Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6c7ba81c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6c7ba81c
编写于
2月 07, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add python wrapper for layer_norm
上级
6c3b78b7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
114 addition
and
10 deletion
+114
-10
doc/api/v2/fluid/layers.rst
doc/api/v2/fluid/layers.rst
+6
-0
python/paddle/v2/fluid/__init__.py
python/paddle/v2/fluid/__init__.py
+4
-4
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+101
-4
python/paddle/v2/fluid/nets.py
python/paddle/v2/fluid/nets.py
+3
-2
未找到文件。
doc/api/v2/fluid/layers.rst
浏览文件 @
6c7ba81c
...
@@ -323,6 +323,12 @@ batch_norm
...
@@ -323,6 +323,12 @@ batch_norm
.. autofunction:: paddle.v2.fluid.layers.batch_norm
.. autofunction:: paddle.v2.fluid.layers.batch_norm
:noindex:
:noindex:
layer_norm
----------
.. autofunction:: paddle.v2.fluid.layers.layer_norm
:noindex:
beam_search_decode
beam_search_decode
------------------
------------------
...
...
python/paddle/v2/fluid/__init__.py
浏览文件 @
6c7ba81c
...
@@ -29,7 +29,7 @@ import optimizer
...
@@ -29,7 +29,7 @@ import optimizer
import
learning_rate_decay
import
learning_rate_decay
import
backward
import
backward
import
regularizer
import
regularizer
from
param_attr
import
ParamAttr
from
param_attr
import
ParamAttr
,
WeightNormParamAttr
from
data_feeder
import
DataFeeder
from
data_feeder
import
DataFeeder
from
core
import
LoDTensor
,
CPUPlace
,
CUDAPlace
from
core
import
LoDTensor
,
CPUPlace
,
CUDAPlace
from
distribute_transpiler
import
DistributeTranspiler
from
distribute_transpiler
import
DistributeTranspiler
...
@@ -43,9 +43,9 @@ Tensor = LoDTensor
...
@@ -43,9 +43,9 @@ Tensor = LoDTensor
__all__
=
framework
.
__all__
+
executor
.
__all__
+
[
__all__
=
framework
.
__all__
+
executor
.
__all__
+
[
'io'
,
'initializer'
,
'layers'
,
'nets'
,
'optimizer'
,
'learning_rate_decay'
,
'io'
,
'initializer'
,
'layers'
,
'nets'
,
'optimizer'
,
'learning_rate_decay'
,
'backward'
,
'regularizer'
,
'LoDTensor'
,
'CPUPlace'
,
'CUDAPlace'
,
'Tensor'
,
'backward'
,
'regularizer'
,
'LoDTensor'
,
'CPUPlace'
,
'CUDAPlace'
,
'Tensor'
,
'ParamAttr'
'ParamAttr'
,
'WeightNormParamAttr'
,
'DataFeeder'
,
'clip'
,
'
DataFeeder'
,
'clip'
,
'SimpleDistributeTranspiler'
,
'DistributeTranspiler
'
,
'
SimpleDistributeTranspiler'
,
'DistributeTranspiler'
,
'memory_optimize
'
,
'
memory_optimize'
,
'
profiler'
'profiler'
]
]
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
6c7ba81c
...
@@ -65,6 +65,7 @@ __all__ = [
...
@@ -65,6 +65,7 @@ __all__ = [
'beam_search'
,
'beam_search'
,
'row_conv'
,
'row_conv'
,
'multiplex'
,
'multiplex'
,
'layer_norm'
,
]
]
...
@@ -641,8 +642,8 @@ def dynamic_gru(input,
...
@@ -641,8 +642,8 @@ def dynamic_gru(input,
Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
Returns:
Returns:
Variable: The hidden state of GRU. The shape is
(T
\\
times D), and lod
\
Variable: The hidden state of GRU. The shape is
:math:`(T
\\
times D)`,
\
is the same with the input.
and lod
is the same with the input.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -990,7 +991,7 @@ def square_error_cost(input, label, **kwargs):
...
@@ -990,7 +991,7 @@ def square_error_cost(input, label, **kwargs):
label(Variable): Label tensor, has target labels.
label(Variable): Label tensor, has target labels.
Returns:
Returns:
Variable: The tensor variable storing the element-wise squared error
Variable: The tensor variable storing the element-wise squared error
\
difference of input and label.
difference of input and label.
Examples:
Examples:
...
@@ -1214,7 +1215,7 @@ def conv2d(input,
...
@@ -1214,7 +1215,7 @@ def conv2d(input,
act(str): Activation type. Default: None
act(str): Activation type. Default: None
Returns:
Returns:
Variable: The tensor variable storing the convolution and
Variable: The tensor variable storing the convolution and
\
non-linearity activation result.
non-linearity activation result.
Raises:
Raises:
...
@@ -1565,6 +1566,102 @@ def batch_norm(input,
...
@@ -1565,6 +1566,102 @@ def batch_norm(input,
return
helper
.
append_activation
(
batch_norm_out
)
return
helper
.
append_activation
(
batch_norm_out
)
def
layer_norm
(
input
,
scale
=
True
,
shift
=
True
,
begin_norm_axis
=
1
,
epsilon
=
1e-05
,
param_attr
=
None
,
bias_attr
=
None
,
act
=
None
,
name
=
None
):
"""
**Layer Normalization**
Assume feature vectors exist on dimensions
:attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
along these dimensions for each feature vector :math:`a` with size
:math:`H`, then normalize each feature vector using the corresponding
statistics. After that, apply learnable gain and bias on the normalized
tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.
Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
The formula is as follows:
.. math::
\\
mu & =
\\
frac{1}{H}
\\
sum_{i=1}^{H} a_i
\\
sigma & =
\\
sqrt{
\\
frac{1}{H}\sum_{i=1}^{H}(a_i -
\\
mu)^2}
h & = f(
\\
frac{g}{
\\
sigma}(a -
\\
mu) + b)
Args:
input(Variable): The input tensor variable.
scale(bool): Whether to learn the adaptive gain :math:`g` after
normalization.
shift(bool): Whether to learn the adaptive bias :math:`b` after
normalization.
begin_norm_axis(bool): The normalization will be performed along
dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
epsilon(float): The small value added to the variance to prevent
division by zero.
param_attr(ParamAttr|None): The parameter attribute for the learnable
gain :math:`g`.
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`.
act(str): Activation to be applied to the output of layer normalizaiton.
Returns:
Variable: A tensor variable with the same shape as the input.
Examples:
.. code-block:: python
data = fluid.layers.data(
name='data', shape=[3, 32, 32], dtype='float32')
x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
"""
helper
=
LayerHelper
(
'layer_norm'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
# create intput and parameters
inputs
=
{
'X'
:
input
}
input_shape
=
input
.
shape
param_shape
=
[
reduce
(
lambda
x
,
y
:
x
*
y
,
input_shape
[
begin_norm_axis
:])]
if
scale
:
scale
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
default_initializer
=
Constant
(
1.0
))
inputs
[
'Scale'
]
=
scale
if
center
:
assert
bias_attr
is
not
False
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
is_bias
=
True
)
inputs
[
'Bias'
]
=
bias
# create output
mean_out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
variance_out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
layer_norm_out
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"layer_norm"
,
inputs
=
inputs
,
outputs
=
{
"Y"
:
layer_norm_out
,
"Mean"
:
mean_out
,
"Variance"
:
variance_out
,
},
attrs
=
{
"epsilon"
:
epsilon
,
"begin_norm_axis"
:
begin_norm_axis
})
return
helper
.
append_activation
(
layer_norm_out
)
def
beam_search_decode
(
ids
,
scores
,
name
=
None
):
def
beam_search_decode
(
ids
,
scores
,
name
=
None
):
helper
=
LayerHelper
(
'beam_search_decode'
,
**
locals
())
helper
=
LayerHelper
(
'beam_search_decode'
,
**
locals
())
sentence_ids
=
helper
.
create_tmp_variable
(
dtype
=
ids
.
dtype
)
sentence_ids
=
helper
.
create_tmp_variable
(
dtype
=
ids
.
dtype
)
...
...
python/paddle/v2/fluid/nets.py
浏览文件 @
6c7ba81c
...
@@ -194,7 +194,7 @@ def scaled_dot_product_attention(queries,
...
@@ -194,7 +194,7 @@ def scaled_dot_product_attention(queries,
Returns:
Returns:
Variable: A 3-D Tensor computed by multi-head scaled dot product
Variable: A 3-D Tensor computed by multi-head scaled dot product
\
attention.
attention.
Raises:
Raises:
...
@@ -333,6 +333,7 @@ def scaled_dot_product_attention(queries,
...
@@ -333,6 +333,7 @@ def scaled_dot_product_attention(queries,
x
=
product
,
shape
=
[
-
1
,
product
.
shape
[
-
1
]],
act
=
"softmax"
),
x
=
product
,
shape
=
[
-
1
,
product
.
shape
[
-
1
]],
act
=
"softmax"
),
shape
=
product
.
shape
)
shape
=
product
.
shape
)
if
dropout_rate
:
if
dropout_rate
:
weights
=
layers
.
dropout
(
x
,
dropout_prob
=
dropout_rate
,
is_test
=
False
)
weights
=
layers
.
dropout
(
weights
,
dropout_prob
=
dropout_rate
,
is_test
=
False
)
ctx_multiheads
=
layers
.
matmul
(
weights
,
v
)
ctx_multiheads
=
layers
.
matmul
(
weights
,
v
)
return
__combine_heads
(
ctx_multiheads
)
return
__combine_heads
(
ctx_multiheads
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录