Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6dd9901b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6dd9901b
编写于
4月 11, 2020
作者:
Z
zhupengyang
提交者:
GitHub
4月 11, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add activation ops under paddle.nn and paddle.nn.functional: ReLU, LogSoftmax (#23258)
上级
03073937
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
454 addition
and
37 deletion
+454
-37
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+71
-3
python/paddle/fluid/tests/unittests/test_log_softmax.py
python/paddle/fluid/tests/unittests/test_log_softmax.py
+107
-0
python/paddle/nn/__init__.py
python/paddle/nn/__init__.py
+4
-4
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+3
-2
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+163
-25
python/paddle/nn/layer/__init__.py
python/paddle/nn/layer/__init__.py
+2
-0
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+104
-1
python/setup.py.in
python/setup.py.in
+0
-2
未找到文件。
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
6dd9901b
...
@@ -21,6 +21,8 @@ from op_test import OpTest
...
@@ -21,6 +21,8 @@ from op_test import OpTest
from
scipy.special
import
expit
,
erf
from
scipy.special
import
expit
,
erf
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.nn
as
nn
import
paddle.nn.functional
as
functional
from
paddle.fluid
import
compiler
,
Program
,
program_guard
from
paddle.fluid
import
compiler
,
Program
,
program_guard
...
@@ -759,9 +761,6 @@ class TestPow_factor_tensor(TestActivation):
...
@@ -759,9 +761,6 @@ class TestPow_factor_tensor(TestActivation):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
)
def
test_api
(
self
):
def
test_api
(
self
):
import
paddle
import
paddle.fluid
as
fluid
input
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
"float32"
)
input
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
"float32"
)
x
=
fluid
.
layers
.
data
(
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
11
,
17
],
append_batch_size
=
False
,
dtype
=
"float32"
)
name
=
"x"
,
shape
=
[
11
,
17
],
append_batch_size
=
False
,
dtype
=
"float32"
)
...
@@ -1003,5 +1002,74 @@ create_test_act_fp16_class(TestHardSigmoid)
...
@@ -1003,5 +1002,74 @@ create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class
(
TestSwish
)
create_test_act_fp16_class
(
TestSwish
)
create_test_act_fp16_class
(
TestHardSwish
)
create_test_act_fp16_class
(
TestHardSwish
)
class
TestNNReluAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_data
()
def
init_data
(
self
):
self
.
x_shape
=
[
10
,
12
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
x_shape
).
astype
(
np
.
float32
)
self
.
y
=
self
.
ref_forward
(
self
.
x
)
def
ref_forward
(
self
,
x
):
return
np
.
maximum
(
x
,
0
)
def
ref_backward
(
self
,
y
,
dy
):
y_t
=
y
.
copy
()
y_t
[
y_t
>
0
]
=
1
return
y_t
*
dy
def
check_api
(
self
,
place
=
fluid
.
CPUPlace
(),
inplace
=
False
):
main_program
=
Program
()
myrelu
=
nn
.
ReLU
(
inplace
)
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
x
.
stop_gradient
=
False
y
=
myrelu
(
x
)
fluid
.
backward
.
append_backward
(
fluid
.
layers
.
mean
(
y
))
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
,
y
.
grad_name
,
x
.
grad_name
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
self
.
assertTrue
(
np
.
allclose
(
out
[
2
],
self
.
ref_backward
(
self
.
y
,
out
[
1
])))
with
fluid
.
dygraph
.
guard
(
place
):
x
=
fluid
.
dygraph
.
to_variable
(
self
.
x
)
y
=
myrelu
(
x
)
self
.
assertTrue
(
np
.
allclose
(
y
.
numpy
(),
self
.
y
))
def
test_check_api
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
for
inplace
in
[
True
,
False
]:
self
.
check_api
(
place
,
inplace
)
class
TestNNFunctionalReluAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_data
()
def
init_data
(
self
):
self
.
x_shape
=
[
10
,
12
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
x_shape
).
astype
(
np
.
float32
)
self
.
y
=
self
.
ref_forward
(
self
.
x
)
def
ref_forward
(
self
,
x
):
return
np
.
maximum
(
x
,
0
)
def
test_check_api
(
self
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
y
=
functional
.
relu
(
x
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_log_softmax.py
0 → 100644
浏览文件 @
6dd9901b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.nn
as
nn
import
paddle.nn.functional
as
functional
def
stable_softmax
(
x
):
shiftx
=
(
x
-
np
.
max
(
x
))
exps
=
np
.
exp
(
shiftx
)
return
exps
/
np
.
sum
(
exps
)
def
ref_log_softmax
(
x
,
axis
=
None
,
dtype
=
None
):
x_t
=
x
.
copy
()
if
dtype
is
not
None
:
x_t
=
x_t
.
astype
(
dtype
)
if
axis
is
None
:
axis
=
-
1
out
=
np
.
apply_along_axis
(
stable_softmax
,
axis
,
x_t
)
return
np
.
log
(
out
)
class
TestNNLogSoftmaxAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_data
()
def
init_data
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
5
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
x_shape
).
astype
(
np
.
float32
)
def
check_api
(
self
,
place
=
fluid
.
CPUPlace
(),
axis
=
None
):
ref_out
=
ref_log_softmax
(
self
.
x
,
axis
)
main_program
=
fluid
.
Program
()
mylogsoftmax
=
nn
.
LogSoftmax
(
axis
)
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
y
=
mylogsoftmax
(
x
)
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
ref_out
))
with
fluid
.
dygraph
.
guard
(
place
):
x
=
fluid
.
dygraph
.
to_variable
(
self
.
x
)
y
=
mylogsoftmax
(
x
)
self
.
assertTrue
(
np
.
allclose
(
y
.
numpy
(),
ref_out
))
def
test_check_api
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
for
axis
in
[
None
,
2
]:
self
.
check_api
(
place
,
axis
)
class
TestNNFunctionalLogSoftmaxAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_data
()
def
init_data
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
5
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
x_shape
).
astype
(
np
.
float32
)
def
check_api
(
self
,
place
=
fluid
.
CPUPlace
(),
axis
=
None
,
dtype
=
None
):
ref_out
=
ref_log_softmax
(
self
.
x
,
axis
,
dtype
)
main_program
=
fluid
.
Program
()
mylogsoftmax
=
nn
.
LogSoftmax
(
axis
)
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
y
=
functional
.
log_softmax
(
x
,
axis
,
dtype
)
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
ref_out
))
with
fluid
.
dygraph
.
guard
(
place
):
x
=
fluid
.
dygraph
.
to_variable
(
self
.
x
)
y
=
functional
.
log_softmax
(
x
,
axis
,
dtype
)
self
.
assertTrue
(
np
.
allclose
(
y
.
numpy
(),
ref_out
))
def
test_check_api
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_api
(
place
,
None
,
None
)
self
.
check_api
(
place
,
None
,
np
.
float64
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/nn/__init__.py
浏览文件 @
6dd9901b
...
@@ -81,10 +81,10 @@ from .layer.conv import Conv2D, Conv2DTranspose, Conv3D, Conv3DTranspose #DEFIN
...
@@ -81,10 +81,10 @@ from .layer.conv import Conv2D, Conv2DTranspose, Conv3D, Conv3DTranspose #DEFIN
from
.layer.norm
import
InstanceNorm
#DEFINE_ALIAS
from
.layer.norm
import
InstanceNorm
#DEFINE_ALIAS
# from .layer.norm import SpectralNorm #DEFINE_ALIAS
# from .layer.norm import SpectralNorm #DEFINE_ALIAS
# from .layer.activation import PReLU #DEFINE_ALIAS
# from .layer.activation import PReLU #DEFINE_ALIAS
# from .layer.activation import ReLU
#DEFINE_ALIAS
from
.layer.activation
import
ReLU
#DEFINE_ALIAS
# from .layer.activation import Sigmoid #DEFINE_ALIAS
# from .layer.activation import Sigmoid #DEFINE_ALIAS
# from .layer.activation import Softmax #DEFINE_ALIAS
# from .layer.activation import Softmax #DEFINE_ALIAS
# from .layer.activation import LogSoftmax
#DEFINE_ALIAS
from
.layer.activation
import
LogSoftmax
#DEFINE_ALIAS
# from .layer.rnn import RNNCell #DEFINE_ALIAS
# from .layer.rnn import RNNCell #DEFINE_ALIAS
# from .layer.rnn import GRUCell #DEFINE_ALIAS
# from .layer.rnn import GRUCell #DEFINE_ALIAS
# from .layer.rnn import LSTMCell #DEFINE_ALIAS
# from .layer.rnn import LSTMCell #DEFINE_ALIAS
...
@@ -189,7 +189,7 @@ from .functional.conv import conv3d_transpose #DEFINE_ALIAS
...
@@ -189,7 +189,7 @@ from .functional.conv import conv3d_transpose #DEFINE_ALIAS
# from .functional.activation import logsigmoid #DEFINE_ALIAS
# from .functional.activation import logsigmoid #DEFINE_ALIAS
# from .functional.activation import maxout #DEFINE_ALIAS
# from .functional.activation import maxout #DEFINE_ALIAS
# from .functional.activation import prelu #DEFINE_ALIAS
# from .functional.activation import prelu #DEFINE_ALIAS
# from .functional.activation import relu
#DEFINE_ALIAS
from
.functional.activation
import
relu
#DEFINE_ALIAS
# from .functional.activation import relu6 #DEFINE_ALIAS
# from .functional.activation import relu6 #DEFINE_ALIAS
# from .functional.activation import selu #DEFINE_ALIAS
# from .functional.activation import selu #DEFINE_ALIAS
# from .functional.activation import sigmoid #DEFINE_ALIAS
# from .functional.activation import sigmoid #DEFINE_ALIAS
...
@@ -201,7 +201,7 @@ from .functional.conv import conv3d_transpose #DEFINE_ALIAS
...
@@ -201,7 +201,7 @@ from .functional.conv import conv3d_transpose #DEFINE_ALIAS
# from .functional.activation import swish #DEFINE_ALIAS
# from .functional.activation import swish #DEFINE_ALIAS
# from .functional.activation import tanh_shrink #DEFINE_ALIAS
# from .functional.activation import tanh_shrink #DEFINE_ALIAS
# from .functional.activation import thresholded_relu #DEFINE_ALIAS
# from .functional.activation import thresholded_relu #DEFINE_ALIAS
# from .functional.activation import log_softmax
#DEFINE_ALIAS
from
.functional.activation
import
log_softmax
#DEFINE_ALIAS
# from .functional.extension import add_position_encoding #DEFINE_ALIAS
# from .functional.extension import add_position_encoding #DEFINE_ALIAS
# from .functional.extension import autoincreased_step_counter #DEFINE_ALIAS
# from .functional.extension import autoincreased_step_counter #DEFINE_ALIAS
# from .functional.extension import continuous_value_model #DEFINE_ALIAS
# from .functional.extension import continuous_value_model #DEFINE_ALIAS
...
...
python/paddle/nn/functional/__init__.py
浏览文件 @
6dd9901b
...
@@ -102,6 +102,7 @@ from .conv import conv3d_transpose #DEFINE_ALIAS
...
@@ -102,6 +102,7 @@ from .conv import conv3d_transpose #DEFINE_ALIAS
# from .vision import space_to_depth #DEFINE_ALIAS
# from .vision import space_to_depth #DEFINE_ALIAS
# from .vision import yolo_box #DEFINE_ALIAS
# from .vision import yolo_box #DEFINE_ALIAS
# from .vision import yolov3_loss #DEFINE_ALIAS
# from .vision import yolov3_loss #DEFINE_ALIAS
from
.
import
activation
# from .activation import brelu #DEFINE_ALIAS
# from .activation import brelu #DEFINE_ALIAS
# from .activation import elu #DEFINE_ALIAS
# from .activation import elu #DEFINE_ALIAS
# from .activation import erf #DEFINE_ALIAS
# from .activation import erf #DEFINE_ALIAS
...
@@ -114,7 +115,7 @@ from .conv import conv3d_transpose #DEFINE_ALIAS
...
@@ -114,7 +115,7 @@ from .conv import conv3d_transpose #DEFINE_ALIAS
# from .activation import logsigmoid #DEFINE_ALIAS
# from .activation import logsigmoid #DEFINE_ALIAS
# from .activation import maxout #DEFINE_ALIAS
# from .activation import maxout #DEFINE_ALIAS
# from .activation import prelu #DEFINE_ALIAS
# from .activation import prelu #DEFINE_ALIAS
# from .activation import relu
#DEFINE_ALIAS
from
.activation
import
relu
#DEFINE_ALIAS
# from .activation import relu6 #DEFINE_ALIAS
# from .activation import relu6 #DEFINE_ALIAS
# from .activation import selu #DEFINE_ALIAS
# from .activation import selu #DEFINE_ALIAS
# from .activation import sigmoid #DEFINE_ALIAS
# from .activation import sigmoid #DEFINE_ALIAS
...
@@ -126,7 +127,7 @@ from .conv import conv3d_transpose #DEFINE_ALIAS
...
@@ -126,7 +127,7 @@ from .conv import conv3d_transpose #DEFINE_ALIAS
# from .activation import swish #DEFINE_ALIAS
# from .activation import swish #DEFINE_ALIAS
# from .activation import tanh_shrink #DEFINE_ALIAS
# from .activation import tanh_shrink #DEFINE_ALIAS
# from .activation import thresholded_relu #DEFINE_ALIAS
# from .activation import thresholded_relu #DEFINE_ALIAS
# from .activation import log_softmax
#DEFINE_ALIAS
from
.activation
import
log_softmax
#DEFINE_ALIAS
# from .extension import add_position_encoding #DEFINE_ALIAS
# from .extension import add_position_encoding #DEFINE_ALIAS
# from .extension import autoincreased_step_counter #DEFINE_ALIAS
# from .extension import autoincreased_step_counter #DEFINE_ALIAS
# from .extension import continuous_value_model #DEFINE_ALIAS
# from .extension import continuous_value_model #DEFINE_ALIAS
...
...
python/paddle/nn/functional/activation.py
浏览文件 @
6dd9901b
...
@@ -12,29 +12,167 @@
...
@@ -12,29 +12,167 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
warnings
from
...fluid.layer_helper
import
LayerHelper
from
...fluid.framework
import
in_dygraph_mode
,
convert_np_dtype_to_dtype_
from
...fluid
import
core
# TODO: define activation functions of neural network
# TODO: define activation functions of neural network
# __all__ = ['brelu',
__all__
=
[
# 'elu',
# 'brelu',
# 'erf',
# 'elu',
# 'gelu',
# 'erf',
# 'hard_shrink',
# 'gelu',
# 'hard_sigmoid',
# 'hard_shrink',
# 'hard_swish',
# 'hard_sigmoid',
# 'hsigmoid',
# 'hard_swish',
# 'leaky_relu',
# 'hsigmoid',
# 'logsigmoid',
# 'leaky_relu',
# 'maxout',
# 'logsigmoid',
# 'prelu',
# 'maxout',
# 'relu',
# 'prelu',
# 'relu6',
'relu'
,
# 'selu',
# 'relu6',
# 'sigmoid',
# 'selu',
# 'soft_relu',
# 'sigmoid',
# 'softmax',
# 'soft_relu',
# 'softplus',
# 'softmax',
# 'softshrink',
# 'softplus',
# 'softsign',
# 'softshrink',
# 'swish',
# 'softsign',
# 'tanh_shrink',
# 'swish',
# 'thresholded_relu',
# 'tanh_shrink',
# 'log_softmax']
# 'thresholded_relu',
'log_softmax'
,
]
def
relu
(
input
,
inplace
=
False
,
name
=
None
):
"""
ReLU Activation.
.. math:
out = max(x, 0)
Parameters:
input (Variable): The input variable. A multi-dimension Tensor with type float16, float32, or float64.
inplace (bool, optional): If inplace is True, the input and output of ``ReLU`` are the same variable.
Otherwise, the input and output of ``ReLU`` are different variables. Default: False. Note that if x is
more than one OPs' input, inplace must be False.
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Output of relu operator, a Tensor with shape same as input
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.nn.functional as functional
import numpy as np
data = np.array([-2, 0, 1]).astype('float32')
with fluid.dygraph.guard():
data = fluid.dygraph.to_variable(data)
res = functional.relu(data) # [0, 0, 1]
"""
if
in_dygraph_mode
():
if
inplace
:
warnings
.
warn
(
"Inplace on ReLU is not allowed and will be discarded in dygraph mode currently."
)
return
core
.
ops
.
relu
(
input
)
helper
=
LayerHelper
(
'relu'
,
**
locals
())
outs
=
input
if
inplace
else
helper
.
create_variable_for_type_inference
(
input
.
dtype
)
helper
.
append_op
(
type
=
'relu'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
outs
})
return
outs
def
log_softmax
(
input
,
axis
=
None
,
dtype
=
None
,
name
=
None
):
"""
This operator implements the log_softmax layer. The calculation process is as follows:
.. math::
Out[i, j] = log(softmax(x))
= log(
\\
frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})
Parameters:
input (Variable): The input variable. A multi-dimension Tensor with type float32, or float64.
axis (int, optional): The index of dimension to perform softmax calculations, it should be in
range :math:`[-1, rank-1]`, while :math:`rank` is the rank of input variable. Default: None.
None and -1 means the last dimension.
dtype (np.dtype|core.VarDesc.VarType|str): The desired data type of returned tensor. If specified,
the input tensor is casted to dtype before the operation is performed. This is useful for
preventing data type overflows. Default: None. Supported dtype: float32 or float64
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input``.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.nn.functional as F
import numpy as np
data = np.array([[[-2.0, 3.0, -4.0, 5.0],
[3.0, -4.0, 5.0, -6.0],
[-7.0, -8.0, 8.0, 9.0]],
[[1.0, -2.0, -3.0, 4.0],
[-5.0, 6.0, 7.0, -8.0],
[6.0, 7.0, 8.0, 9.0]]]).astype('float32')
with fluid.dygraph.guard():
data = fluid.dygraph.to_variable(data)
res = F.log_softmax(data, -1)
# [[[ -7.1278396 -2.1278396 -9.127839 -0.12783948]
# [ -2.1270514 -9.127051 -0.12705144 -11.127051 ]
# [-16.313261 -17.313261 -1.3132617 -0.31326184]]
# [[ -3.0518122 -6.051812 -7.051812 -0.051812 ]
# [-12.313267 -1.3132664 -0.3132665 -15.313267 ]
# [ -3.4401896 -2.4401896 -1.4401896 -0.44018966]]]
"""
axis
=
-
1
if
axis
is
None
else
axis
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
dtype
is
not
None
else
dtype
if
in_dygraph_mode
():
outs_cast
=
input
if
dtype
is
None
\
else
core
.
ops
.
cast
(
input
,
'in_dtype'
,
input
.
dtype
,
'out_dtype'
,
dtype
)
outs_softmax
=
core
.
ops
.
softmax
(
outs_cast
,
'axis'
,
axis
,
'use_cudnn'
,
False
)
return
core
.
ops
.
log
(
outs_softmax
)
helper
=
LayerHelper
(
"log_softmax"
,
**
locals
())
outs_cast
=
input
if
dtype
is
not
None
:
outs_cast
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'cast'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
outs_cast
},
attrs
=
{
'in_dtype'
:
input
.
dtype
,
'out_dtype'
:
dtype
})
outs_softmax
=
helper
.
create_variable_for_type_inference
(
outs_cast
.
dtype
)
helper
.
append_op
(
type
=
'softmax'
,
inputs
=
{
'X'
:
outs_cast
},
outputs
=
{
'Out'
:
outs_softmax
},
attrs
=
{
'axis'
:
axis
,
'use_cudnn'
:
False
})
outs_log
=
helper
.
create_variable_for_type_inference
(
outs_softmax
.
dtype
)
helper
.
append_op
(
type
=
'log'
,
inputs
=
{
'X'
:
outs_softmax
},
outputs
=
{
'Out'
:
outs_log
})
return
outs_log
python/paddle/nn/layer/__init__.py
浏览文件 @
6dd9901b
...
@@ -14,10 +14,12 @@
...
@@ -14,10 +14,12 @@
# TODO: define activation functions of neural network
# TODO: define activation functions of neural network
from
.
import
activation
from
.
import
loss
from
.
import
loss
from
.
import
conv
from
.
import
conv
from
.
import
norm
from
.
import
norm
from
.activation
import
*
from
.loss
import
*
from
.loss
import
*
from
.conv
import
*
from
.conv
import
*
from
.norm
import
*
from
.norm
import
*
python/paddle/nn/layer/activation.py
浏览文件 @
6dd9901b
...
@@ -12,5 +12,108 @@
...
@@ -12,5 +12,108 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
...fluid.dygraph
import
layers
from
...fluid
import
core
from
...fluid.framework
import
in_dygraph_mode
from
..
import
functional
# TODO: define activation functions of neural network
# TODO: define activation functions of neural network
# __all__ = ['PReLU', 'ReLU', 'Sigmoid', 'Softmax', 'LogSoftmax']
__all__
=
[
# 'PReLU',
'ReLU'
,
# 'Sigmoid',
# 'Softmax',
'LogSoftmax'
,
]
class
ReLU
(
layers
.
Layer
):
"""
ReLU Activation.
.. math:
out = max(x, 0)
Parameters:
inplace (bool, optional): If inplace is True, the input and output of
``ReLU`` are the same variable. Otherwise, the input and output of
``ReLU`` are different variables. Default False. Note that if x is
more than one OPs' input, inplace must be False.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.nn as nn
import numpy as np
data = np.array([-2, 0, 1]).astype('float32')
my_relu = nn.ReLU()
with fluid.dygraph.guard():
data = fluid.dygraph.to_variable(data)
res = my_relu(data) # [0, 0, 1]
"""
def
__init__
(
self
,
inplace
=
False
):
super
(
ReLU
,
self
).
__init__
()
self
.
_inplace
=
inplace
def
forward
(
self
,
input
):
return
functional
.
relu
(
input
,
self
.
_inplace
)
class
LogSoftmax
(
layers
.
Layer
):
"""
This operator implements the log_softmax layer. The calculation process is as follows:
.. math::
Out[i, j] = log(softmax(x))
= log(
\\
frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})
Parameters:
axis (int, optional): The index of dimension to perform softmax calculations, it should be in
range :math:`[-1, rank-1]`, while :math:`rank` is the rank of input variable. Default: None.
None and -1 means the last dimension.
dtype (np.dtype|core.VarDesc.VarType|str): The desired data type of returned tensor. If specified,
the input tensor is casted to dtype before the operation is performed. This is useful for
preventing data type overflows. Default: None. Supported dtype: float32 or float64
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.nn as nn
import numpy as np
data = np.array([[[-2.0, 3.0, -4.0, 5.0],
[3.0, -4.0, 5.0, -6.0],
[-7.0, -8.0, 8.0, 9.0]],
[[1.0, -2.0, -3.0, 4.0],
[-5.0, 6.0, 7.0, -8.0],
[6.0, 7.0, 8.0, 9.0]]]).astype('float32')
my_log_softnmax = nn.LogSoftmax()
with fluid.dygraph.guard():
data = fluid.dygraph.to_variable(data)
res = my_log_softnmax(data)
# [[[ -7.1278396 -2.1278396 -9.127839 -0.12783948]
# [ -2.1270514 -9.127051 -0.12705144 -11.127051 ]
# [-16.313261 -17.313261 -1.3132617 -0.31326184]]
# [[ -3.0518122 -6.051812 -7.051812 -0.051812 ]
# [-12.313267 -1.3132664 -0.3132665 -15.313267 ]
# [ -3.4401896 -2.4401896 -1.4401896 -0.44018966]]]
"""
def
__init__
(
self
,
axis
=
None
):
super
(
LogSoftmax
,
self
).
__init__
()
self
.
_axis
=
axis
def
forward
(
self
,
input
):
return
functional
.
log_softmax
(
input
,
self
.
_axis
)
python/setup.py.in
浏览文件 @
6dd9901b
...
@@ -105,8 +105,6 @@ write_version_py(filename='@PADDLE_BINARY_DIR@/python/paddle/version.py')
...
@@ -105,8 +105,6 @@ write_version_py(filename='@PADDLE_BINARY_DIR@/python/paddle/version.py')
packages=['paddle',
packages=['paddle',
'paddle.nn',
'paddle.nn.layer',
'paddle.libs',
'paddle.libs',
'paddle.utils',
'paddle.utils',
'paddle.dataset',
'paddle.dataset',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录