Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6c5c547e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6c5c547e
编写于
9月 23, 2020
作者:
M
mapingshuo
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
correct role_maker usage
上级
e3334f3e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
19 addition
and
20 deletion
+19
-20
python/paddle/distributed/fleet/meta_optimizers/zero_optimizer.py
...addle/distributed/fleet/meta_optimizers/zero_optimizer.py
+19
-20
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/zero_optimizer.py
浏览文件 @
6c5c547e
...
...
@@ -243,7 +243,7 @@ class ZeroOptimizer(MetaOptimizerBase):
param2mem
.
append
((
param
.
name
,
mem
))
# print(param.name, mem)
# print("total_param_mem: ", total_param_mem)
device_num
=
self
.
role_maker
.
worker_num
()
device_num
=
self
.
role_maker
.
_
worker_num
()
# print("device_num: ", device_num)
device2params
=
{
x
:
[]
for
x
in
range
(
device_num
)}
device_idx
=
0
...
...
@@ -327,7 +327,7 @@ class ZeroOptimizer(MetaOptimizerBase):
if
input_name
!=
broadcast_name
:
op
.
_rename_input
(
input_name
,
broadcast_name
)
continue
if
root_device
==
self
.
role_maker
.
worker_index
():
if
root_device
==
self
.
role_maker
.
_
worker_index
():
broadcast_var_name
=
input_name
else
:
broadcast_var_name
=
unique_name
.
generate
(
input_name
+
...
...
@@ -357,7 +357,7 @@ class ZeroOptimizer(MetaOptimizerBase):
fp32_param
=
op
.
desc
.
input_arg_names
()[
0
]
fp16_param
=
op
.
desc
.
output_arg_names
()[
0
]
if
self
.
_param2device
[
fp32_param
]
==
self
.
role_maker
.
worker_index
():
fp32_param
]
==
self
.
role_maker
.
_
worker_index
():
sub_prog
.
_cast_ops
[
fp16_param
]
=
fp32_param
if
sub_prog
.
_param_mem
>
0
:
...
...
@@ -406,7 +406,7 @@ class ZeroOptimizer(MetaOptimizerBase):
params
=
[]
for
var_name
,
_
in
block
.
vars
.
items
():
if
self
.
_is_opti_var
(
var_name
)
and
\
self
.
_var_device_id
(
var_name
)
!=
self
.
role_maker
.
worker_index
():
self
.
_var_device_id
(
var_name
)
!=
self
.
role_maker
.
_
worker_index
():
params
.
append
(
var_name
)
program_deps
=
ProgramDeps
(
block
,
reduced_grads
,
params
)
...
...
@@ -428,7 +428,7 @@ class ZeroOptimizer(MetaOptimizerBase):
reduce_var
=
var_to_reduce_var
[
input_name
]
param_name
=
self
.
_reduced_grads_to_param
[
reduce_var
]
if
self
.
_param2device
[
param_name
]
!=
self
.
role_maker
.
worker_index
():
param_name
]
!=
self
.
role_maker
.
_
worker_index
():
program_deps
.
crop_input_var_from_op
(
idx
,
input_name
)
else
:
reversed_input_vars
.
append
(
input_name
)
...
...
@@ -726,20 +726,20 @@ class ZeroOptimizer(MetaOptimizerBase):
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
for
output_name
in
op
.
desc
.
output_arg_names
():
var_device_id
=
self
.
_var_device_id
(
output_name
)
if
var_device_id
==
-
1
or
var_device_id
==
self
.
role_maker
.
worker_index
(
if
var_device_id
==
-
1
or
var_device_id
==
self
.
role_maker
.
_
worker_index
(
):
continue
print
(
"%d: startup_block remove op %s"
%
(
self
.
role_maker
.
worker_index
(),
op
.
type
))
(
self
.
role_maker
.
_
worker_index
(),
op
.
type
))
block
.
_remove_op
(
idx
)
break
for
var_name
,
_
in
block
.
vars
.
items
():
var_device_id
=
self
.
_var_device_id
(
var_name
)
if
var_device_id
==
-
1
or
var_device_id
==
self
.
role_maker
.
worker_index
(
if
var_device_id
==
-
1
or
var_device_id
==
self
.
role_maker
.
_
worker_index
(
):
continue
print
(
"%d: startup_block remove var %s"
%
(
self
.
role_maker
.
worker_index
(),
var_name
))
(
self
.
role_maker
.
_
worker_index
(),
var_name
))
block
.
_remove_var
(
var_name
)
block
.
_sync_with_cpp
()
...
...
@@ -775,15 +775,14 @@ class ZeroOptimizer(MetaOptimizerBase):
def
_set_up
(
self
,
params_grads
):
# step 1: initialize nccl
# TODO(mapingshuo) fix get_trainer_endpoints
print
(
"work idx: "
,
self
.
role_maker
.
worker_index
())
endpoints
=
self
.
role_maker
.
get_trainer_endpoints
()
current_endpoint
=
endpoints
[
self
.
role_maker
.
worker_index
()]
print
(
"work idx: "
,
self
.
role_maker
.
_worker_index
())
endpoints
=
self
.
role_maker
.
_get_trainer_endpoints
()
current_endpoint
=
endpoints
[
self
.
role_maker
.
_worker_index
()]
collective_helper
=
CollectiveHelper
(
self
.
role_maker
,
self
.
_nrings
)
for
ring_id
in
range
(
self
.
_nrings
):
collective_helper
.
_init_communicator
(
self
.
_startup_program
,
current_endpoint
,
endpoints
,
self
.
role_maker
.
worker_index
(),
ring_id
,
'6174'
)
self
.
role_maker
.
_
worker_index
(),
ring_id
,
'6174'
)
startup_block
=
self
.
_startup_program
.
global_block
()
startup_block
.
_sync_with_cpp
()
...
...
@@ -846,7 +845,7 @@ class ZeroOptimizer(MetaOptimizerBase):
# step4: insert reduce_sum for grad
self
.
_insert_scale_loss_grad_ops
(
main_block
,
scale
=
1.0
/
self
.
role_maker
.
worker_num
())
main_block
,
scale
=
1.0
/
self
.
role_maker
.
_
worker_num
())
main_block
.
_sync_with_cpp
()
# step5: remove unneeded ops and vars from block
...
...
@@ -1194,21 +1193,21 @@ class ZeroOptimizer(MetaOptimizerBase):
if
startup_program
is
None
:
startup_program
=
default_startup_program
()
print
(
"work idx: "
,
self
.
role_maker
.
worker_index
())
endpoints
=
self
.
role_maker
.
get_trainer_endpoints
()
current_endpoint
=
endpoints
[
self
.
role_maker
.
worker_index
()]
print
(
"work idx: "
,
self
.
role_maker
.
_
worker_index
())
endpoints
=
self
.
role_maker
.
_
get_trainer_endpoints
()
current_endpoint
=
endpoints
[
self
.
role_maker
.
_
worker_index
()]
collective_helper
=
CollectiveHelper
(
self
.
role_maker
,
self
.
_nrings
)
for
ring_id
in
range
(
self
.
_nrings
):
collective_helper
.
_init_communicator
(
startup_program
,
current_endpoint
,
endpoints
,
self
.
role_maker
.
worker_index
(),
ring_id
,
'6174'
)
self
.
role_maker
.
_
worker_index
(),
ring_id
,
'6174'
)
main_block
=
loss
.
block
startup_block
=
startup_program
.
global_block
()
self
.
_broadcast_params
(
startup_block
)
self
.
_insert_scale_loss_grad_ops
(
main_block
,
scale
=
1.0
/
self
.
role_maker
.
worker_num
())
main_block
,
scale
=
1.0
/
self
.
role_maker
.
_
worker_num
())
self
.
_insert_allreduce_ops_tmp
(
main_block
)
print
(
"insert allreduce done"
)
return
optimize_ops
,
params_grads
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录