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
if (idx != 0) { if (idx != 0) {
throw std::invalid_argument("Invalid index"); throw std::invalid_argument("Invalid index");
...@@ -153,7 +153,7 @@ HOSTDEVICE int& indexer<1>(Dim<1>& dim, int idx) { ...@@ -153,7 +153,7 @@ HOSTDEVICE int& indexer<1>(Dim<1>& dim, int idx) {
} }
template <int D> template <int D>
HOSTDEVICE int indexer(const Dim<D>& dim, int idx) { HOSTDEVICE int64_t indexer(const Dim<D>& dim, int idx) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
if (idx < 0) { if (idx < 0) {
throw std::invalid_argument("Tried to access a negative dimension"); throw std::invalid_argument("Tried to access a negative dimension");
...@@ -168,7 +168,7 @@ HOSTDEVICE int indexer(const Dim<D>& dim, int idx) { ...@@ -168,7 +168,7 @@ HOSTDEVICE int indexer(const Dim<D>& dim, int idx) {
} }
template <> template <>
HOSTDEVICE int indexer<1>(const Dim<1>& dim, int idx) { HOSTDEVICE int64_t indexer<1>(const Dim<1>& dim, int idx) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
if (idx != 0) { if (idx != 0) {
throw std::invalid_argument("Invalid index"); throw std::invalid_argument("Invalid index");
...@@ -182,73 +182,76 @@ HOSTDEVICE int indexer<1>(const Dim<1>& dim, int idx) { ...@@ -182,73 +182,76 @@ HOSTDEVICE int indexer<1>(const Dim<1>& dim, int idx) {
} // namespace } // namespace
// Static access to constant Dim // Static access to constant Dim
template <int i, int l> template <int i, int l>
HOSTDEVICE int get(const Dim<l>& d) { HOSTDEVICE int64_t get(const Dim<l>& d) {
return DimGetter<i>::impl(d); return DimGetter<i>::impl(d);
} }
// Static access to mutable Dim // Static access to mutable Dim
template <int i, int l> template <int i, int l>
HOSTDEVICE int& get(Dim<l>& d) { HOSTDEVICE int64_t& get(Dim<l>& d) {
return DimGetter<i>::impl(d); return DimGetter<i>::impl(d);
} }
// Dynamic access to constant Dim // Dynamic access to constant Dim
template <int l> template <int l>
HOSTDEVICE int Dim<l>::operator[](int i) const { HOSTDEVICE int64_t Dim<l>::operator[](int i) const {
return indexer(*this, i); return indexer(*this, i);
} }
// Dynamic access to mutable Dim // Dynamic access to mutable Dim
template <int l> template <int l>
HOSTDEVICE int& Dim<l>::operator[](int i) { HOSTDEVICE int64_t& Dim<l>::operator[](int i) {
return indexer(*this, i); return indexer(*this, i);
} }
// Dynamic access to constant Dim // Dynamic access to constant Dim
inline HOSTDEVICE int Dim<1>::operator[](int i) const { inline HOSTDEVICE int64_t Dim<1>::operator[](int i) const {
return indexer(*this, i); return indexer(*this, i);
} }
// Dynamic access to mutable Dim // Dynamic access to mutable Dim
inline HOSTDEVICE int& Dim<1>::operator[](int i) { return indexer(*this, i); } inline HOSTDEVICE int64_t& Dim<1>::operator[](int i) {
return indexer(*this, i);
}
// Dynamic access to constant Dim // Dynamic access to constant Dim
// without std::enable_if will try to instantiate this on get<0>(d) // without std::enable_if will try to instantiate this on get<0>(d)
template <int l> template <int l>
HOSTDEVICE typename std::enable_if<(l > 0), int>::type get(const Dim<l>& d, HOSTDEVICE typename std::enable_if<(l > 0), int64_t>::type get(const Dim<l>& d,
int i) { int i) {
return d[i]; return d[i];
} }
// Dynamic access to mutable Dim // Dynamic access to mutable Dim
template <int l> template <int l>
HOSTDEVICE typename std::enable_if<(l > 0), int&>::type get(Dim<l>& d, int i) { HOSTDEVICE typename std::enable_if<(l > 0), int64_t&>::type get(Dim<l>& d,
int i) {
return d[i]; return d[i];
} }
// Dot product of two dims // Dot product of two dims
template <int i> template <int i>
HOSTDEVICE int linearize(const Dim<i>& a, const Dim<i>& b) { HOSTDEVICE int64_t linearize(const Dim<i>& a, const Dim<i>& b) {
return a.head * b.head + linearize(a.tail, b.tail); return a.head * b.head + linearize(a.tail, b.tail);
} }
// Base case dot product of two Dims // Base case dot product of two Dims
// Notice it is inline because it is no longer a template // Notice it is inline because it is no longer a template
template <> template <>
HOSTDEVICE inline int linearize(const Dim<1>& a, const Dim<1>& b) { HOSTDEVICE inline int64_t linearize(const Dim<1>& a, const Dim<1>& b) {
return a.head * b.head; return a.head * b.head;
} }
// Product of a Dim // Product of a Dim
template <int i> template <int i>
HOSTDEVICE int product(const Dim<i>& a, int prod = 1) { HOSTDEVICE int64_t product(const Dim<i>& a, int prod = 1) {
return prod * a.head * product(a.tail); return prod * a.head * product(a.tail);
} }
// Base case product of a Dim // Base case product of a Dim
// Notice it is inline because it is no longer a template // Notice it is inline because it is no longer a template
template <> template <>
HOSTDEVICE inline int product(const Dim<1>& a, int prod) { HOSTDEVICE inline int64_t product(const Dim<1>& a, int prod) {
return prod * a.head; return prod * a.head;
} }
......
...@@ -8,7 +8,7 @@ __global__ void test(paddle::framework::Dim<2>* o) { ...@@ -8,7 +8,7 @@ __global__ void test(paddle::framework::Dim<2>* o) {
o[0] = paddle::framework::make_dim(5, 6); o[0] = paddle::framework::make_dim(5, 6);
} }
__global__ void dyn_idx_gpu(int* o) { __global__ void dyn_idx_gpu(int64_t* o) {
auto d = paddle::framework::make_dim(5, 6); auto d = paddle::framework::make_dim(5, 6);
o[0] = d[1]; o[0] = d[1];
} }
...@@ -47,9 +47,9 @@ TEST(Dim, Equality) { ...@@ -47,9 +47,9 @@ TEST(Dim, Equality) {
EXPECT_EQ(b[1], 11); EXPECT_EQ(b[1], 11);
// dynamic access on GPU // dynamic access on GPU
thrust::device_vector<int> r(1); thrust::device_vector<int64_t> r(1);
dyn_idx_gpu<<<1, 1>>>(thrust::raw_pointer_cast(r.data())); dyn_idx_gpu<<<1, 1>>>(thrust::raw_pointer_cast(r.data()));
int res = r[0]; int64_t res = r[0];
EXPECT_EQ(res, 6); EXPECT_EQ(res, 6);
// ex_prefix_mul // ex_prefix_mul
......
...@@ -28,7 +28,7 @@ struct EigenDim { ...@@ -28,7 +28,7 @@ struct EigenDim {
static Type From(const DDim& dims) { static Type From(const DDim& dims) {
PADDLE_ENFORCE(arity(dims) == D, "D must match arity(DDim)"); PADDLE_ENFORCE(arity(dims) == D, "D must match arity(DDim)");
Type ret; Type ret;
for (int d = 0; d < arity(dims); d++) { for (int64_t d = 0; d < arity(dims); d++) {
ret[d] = dims[d]; ret[d] = dims[d];
} }
return ret; return ret;
......
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
USE_OP(add_two); USE_OP(add);
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -41,7 +41,7 @@ namespace f = paddle::framework; ...@@ -41,7 +41,7 @@ namespace f = paddle::framework;
TEST(GradOpBuilder, AddTwo) { TEST(GradOpBuilder, AddTwo) {
std::shared_ptr<f::OperatorBase> add_op(f::OpRegistry::CreateOp( std::shared_ptr<f::OperatorBase> add_op(f::OpRegistry::CreateOp(
"add_two", {{"X", {"x"}}, {"Y", {"y"}}}, {{"Out", {"out"}}}, {})); "add", {{"X", {"x"}}, {"Y", {"y"}}}, {{"Out", {"out"}}}, {}));
std::shared_ptr<f::OperatorBase> grad_add_op = std::shared_ptr<f::OperatorBase> grad_add_op =
f::OpRegistry::CreateGradOp(*add_op); f::OpRegistry::CreateGradOp(*add_op);
EXPECT_EQ(grad_add_op->Inputs().size(), 4UL); EXPECT_EQ(grad_add_op->Inputs().size(), 4UL);
......
...@@ -58,7 +58,7 @@ inline T* Tensor::mutable_data(platform::Place place) { ...@@ -58,7 +58,7 @@ inline T* Tensor::mutable_data(platform::Place place) {
"Tensor's numel must be larger than zero to call " "Tensor's numel must be larger than zero to call "
"Tensor::mutable_data. Call Tensor::set_dim first."); "Tensor::mutable_data. Call Tensor::set_dim first.");
/* some versions of boost::variant don't have operator!= */ /* some versions of boost::variant don't have operator!= */
size_t size = product(dims_) * sizeof(T); int64_t size = product(dims_) * sizeof(T);
if (holder_ == nullptr || !(holder_->place() == place) || if (holder_ == nullptr || !(holder_->place() == place) ||
holder_->size() < size + offset_) { holder_->size() < size + offset_) {
if (platform::is_cpu_place(place)) { if (platform::is_cpu_place(place)) {
...@@ -131,7 +131,7 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const { ...@@ -131,7 +131,7 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
PADDLE_ENFORCE_LT(begin_idx, end_idx, PADDLE_ENFORCE_LT(begin_idx, end_idx,
"Begin index must be less than end index."); "Begin index must be less than end index.");
PADDLE_ENFORCE_NE(dims_[0], 1, "Can not slice a tensor with dims_[0] = 1."); PADDLE_ENFORCE_NE(dims_[0], 1, "Can not slice a tensor with dims_[0] = 1.");
int base = product(dims_) / dims_[0]; size_t base = product(dims_) / dims_[0];
Tensor dst; Tensor dst;
dst.holder_ = holder_; dst.holder_ = holder_;
DDim dst_dims = dims_; DDim dst_dims = dims_;
......
...@@ -83,8 +83,8 @@ void Conv3DLayer::forward(PassType passType) { ...@@ -83,8 +83,8 @@ void Conv3DLayer::forward(PassType passType) {
int outWidth = getSize(); int outWidth = getSize();
resetOutput(batchSize, outWidth); resetOutput(batchSize, outWidth);
REGISTER_TIMER_INFO("FwdConv3D", getName().c_str());
for (size_t i = 0; i != inputLayers_.size(); ++i) { for (size_t i = 0; i != inputLayers_.size(); ++i) {
REGISTER_TIMER_INFO("FwdConv3D", getName().c_str());
const MatrixPtr &inMat = getInputValue(i); const MatrixPtr &inMat = getInputValue(i);
const MatrixPtr &outMat = getOutputValue(); const MatrixPtr &outMat = getOutputValue();
int M = M_[i]; int M = M_[i];
...@@ -120,7 +120,6 @@ void Conv3DLayer::forward(PassType passType) { ...@@ -120,7 +120,6 @@ void Conv3DLayer::forward(PassType passType) {
} }
} }
if (nullptr != this->biasParameter_) { if (nullptr != this->biasParameter_) {
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
this->addBias(); this->addBias();
} }
forwardActivation(); forwardActivation();
...@@ -134,15 +133,14 @@ void Conv3DLayer::backward(const UpdateCallback &callback) { ...@@ -134,15 +133,14 @@ void Conv3DLayer::backward(const UpdateCallback &callback) {
biases_->getParameterPtr()->incUpdate(callback); biases_->getParameterPtr()->incUpdate(callback);
} }
REGISTER_TIMER_INFO("BwdConv3D", getName().c_str());
for (size_t i = 0; i != inputLayers_.size(); ++i) { for (size_t i = 0; i != inputLayers_.size(); ++i) {
REGISTER_TIMER_INFO("BwdConv3D", getName().c_str());
if (weights_[i]->getWGrad()) { if (weights_[i]->getWGrad()) {
bpropWeights(i); bpropWeights(i);
} }
if (getInputGrad(i)) { if (getInputGrad(i)) {
bpropData(i); bpropData(i);
} }
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
weights_[i]->getParameterPtr()->incUpdate(callback); weights_[i]->getParameterPtr()->incUpdate(callback);
} }
} }
......
...@@ -84,8 +84,8 @@ void DeConv3DLayer::forward(PassType passType) { ...@@ -84,8 +84,8 @@ void DeConv3DLayer::forward(PassType passType) {
resetOutput(batchSize, outWidth); resetOutput(batchSize, outWidth);
const MatrixPtr outMat = getOutputValue(); const MatrixPtr outMat = getOutputValue();
REGISTER_TIMER_INFO("FwdDeConv3D", getName().c_str());
for (size_t i = 0; i != inputLayers_.size(); ++i) { for (size_t i = 0; i != inputLayers_.size(); ++i) {
REGISTER_TIMER_INFO("FwdDeConv3D", getName().c_str());
const MatrixPtr &inMat = getInputValue(i); const MatrixPtr &inMat = getInputValue(i);
int M = M_[i]; int M = M_[i];
int N = N_[i]; int N = N_[i];
...@@ -120,7 +120,6 @@ void DeConv3DLayer::forward(PassType passType) { ...@@ -120,7 +120,6 @@ void DeConv3DLayer::forward(PassType passType) {
} }
} }
if (nullptr != this->biasParameter_) { if (nullptr != this->biasParameter_) {
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
this->addBias(); this->addBias();
} }
forwardActivation(); forwardActivation();
...@@ -133,12 +132,12 @@ void DeConv3DLayer::backward(const UpdateCallback &callback) { ...@@ -133,12 +132,12 @@ void DeConv3DLayer::backward(const UpdateCallback &callback) {
bpropBiases(); bpropBiases();
biases_->getParameterPtr()->incUpdate(callback); biases_->getParameterPtr()->incUpdate(callback);
} }
REGISTER_TIMER_INFO("BwdDeConv3D", getName().c_str());
for (size_t i = 0; i < inputLayers_.size(); ++i) { for (size_t i = 0; i < inputLayers_.size(); ++i) {
if (weights_[i]->getWGrad() || this->needGradient_) { if (weights_[i]->getWGrad() || this->needGradient_) {
int M = M_[i]; int M = M_[i];
int N = N_[i]; int N = N_[i];
int K = K_[i]; int K = K_[i];
REGISTER_TIMER_INFO("BwdDeConv3D", getName().c_str());
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_); Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
const MatrixPtr &inMat = getInputValue(i); const MatrixPtr &inMat = getInputValue(i);
for (int n = 0; n < batchSize; ++n) { for (int n = 0; n < batchSize; ++n) {
...@@ -182,7 +181,6 @@ void DeConv3DLayer::backward(const UpdateCallback &callback) { ...@@ -182,7 +181,6 @@ void DeConv3DLayer::backward(const UpdateCallback &callback) {
} }
} }
} }
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
weights_[i]->getParameterPtr()->incUpdate(callback); weights_[i]->getParameterPtr()->incUpdate(callback);
} }
} }
......
...@@ -14,27 +14,31 @@ function(op_library TARGET) ...@@ -14,27 +14,31 @@ function(op_library TARGET)
cmake_parse_arguments(op_library "${options}" "${oneValueArgs}" cmake_parse_arguments(op_library "${options}" "${oneValueArgs}"
"${multiValueArgs}" ${ARGN}) "${multiValueArgs}" ${ARGN})
foreach(src ${op_library_SRCS}) list(LENGTH op_library_SRCS op_library_SRCS_len)
if (${src} MATCHES ".*\\.cu$") if (${op_library_SRCS_len} EQUAL 0)
list(APPEND cu_srcs ${src}) if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.cc)
elseif(${src} MATCHES ".*\\.cc$") list(APPEND cc_srcs ${TARGET}.cc)
list(APPEND cc_srcs ${src})
else()
message(FATAL_ERROR "${TARGET} Source file ${src} should only be .cc or .cu")
endif() endif()
endforeach() if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.cu)
list(APPEND cu_srcs ${TARGET}.cu)
endif()
else()
foreach(src ${op_library_SRCS})
if (${src} MATCHES ".*\\.cu$")
list(APPEND cu_srcs ${src})
elseif(${src} MATCHES ".*\\.cc$")
list(APPEND cc_srcs ${src})
else()
message(FATAL_ERROR "${TARGET} Source file ${src} should only be .cc or .cu")
endif()
endforeach()
endif()
list(LENGTH cc_srcs cc_srcs_len) list(LENGTH cc_srcs cc_srcs_len)
if (${cc_srcs_len} EQUAL 0) if (${cc_srcs_len} EQUAL 0)
message(FATAL_ERROR "The op library ${TARGET} should contains at least one .cc file") message(FATAL_ERROR "The op library ${TARGET} should contains at least one .cc file")
endif() endif()
list(LENGTH cu_srcs cu_srcs_len)
list(LENGTH op_library_DEPS dep_len)
if (${cu_srcs_len} EQUAL 0 AND ${dep_len} EQUAL 0)
message(WARNING "The op library ${TARGET} not support GPU!")
endif()
if (WITH_GPU) if (WITH_GPU)
nv_library(${TARGET} SRCS ${cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS} nv_library(${TARGET} SRCS ${cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS}
${op_common_deps}) ${op_common_deps})
...@@ -46,22 +50,22 @@ endfunction() ...@@ -46,22 +50,22 @@ endfunction()
add_subdirectory(math) add_subdirectory(math)
list(REMOVE_ITEM GENERAL_OPS set(DEPS_OPS
net_op identity_op
minus_op minus_op
mul_op mul_op
recurrent_op recurrent_op
scale_op) scale_op)
op_library(identity_op DEPS scale_op)
op_library(net_op SRCS net_op.cc) op_library(minus_op DEPS scale_op)
op_library(minus_op SRCS minus_op.cc minus_op.cu DEPS scale_op) op_library(mul_op DEPS math_function)
op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS framework_proto tensor operator net_op) DEPS framework_proto tensor operator net_op)
op_library(scale_op SRCS scale_op.cc scale_op.cu DEPS net_op) op_library(scale_op DEPS net_op)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS}) foreach(src ${GENERAL_OPS})
op_library(${src} SRCS ${src}.cc ${src}.cu) op_library(${src})
endforeach() endforeach()
set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library") set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library")
......
...@@ -57,7 +57,6 @@ class AddOpGrad : public framework::OperatorWithKernel { ...@@ -57,7 +57,6 @@ class AddOpGrad : public framework::OperatorWithKernel {
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(add_two, ops::AddOp, ops::AddOpMaker, add_two_grad, ops::AddOpGrad); REGISTER_OP(add, ops::AddOp, ops::AddOpMaker, add_grad, ops::AddOpGrad);
REGISTER_OP_CPU_KERNEL(add_two, REGISTER_OP_CPU_KERNEL(add, ops::AddKernel<paddle::platform::CPUPlace, float>);
ops::AddKernel<paddle::platform::CPUPlace, float>);
...@@ -12,10 +12,7 @@ ...@@ -12,10 +12,7 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/framework/op_registry.h"
#include "paddle/operators/add_op.h" #include "paddle/operators/add_op.h"
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(add_two, REGISTER_OP_GPU_KERNEL(add, ops::AddKernel<paddle::platform::GPUPlace, float>);
ops::AddKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/cos_sim_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class CosSimOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
ctx.Input<Tensor>("Y")->dims(),
"Dimensions of Input(X) and Input(Y) must be the same.");
auto dims = ctx.Input<Tensor>("X")->dims();
ctx.Output<Tensor>("Out")->Resize({dims[0], 1});
ctx.Output<Tensor>("XNorm")->Resize({dims[0], 1});
ctx.Output<Tensor>("YNorm")->Resize({dims[0], 1});
}
};
class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CosSimOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of cos_sim op.");
AddInput("Y", "The second input of cos_sim op.");
AddOutput("Out", "The output of cos_sim op.");
AddOutput("XNorm", "Row norm of the first input.").AsIntermediate();
AddOutput("YNorm", "Row norm of the second input.").AsIntermediate();
AddComment(R"DOC(
Cosine Similarity Operator.
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y))
)DOC");
}
};
class CosSimOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("XNorm"),
"Input(XNorm) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("YNorm"),
"Input(YNorm) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) must not be null.");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
auto xnorm_dims = ctx.Input<Tensor>("XNorm")->dims();
auto ynorm_dims = ctx.Input<Tensor>("YNorm")->dims();
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
PADDLE_ENFORCE_EQ(x_dims, y_dims,
"Dimensions of Input(X) and Input(Y) must be the same.");
PADDLE_ENFORCE_EQ(xnorm_dims[0], x_dims[0],
"1st dimension of XNorm must equal that of Input(X).");
PADDLE_ENFORCE_EQ(xnorm_dims[1], 1, "2st dimension of XNorm must be one.");
PADDLE_ENFORCE_EQ(ynorm_dims[0], y_dims[0],
"1st dimension of YNorm must equal that of Input(Y).");
PADDLE_ENFORCE_EQ(ynorm_dims[1], 1, "2st dimension of YNorm must be one.");
PADDLE_ENFORCE_EQ(out_dims[0], x_dims[0],
"1st dimension of Out@GRAD must equal that of Input(X)");
PADDLE_ENFORCE_EQ(out_dims[1], 1, "1st dimension of Out@GRAD must be one.");
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
if (x_grad) x_grad->Resize(x_dims);
if (y_grad) y_grad->Resize(y_dims);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(cos_sim, ops::CosSimOp, ops::CosSimOpMaker, cos_sim_grad,
ops::CosSimOpGrad);
REGISTER_OP_CPU_KERNEL(cos_sim,
ops::CosSimKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
cos_sim_grad, ops::CosSimGradKernel<paddle::platform::CPUPlace, float>);
...@@ -13,8 +13,10 @@ ...@@ -13,8 +13,10 @@
limitations under the License. */ limitations under the License. */
#define EIGEN_USE_GPU #define EIGEN_USE_GPU
#include "paddle/operators/gather_op.h" #include "paddle/operators/cos_sim_op.h"
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(gather, REGISTER_OP_GPU_KERNEL(cos_sim,
ops::GatherOpKernel<paddle::platform::GPUPlace, float>); ops::CosSimKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
cos_sim_grad, ops::CosSimGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename Place, typename T>
class CosSimKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input_x = context.Input<Tensor>("X");
auto* input_y = context.Input<Tensor>("Y");
auto* output_z = context.Output<Tensor>("Out");
auto* output_x_norm = context.Output<Tensor>("XNorm");
auto* output_y_norm = context.Output<Tensor>("YNorm");
output_z->mutable_data<T>(context.GetPlace());
output_x_norm->mutable_data<T>(context.GetPlace());
output_y_norm->mutable_data<T>(context.GetPlace());
auto dims = input_x->dims();
int size = static_cast<int>(framework::product(dims));
auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
auto x = EigenMatrix<T>::From(*input_x, new_dims);
auto y = EigenMatrix<T>::From(*input_y, new_dims);
auto z = EigenVector<T>::Flatten(*output_z);
auto x_norm = EigenVector<T>::Flatten(*output_x_norm);
auto y_norm = EigenVector<T>::Flatten(*output_y_norm);
auto place = context.GetEigenDevice<Place>();
auto xy = (x * y).sum(Eigen::array<int, 1>({{1}}));
x_norm.device(place) = x.square().sum(Eigen::array<int, 1>({{1}})).sqrt();
y_norm.device(place) = y.square().sum(Eigen::array<int, 1>({{1}})).sqrt();
z.device(place) = xy / x_norm / y_norm;
}
};
template <typename Place, typename T>
class CosSimGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input_x = context.Input<Tensor>("X");
auto* input_y = context.Input<Tensor>("Y");
auto* input_z = context.Input<Tensor>("Out");
auto* input_x_norm = context.Input<Tensor>("XNorm");
auto* input_y_norm = context.Input<Tensor>("YNorm");
auto* output_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
auto* output_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
auto* input_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
auto dims = input_x->dims();
int size = static_cast<int>(framework::product(dims));
auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
auto x = EigenMatrix<T>::From(*input_x, new_dims);
auto y = EigenMatrix<T>::From(*input_y, new_dims);
auto z = EigenMatrix<T>::From(*input_z);
auto x_norm = EigenMatrix<T>::From(*input_x_norm);
auto y_norm = EigenMatrix<T>::From(*input_y_norm);
auto dz = EigenMatrix<T>::From(*input_grad_z);
Eigen::DSizes<int, 2> bcast(1, new_dims[1]);
auto z_bcast = z.broadcast(bcast);
auto dz_bcast = dz.broadcast(bcast);
auto place = context.GetEigenDevice<Place>();
auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast);
auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast);
auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast);
if (output_grad_x) {
output_grad_x->mutable_data<T>(context.GetPlace());
auto dx = EigenMatrix<T>::From(*output_grad_x, new_dims);
dx.device(place) =
dz_bcast * (y / norm_prod_bcast - z_bcast * x / x_snorm_bcast);
}
if (output_grad_y) {
output_grad_y->mutable_data<T>(context.GetPlace());
auto dy = EigenMatrix<T>::From(*output_grad_y, new_dims);
dy.device(place) =
dz_bcast * (x / norm_prod_bcast - z_bcast * y / y_snorm_bcast);
}
}
};
} // namespace operators
} // namespace paddle
...@@ -31,8 +31,8 @@ class CPUGaussianRandomKernel : public framework::OpKernel { ...@@ -31,8 +31,8 @@ class CPUGaussianRandomKernel : public framework::OpKernel {
} }
engine.seed(seed); engine.seed(seed);
std::normal_distribution<T> dist(mean, std); std::normal_distribution<T> dist(mean, std);
ssize_t size = framework::product(tensor->dims()); int64_t size = framework::product(tensor->dims());
for (ssize_t i = 0; i < size; ++i) { for (int64_t i = 0; i < size; ++i) {
data[i] = dist(engine); data[i] = dist(engine);
} }
} }
...@@ -46,9 +46,14 @@ class GaussianRandomOp : public framework::OperatorWithKernel { ...@@ -46,9 +46,14 @@ class GaussianRandomOp : public framework::OperatorWithKernel {
void InferShape(const framework::InferShapeContext& context) const override { void InferShape(const framework::InferShapeContext& context) const override {
auto* tensor = context.Output<framework::Tensor>("Out"); auto* tensor = context.Output<framework::Tensor>("Out");
auto dims = Attr<std::vector<int>>("dims"); auto dims = Attr<std::vector<int>>("dims");
std::vector<int64_t> temp;
temp.reserve(dims.size());
for (auto dim : dims) {
temp.push_back(static_cast<int64_t>(dim));
}
PADDLE_ENFORCE(dims.size() > 0UL, PADDLE_ENFORCE(dims.size() > 0UL,
"dims can be one int or array. dims must be set."); "dims can be one int or array. dims must be set.");
tensor->Resize(framework::make_ddim(dims)); tensor->Resize(framework::make_ddim(temp));
} }
}; };
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/net_op.h"
#include "paddle/operators/scale_op.h"
namespace paddle {
namespace operators {
// identity is a alias of scale op. This is also a example for creating a alias
// operator.
template <typename AttrType>
class IdentityOpMaker : public framework::OpProtoAndCheckerMaker {
public:
IdentityOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "input tensor of identity op");
AddOutput("Out", "output tensor of identity op");
AddComment("identity operator. Just a alias of scale op which scale = 1.0");
}
};
template <typename AttrType>
class IdentityOp : public NetOp {
public:
IdentityOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
AppendOp(framework::OpRegistry::CreateOp(
"scale", {{"X", {Input("X")}}}, {{"Out", {Output("Out")}}},
{{"scale", static_cast<AttrType>(1)}}));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(identity, ops::IdentityOp<float>,
ops::IdentityOpMaker<float>);
...@@ -61,7 +61,7 @@ void ConcatOutputs(const std::vector<Scope*>& step_scopes, ...@@ -61,7 +61,7 @@ void ConcatOutputs(const std::vector<Scope*>& step_scopes,
PADDLE_ENFORCE(step_scope_var != nullptr, "%s not in scope", PADDLE_ENFORCE(step_scope_var != nullptr, "%s not in scope",
outlinks[i].internal); outlinks[i].internal);
f::DDim step_dims = step_scope_var->template GetMutable<Tensor>()->dims(); f::DDim step_dims = step_scope_var->template GetMutable<Tensor>()->dims();
std::vector<int> dims_vec = vectorize(step_dims); std::vector<int64_t> dims_vec = vectorize(step_dims);
dims_vec.insert(dims_vec.begin(), seq_len); dims_vec.insert(dims_vec.begin(), seq_len);
output->Resize(f::make_ddim(dims_vec)); output->Resize(f::make_ddim(dims_vec));
} else { } else {
......
...@@ -48,7 +48,7 @@ The equation is: Out = scale*X ...@@ -48,7 +48,7 @@ The equation is: Out = scale*X
} }
}; };
// Identity Op's gradient is identity op, too. // Scale Op's gradient is scale op, too.
// Grad(Out=scale(X)) => Grad(X) = scale(Grad(Out)) // Grad(Out=scale(X)) => Grad(X) = scale(Grad(Out))
template <typename AttrType> template <typename AttrType>
class ScaleGradOp : public NetOp { class ScaleGradOp : public NetOp {
...@@ -65,33 +65,6 @@ class ScaleGradOp : public NetOp { ...@@ -65,33 +65,6 @@ class ScaleGradOp : public NetOp {
} }
}; };
// identity is a alias of scale op. This is also a example for creating a alias
// operator.
template <typename AttrType>
class IdentityOpMaker : public framework::OpProtoAndCheckerMaker {
public:
IdentityOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "input tensor of identity op");
AddOutput("Out", "output tensor of identity op");
AddComment("identity operator. Just a alias of scale op which scale = 1.0");
}
};
template <typename AttrType>
class IdentityOp : public NetOp {
public:
IdentityOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
AppendOp(framework::OpRegistry::CreateOp(
"scale", {{"X", {Input("X")}}}, {{"Out", {Output("Out")}}},
{{"scale", static_cast<AttrType>(1)}}));
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -101,5 +74,3 @@ REGISTER_OP(scale, ops::ScaleOp, ops::ScaleOpMaker<float>, scale_grad, ...@@ -101,5 +74,3 @@ REGISTER_OP(scale, ops::ScaleOp, ops::ScaleOpMaker<float>, scale_grad,
ops::ScaleGradOp<float>); ops::ScaleGradOp<float>);
REGISTER_OP_CPU_KERNEL(scale, REGISTER_OP_CPU_KERNEL(scale,
ops::ScaleKernel<paddle::platform::CPUPlace, float>); ops::ScaleKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_WITHOUT_GRADIENT(identity, ops::IdentityOp<float>,
ops::IdentityOpMaker<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/scatter_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(scatter,
ops::ScatterOpKernel<paddle::platform::GPUPlace, float>);
...@@ -24,7 +24,7 @@ class SoftmaxOp : public framework::OperatorWithKernel { ...@@ -24,7 +24,7 @@ class SoftmaxOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL, PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL,
"The input of softmax op must be matrix"); "The input of softmax op must be a matrix.");
ctx.Output<Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims()); ctx.Output<Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims());
} }
}; };
...@@ -34,9 +34,27 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -34,9 +34,27 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
SoftmaxOpMaker(framework::OpProto *proto, SoftmaxOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker) framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "input of softmax"); AddInput("X",
AddOutput("Y", "output of softmax"); "The input tensor of softmax. "
AddComment("Softmax Op"); "2-D with shape [batch_size, input_feature_dimensions].");
AddOutput("Y", "The normalized values with the same shape as X.");
AddComment(R"DOC(
The input of softmax operator is a 2-D tensor with shape N x K (N is the
batch_size, K is the dimension of input feature). The output tensor has the
same shape as the input tensor.
For each row of the input tensor, the softmax operator squashes the
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
values in the range [0, 1] that add up to 1. Specifically, it computes the
exponential of the given dimension and the sum of exponential values of all
the other dimensions in the K-dimensional vector input. Then the ratio of the
exponential of the given dimension and the sum of exponential values of all
the other dimensions is the output of the softmax operator.
For each row `i` and each column `j` in X, we have:
Y[i, j] = exp(X[i, j]) / sum_j(exp(X[i, j]))
)DOC");
} }
}; };
......
...@@ -35,8 +35,8 @@ class CPUUniformRandomKernel : public framework::OpKernel { ...@@ -35,8 +35,8 @@ class CPUUniformRandomKernel : public framework::OpKernel {
std::uniform_real_distribution<T> dist( std::uniform_real_distribution<T> dist(
static_cast<T>(context.Attr<float>("min")), static_cast<T>(context.Attr<float>("min")),
static_cast<T>(context.Attr<float>("max"))); static_cast<T>(context.Attr<float>("max")));
ssize_t size = framework::product(tensor->dims()); int64_t size = framework::product(tensor->dims());
for (ssize_t i = 0; i < size; ++i) { for (int64_t i = 0; i < size; ++i) {
data[i] = dist(engine); data[i] = dist(engine);
} }
} }
...@@ -52,7 +52,12 @@ class UniformRandomOp : public framework::OperatorWithKernel { ...@@ -52,7 +52,12 @@ class UniformRandomOp : public framework::OperatorWithKernel {
"uniform_random's min must less then max"); "uniform_random's min must less then max");
auto* tensor = ctx.Output<framework::Tensor>("Out"); auto* tensor = ctx.Output<framework::Tensor>("Out");
auto dims = Attr<std::vector<int>>("dims"); auto dims = Attr<std::vector<int>>("dims");
tensor->Resize(framework::make_ddim(dims)); std::vector<int64_t> temp;
temp.reserve(dims.size());
for (auto dim : dims) {
temp.push_back(static_cast<int64_t>(dim));
}
tensor->Resize(framework::make_ddim(temp));
} }
}; };
......
...@@ -30,7 +30,7 @@ limitations under the License. */ ...@@ -30,7 +30,7 @@ limitations under the License. */
namespace py = pybind11; namespace py = pybind11;
USE_OP(add_two); USE_OP(add);
USE_OP(onehot_cross_entropy); USE_OP(onehot_cross_entropy);
USE_OP(sgd); USE_OP(sgd);
USE_OP(mul); USE_OP(mul);
...@@ -46,6 +46,7 @@ USE_OP(lookup_table); ...@@ -46,6 +46,7 @@ USE_OP(lookup_table);
USE_OP(scale); USE_OP(scale);
USE_NO_KERNEL_OP(identity); USE_NO_KERNEL_OP(identity);
USE_OP(minus); USE_OP(minus);
USE_OP(cos_sim);
USE_CPU_ONLY_OP(gather); USE_CPU_ONLY_OP(gather);
USE_CPU_ONLY_OP(scatter); USE_CPU_ONLY_OP(scatter);
...@@ -76,7 +77,7 @@ PYBIND11_PLUGIN(core) { ...@@ -76,7 +77,7 @@ PYBIND11_PLUGIN(core) {
.def("get_dims", .def("get_dims",
[](const Tensor &self) { return vectorize(self.dims()); }) [](const Tensor &self) { return vectorize(self.dims()); })
.def("set_dims", .def("set_dims",
[](Tensor &self, const std::vector<int> &dim) { [](Tensor &self, const std::vector<int64_t> &dim) {
self.Resize(make_ddim(dim)); self.Resize(make_ddim(dim));
}) })
.def("alloc_float", .def("alloc_float",
......
...@@ -85,7 +85,7 @@ void PyCPUTensorSetFromArray( ...@@ -85,7 +85,7 @@ void PyCPUTensorSetFromArray(
framework::Tensor &self, framework::Tensor &self,
py::array_t<T, py::array::c_style | py::array::forcecast> array, py::array_t<T, py::array::c_style | py::array::forcecast> array,
paddle::platform::CPUPlace &place) { paddle::platform::CPUPlace &place) {
std::vector<int> dims; std::vector<int64_t> dims;
dims.reserve(array.ndim()); dims.reserve(array.ndim());
for (size_t i = 0; i < array.ndim(); ++i) { for (size_t i = 0; i < array.ndim(); ++i) {
dims.push_back((int)array.shape()[i]); dims.push_back((int)array.shape()[i]);
...@@ -102,7 +102,7 @@ void PyCUDATensorSetFromArray( ...@@ -102,7 +102,7 @@ void PyCUDATensorSetFromArray(
framework::Tensor &self, framework::Tensor &self,
py::array_t<T, py::array::c_style | py::array::forcecast> array, py::array_t<T, py::array::c_style | py::array::forcecast> array,
paddle::platform::GPUPlace &place) { paddle::platform::GPUPlace &place) {
std::vector<int> dims; std::vector<int64_t> dims;
dims.reserve(array.ndim()); dims.reserve(array.ndim());
for (size_t i = 0; i < array.ndim(); ++i) { for (size_t i = 0; i < array.ndim(); ++i) {
dims.push_back((int)array.shape()[i]); dims.push_back((int)array.shape()[i]);
......
...@@ -4,6 +4,7 @@ py_test(test_scope SRCS test_scope.py) ...@@ -4,6 +4,7 @@ py_test(test_scope SRCS test_scope.py)
py_test(test_tensor SRCS test_tensor.py) py_test(test_tensor SRCS test_tensor.py)
py_test(test_mul_op SRCS test_mul_op.py) py_test(test_mul_op SRCS test_mul_op.py)
py_test(test_cos_sim_op SRCS test_cos_sim_op.py)
py_test(test_mean_op SRCS test_mean_op.py) py_test(test_mean_op SRCS test_mean_op.py)
......
...@@ -36,13 +36,13 @@ def get_numeric_gradient(op, ...@@ -36,13 +36,13 @@ def get_numeric_gradient(op,
in_place=False): in_place=False):
""" """
Get Numeric Gradient for an operator's input. Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network :param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is :param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array. variable name. Value is numpy array.
:param output_name: The final output variable name. :param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient. :param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The :param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem. too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient. :param local_scope: The local scope used for get_numeric_gradient.
...@@ -229,9 +229,9 @@ class GradientChecker(unittest.TestCase): ...@@ -229,9 +229,9 @@ class GradientChecker(unittest.TestCase):
"""Use relative error for the comparison. """Use relative error for the comparison.
:param numeric_grads: the numerical graidents. :param numeric_grads: the numerical graidents.
:type numeric_grads: a list of numpy.array :type numeric_grads: a list of numpy.array
:param analytic_grads: the analytical graidents. :param analytic_grads: the analytical graidents.
:type analytic_grads: a list of numpy.array :type analytic_grads: a list of numpy.array
:param name: the names of gradients, used to print for debug. :param name: the names of gradients, used to print for debug.
:type names: a list of string :type names: a list of string
:param msg_prefix: string info, used to print for debug. :param msg_prefix: string info, used to print for debug.
......
...@@ -6,13 +6,13 @@ from paddle.v2.framework.op import Operator ...@@ -6,13 +6,13 @@ from paddle.v2.framework.op import Operator
class OpTestMeta(type): class OpTestMeta(type):
""" """
Operator Test ClassMeta. Operator Test ClassMeta.
It injects `test_all` method into user's OperatorTest class, to make Python It injects `test_all` method into user's OperatorTest class, to make Python
unittest module run that method. unittest module run that method.
The `test_all` read what value is stored in `self`. It use self's values to The `test_all` read what value is stored in `self`. It use self's values to
create and run a operator, and check whether that op is OK or not. create and run a operator, and check whether that op is OK or not.
See `test_add_two_op` for example usage. See `test_add_two_op` for example usage.
""" """
......
...@@ -11,7 +11,7 @@ class TestAddOp(unittest.TestCase): ...@@ -11,7 +11,7 @@ class TestAddOp(unittest.TestCase):
__metaclass__ = OpTestMeta __metaclass__ = OpTestMeta
def setUp(self): def setUp(self):
self.type = "add_two" self.type = "add"
self.inputs = { self.inputs = {
'X': numpy.random.random((102, 105)).astype("float32"), 'X': numpy.random.random((102, 105)).astype("float32"),
'Y': numpy.random.random((102, 105)).astype("float32") 'Y': numpy.random.random((102, 105)).astype("float32")
......
import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
from op_test_util import OpTestMeta
class TestCosSimOp(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "cos_sim"
self.inputs = {
'X': np.random.random((32, 64)).astype("float32"),
'Y': np.random.random((32, 64)).astype("float32")
}
expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1)
expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1)
expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=1) / \
expect_x_norm / expect_y_norm
self.outputs = {
'XNorm': np.expand_dims(expect_x_norm, 1),
'YNorm': np.expand_dims(expect_y_norm, 1),
'Out': np.expand_dims(expect_out, 1)
}
class TestCosSimGradOp(GradientChecker):
def setUp(self):
self.op = create_op("cos_sim")
self.inputs = {
'X': np.random.random((10, 5)).astype("float32"),
'Y': np.random.random((10, 5)).astype("float32")
}
def test_cpu_gpu_compare(self):
self.compare_grad(self.op, self.inputs)
def test_normal(self):
self.check_grad(
self.op, self.inputs, ["X", "Y"], "Out", max_relative_error=0.05)
def test_ignore_x(self):
self.check_grad(
self.op,
self.inputs, ["Y"],
"Out",
max_relative_error=0.05,
no_grad_set={"X"})
def test_ignore_y(self):
self.check_grad(
self.op,
self.inputs, ["X"],
"Out",
max_relative_error=0.05,
no_grad_set={"Y"})
if __name__ == '__main__':
unittest.main()
...@@ -7,7 +7,7 @@ from gradient_checker import get_numeric_gradient ...@@ -7,7 +7,7 @@ from gradient_checker import get_numeric_gradient
class GetNumericGradientTest(unittest.TestCase): class GetNumericGradientTest(unittest.TestCase):
def test_add_op(self): def test_add_op(self):
add_op = Operator('add_two', X="X", Y="Y", Out="Z") add_op = Operator('add', X="X", Y="Y", Out="Z")
x = numpy.random.random((10, 1)).astype("float32") x = numpy.random.random((10, 1)).astype("float32")
y = numpy.random.random((10, 1)).astype("float32") y = numpy.random.random((10, 1)).astype("float32")
......
...@@ -15,7 +15,7 @@ def fc(X, W, Y): ...@@ -15,7 +15,7 @@ def fc(X, W, Y):
class TestNet(unittest.TestCase): class TestNet(unittest.TestCase):
def test_net_all(self): def test_net_all(self):
net = core.Net.create() net = core.Net.create()
op1 = Operator("add_two", X="X", Y="Y", Out="Out") op1 = Operator("add", X="X", Y="Y", Out="Out")
net.append_op(op1) net.append_op(op1)
net2 = core.Net.create() net2 = core.Net.create()
...@@ -26,7 +26,7 @@ class TestNet(unittest.TestCase): ...@@ -26,7 +26,7 @@ class TestNet(unittest.TestCase):
expected = ''' expected = '''
Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}. Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}.
Op(add_two), inputs:{X[X], Y[Y]}, outputs:{Out[Out]}. Op(add), inputs:{X[X], Y[Y]}, outputs:{Out[Out]}.
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}. Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}. Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}. Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}.
......
...@@ -193,10 +193,10 @@ class TestOpDescCreationMethod(unittest.TestCase): ...@@ -193,10 +193,10 @@ class TestOpDescCreationMethod(unittest.TestCase):
class TestOpCreations(unittest.TestCase): class TestOpCreations(unittest.TestCase):
def test_all(self): def test_all(self):
add_op = op.Operator("add_two", X="a", Y="b", Out="z") add_op = op.Operator("add", X="a", Y="b", Out="z")
self.assertIsNotNone(add_op) self.assertIsNotNone(add_op)
# Invoke C++ DebugString() # Invoke C++ DebugString()
self.assertEqual('Op(add_two), inputs:{X[a], Y[b]}, outputs:{Out[z]}.', self.assertEqual('Op(add), inputs:{X[a], Y[b]}, outputs:{Out[z]}.',
str(add_op)) str(add_op))
......
...@@ -146,7 +146,7 @@ class TestRecurrentOp(unittest.TestCase): ...@@ -146,7 +146,7 @@ class TestRecurrentOp(unittest.TestCase):
stepnet = core.Net.create() stepnet = core.Net.create()
x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx") x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx")
h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh") h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh")
sum_op = Operator("add_two", X="Wx", Y="Uh", Out="sum") sum_op = Operator("add", X="Wx", Y="Uh", Out="sum")
sig_op = Operator("sigmoid", X="sum", Y="h@alias") sig_op = Operator("sigmoid", X="sum", Y="h@alias")
for op in [x_fc_op, h_fc_op, sum_op, sig_op]: for op in [x_fc_op, h_fc_op, sum_op, sig_op]:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册