Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6c5a5d07
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6c5a5d07
编写于
12月 21, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
format code. test=develop
上级
e7e4f084
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
53 addition
and
569 deletion
+53
-569
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+43
-429
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+9
-139
未找到文件。
paddle/fluid/API.spec
浏览文件 @
6c5a5d07
...
...
@@ -324,7 +324,7 @@ paddle.fluid.layers.generate_mask_labels ArgSpec(args=['im_info', 'gt_classes',
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', '
class_num', 'ignore_thresh', 'input_siz
e', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', '
anchor_mask', 'class_num', 'ignore_thresh', 'downsampl
e', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
...
...
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
6c5a5d07
...
...
@@ -26,110 +26,9 @@ template <typename T, int MajorType = Eigen::RowMajor,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
using
Array5
=
Eigen
::
DSizes
<
int64_t
,
5
>
;
template
<
typename
T
>
static
inline
bool
isZero
(
T
x
)
{
return
fabs
(
x
)
<
1e-6
;
}
template
<
typename
T
>
static
T
CalcBoxIoU
(
std
::
vector
<
T
>
box1
,
std
::
vector
<
T
>
box2
)
{
T
b1_x1
=
box1
[
0
]
-
box1
[
2
]
/
2
;
T
b1_x2
=
box1
[
0
]
+
box1
[
2
]
/
2
;
T
b1_y1
=
box1
[
1
]
-
box1
[
3
]
/
2
;
T
b1_y2
=
box1
[
1
]
+
box1
[
3
]
/
2
;
T
b2_x1
=
box2
[
0
]
-
box2
[
2
]
/
2
;
T
b2_x2
=
box2
[
0
]
+
box2
[
2
]
/
2
;
T
b2_y1
=
box2
[
1
]
-
box2
[
3
]
/
2
;
T
b2_y2
=
box2
[
1
]
+
box2
[
3
]
/
2
;
T
b1_area
=
(
b1_x2
-
b1_x1
)
*
(
b1_y2
-
b1_y1
);
T
b2_area
=
(
b2_x2
-
b2_x1
)
*
(
b2_y2
-
b2_y1
);
T
inter_rect_x1
=
std
::
max
(
b1_x1
,
b2_x1
);
T
inter_rect_y1
=
std
::
max
(
b1_y1
,
b2_y1
);
T
inter_rect_x2
=
std
::
min
(
b1_x2
,
b2_x2
);
T
inter_rect_y2
=
std
::
min
(
b1_y2
,
b2_y2
);
T
inter_area
=
std
::
max
(
inter_rect_x2
-
inter_rect_x1
,
static_cast
<
T
>
(
0.0
))
*
std
::
max
(
inter_rect_y2
-
inter_rect_y1
,
static_cast
<
T
>
(
0.0
));
return
inter_area
/
(
b1_area
+
b2_area
-
inter_area
);
}
template
<
typename
T
>
static
void
PreProcessGTBox
(
const
Tensor
&
gt_box
,
const
Tensor
&
gt_label
,
const
float
ignore_thresh
,
std
::
vector
<
int
>
anchors
,
const
int
input_size
,
const
int
grid_size
,
Tensor
*
conf_mask
,
Tensor
*
obj_mask
,
Tensor
*
tx
,
Tensor
*
ty
,
Tensor
*
tw
,
Tensor
*
th
,
Tensor
*
tweight
,
Tensor
*
tconf
,
Tensor
*
tclass
)
{
const
int
n
=
gt_box
.
dims
()[
0
];
const
int
b
=
gt_box
.
dims
()[
1
];
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
h
=
tclass
->
dims
()[
2
];
const
int
w
=
tclass
->
dims
()[
3
];
const
int
class_num
=
tclass
->
dims
()[
4
];
const
T
*
gt_box_data
=
gt_box
.
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
.
data
<
int
>
();
T
*
conf_mask_data
=
conf_mask
->
data
<
T
>
();
T
*
obj_mask_data
=
obj_mask
->
data
<
T
>
();
T
*
tx_data
=
tx
->
data
<
T
>
();
T
*
ty_data
=
ty
->
data
<
T
>
();
T
*
tw_data
=
tw
->
data
<
T
>
();
T
*
th_data
=
th
->
data
<
T
>
();
T
*
tweight_data
=
tweight
->
data
<
T
>
();
T
*
tconf_data
=
tconf
->
data
<
T
>
();
T
*
tclass_data
=
tclass
->
data
<
T
>
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
b
;
j
++
)
{
int
box_idx
=
(
i
*
b
+
j
)
*
4
;
if
(
isZero
<
T
>
(
gt_box_data
[
box_idx
+
2
])
&&
isZero
<
T
>
(
gt_box_data
[
box_idx
+
3
]))
{
continue
;
}
int
cur_label
=
gt_label_data
[
i
*
b
+
j
];
T
gx
=
gt_box_data
[
box_idx
]
*
grid_size
;
T
gy
=
gt_box_data
[
box_idx
+
1
]
*
grid_size
;
T
gw
=
gt_box_data
[
box_idx
+
2
]
*
input_size
;
T
gh
=
gt_box_data
[
box_idx
+
3
]
*
input_size
;
int
gi
=
static_cast
<
int
>
(
gx
);
int
gj
=
static_cast
<
int
>
(
gy
);
T
max_iou
=
static_cast
<
T
>
(
0
);
T
iou
;
int
best_an_index
=
-
1
;
std
::
vector
<
T
>
gt_box_shape
({
0
,
0
,
gw
,
gh
});
for
(
int
an_idx
=
0
;
an_idx
<
an_num
;
an_idx
++
)
{
std
::
vector
<
T
>
anchor_shape
({
0
,
0
,
static_cast
<
T
>
(
anchors
[
2
*
an_idx
]),
static_cast
<
T
>
(
anchors
[
2
*
an_idx
+
1
])});
iou
=
CalcBoxIoU
<
T
>
(
gt_box_shape
,
anchor_shape
);
if
(
iou
>
max_iou
)
{
max_iou
=
iou
;
best_an_index
=
an_idx
;
}
if
(
iou
>
ignore_thresh
)
{
int
conf_idx
=
((
i
*
an_num
+
an_idx
)
*
h
+
gj
)
*
w
+
gi
;
conf_mask_data
[
conf_idx
]
=
static_cast
<
T
>
(
0.0
);
}
}
int
obj_idx
=
((
i
*
an_num
+
best_an_index
)
*
h
+
gj
)
*
w
+
gi
;
conf_mask_data
[
obj_idx
]
=
static_cast
<
T
>
(
1.0
);
obj_mask_data
[
obj_idx
]
=
static_cast
<
T
>
(
1.0
);
tx_data
[
obj_idx
]
=
gx
-
gi
;
ty_data
[
obj_idx
]
=
gy
-
gj
;
tw_data
[
obj_idx
]
=
log
(
gw
/
anchors
[
2
*
best_an_index
]);
th_data
[
obj_idx
]
=
log
(
gh
/
anchors
[
2
*
best_an_index
+
1
]);
tweight_data
[
obj_idx
]
=
2.0
-
gt_box_data
[
box_idx
+
2
]
*
gt_box_data
[
box_idx
+
3
];
tconf_data
[
obj_idx
]
=
static_cast
<
T
>
(
1.0
);
tclass_data
[
obj_idx
*
class_num
+
cur_label
]
=
static_cast
<
T
>
(
1.0
);
}
}
static
inline
bool
LessEqualZero
(
T
x
)
{
return
x
<
1e-6
;
}
template
<
typename
T
>
...
...
@@ -152,177 +51,8 @@ static T L1LossGrad(T x, T y) {
return
x
>
y
?
1.0
:
-
1.0
;
}
template
<
typename
T
>
static
void
CalcSCE
(
T
*
loss_data
,
const
T
*
input
,
const
T
*
target
,
const
T
*
weight
,
const
T
*
mask
,
const
int
n
,
const
int
an_num
,
const
int
grid_num
,
const
int
class_num
,
const
int
num
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
grid_num
;
k
++
)
{
int
sub_idx
=
k
*
num
;
for
(
int
l
=
0
;
l
<
num
;
l
++
)
{
loss_data
[
i
]
+=
SCE
<
T
>
(
input
[
l
*
grid_num
+
k
],
target
[
sub_idx
+
l
])
*
weight
[
k
]
*
mask
[
k
];
}
}
input
+=
(
class_num
+
5
)
*
grid_num
;
target
+=
grid_num
*
num
;
weight
+=
grid_num
;
mask
+=
grid_num
;
}
}
}
template
<
typename
T
>
static
void
CalcSCEGrad
(
T
*
input_grad
,
const
T
*
loss_grad
,
const
T
*
input
,
const
T
*
target
,
const
T
*
weight
,
const
T
*
mask
,
const
int
n
,
const
int
an_num
,
const
int
grid_num
,
const
int
class_num
,
const
int
num
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
grid_num
;
k
++
)
{
int
sub_idx
=
k
*
num
;
for
(
int
l
=
0
;
l
<
num
;
l
++
)
{
input_grad
[
l
*
grid_num
+
k
]
=
SCEGrad
<
T
>
(
input
[
l
*
grid_num
+
k
],
target
[
sub_idx
+
l
])
*
weight
[
k
]
*
mask
[
k
]
*
loss_grad
[
i
];
}
}
input_grad
+=
(
class_num
+
5
)
*
grid_num
;
input
+=
(
class_num
+
5
)
*
grid_num
;
target
+=
grid_num
*
num
;
weight
+=
grid_num
;
mask
+=
grid_num
;
}
}
}
template
<
typename
T
>
static
void
CalcL1Loss
(
T
*
loss_data
,
const
T
*
input
,
const
T
*
target
,
const
T
*
weight
,
const
T
*
mask
,
const
int
n
,
const
int
an_num
,
const
int
grid_num
,
const
int
class_num
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
grid_num
;
k
++
)
{
loss_data
[
i
]
+=
L1Loss
<
T
>
(
input
[
k
],
target
[
k
])
*
weight
[
k
]
*
mask
[
k
];
}
input
+=
(
class_num
+
5
)
*
grid_num
;
target
+=
grid_num
;
weight
+=
grid_num
;
mask
+=
grid_num
;
}
}
}
template
<
typename
T
>
static
void
CalcL1LossGrad
(
T
*
input_grad
,
const
T
*
loss_grad
,
const
T
*
input
,
const
T
*
target
,
const
T
*
weight
,
const
T
*
mask
,
const
int
n
,
const
int
an_num
,
const
int
grid_num
,
const
int
class_num
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
grid_num
;
k
++
)
{
input_grad
[
k
]
=
L1LossGrad
<
T
>
(
input
[
k
],
target
[
k
])
*
weight
[
k
]
*
mask
[
k
]
*
loss_grad
[
i
];
}
input_grad
+=
(
class_num
+
5
)
*
grid_num
;
input
+=
(
class_num
+
5
)
*
grid_num
;
target
+=
grid_num
;
weight
+=
grid_num
;
mask
+=
grid_num
;
}
}
}
template
<
typename
T
>
static
void
CalcYolov3Loss
(
T
*
loss_data
,
const
Tensor
&
input
,
const
Tensor
&
tx
,
const
Tensor
&
ty
,
const
Tensor
&
tw
,
const
Tensor
&
th
,
const
Tensor
&
tweight
,
const
Tensor
&
tconf
,
const
Tensor
&
tclass
,
const
Tensor
&
conf_mask
,
const
Tensor
&
obj_mask
)
{
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
tx_data
=
tx
.
data
<
T
>
();
const
T
*
ty_data
=
ty
.
data
<
T
>
();
const
T
*
tw_data
=
tw
.
data
<
T
>
();
const
T
*
th_data
=
th
.
data
<
T
>
();
const
T
*
tweight_data
=
tweight
.
data
<
T
>
();
const
T
*
tconf_data
=
tconf
.
data
<
T
>
();
const
T
*
tclass_data
=
tclass
.
data
<
T
>
();
const
T
*
conf_mask_data
=
conf_mask
.
data
<
T
>
();
const
T
*
obj_mask_data
=
obj_mask
.
data
<
T
>
();
const
int
n
=
tclass
.
dims
()[
0
];
const
int
an_num
=
tclass
.
dims
()[
1
];
const
int
h
=
tclass
.
dims
()[
2
];
const
int
w
=
tclass
.
dims
()[
3
];
const
int
class_num
=
tclass
.
dims
()[
4
];
const
int
grid_num
=
h
*
w
;
CalcSCE
<
T
>
(
loss_data
,
input_data
,
tx_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcSCE
<
T
>
(
loss_data
,
input_data
+
grid_num
,
ty_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcL1Loss
<
T
>
(
loss_data
,
input_data
+
2
*
grid_num
,
tw_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
);
CalcL1Loss
<
T
>
(
loss_data
,
input_data
+
3
*
grid_num
,
th_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
);
CalcSCE
<
T
>
(
loss_data
,
input_data
+
4
*
grid_num
,
tconf_data
,
conf_mask_data
,
conf_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcSCE
<
T
>
(
loss_data
,
input_data
+
5
*
grid_num
,
tclass_data
,
obj_mask_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
class_num
);
}
template
<
typename
T
>
static
void
CalcYolov3LossGrad
(
T
*
input_grad_data
,
const
Tensor
&
loss_grad
,
const
Tensor
&
input
,
const
Tensor
&
tx
,
const
Tensor
&
ty
,
const
Tensor
&
tw
,
const
Tensor
&
th
,
const
Tensor
&
tweight
,
const
Tensor
&
tconf
,
const
Tensor
&
tclass
,
const
Tensor
&
conf_mask
,
const
Tensor
&
obj_mask
)
{
const
T
*
loss_grad_data
=
loss_grad
.
data
<
T
>
();
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
tx_data
=
tx
.
data
<
T
>
();
const
T
*
ty_data
=
ty
.
data
<
T
>
();
const
T
*
tw_data
=
tw
.
data
<
T
>
();
const
T
*
th_data
=
th
.
data
<
T
>
();
const
T
*
tweight_data
=
tweight
.
data
<
T
>
();
const
T
*
tconf_data
=
tconf
.
data
<
T
>
();
const
T
*
tclass_data
=
tclass
.
data
<
T
>
();
const
T
*
conf_mask_data
=
conf_mask
.
data
<
T
>
();
const
T
*
obj_mask_data
=
obj_mask
.
data
<
T
>
();
const
int
n
=
tclass
.
dims
()[
0
];
const
int
an_num
=
tclass
.
dims
()[
1
];
const
int
h
=
tclass
.
dims
()[
2
];
const
int
w
=
tclass
.
dims
()[
3
];
const
int
class_num
=
tclass
.
dims
()[
4
];
const
int
grid_num
=
h
*
w
;
CalcSCEGrad
<
T
>
(
input_grad_data
,
loss_grad_data
,
input_data
,
tx_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcSCEGrad
<
T
>
(
input_grad_data
+
grid_num
,
loss_grad_data
,
input_data
+
grid_num
,
ty_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcL1LossGrad
<
T
>
(
input_grad_data
+
2
*
grid_num
,
loss_grad_data
,
input_data
+
2
*
grid_num
,
tw_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
);
CalcL1LossGrad
<
T
>
(
input_grad_data
+
3
*
grid_num
,
loss_grad_data
,
input_data
+
3
*
grid_num
,
th_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
);
CalcSCEGrad
<
T
>
(
input_grad_data
+
4
*
grid_num
,
loss_grad_data
,
input_data
+
4
*
grid_num
,
tconf_data
,
conf_mask_data
,
conf_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcSCEGrad
<
T
>
(
input_grad_data
+
5
*
grid_num
,
loss_grad_data
,
input_data
+
5
*
grid_num
,
tclass_data
,
obj_mask_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
class_num
);
}
static
int
mask_index
(
std
::
vector
<
int
>
mask
,
int
val
)
{
for
(
int
i
=
0
;
i
<
mask
.
size
();
i
++
)
{
static
int
GetMaskIndex
(
std
::
vector
<
int
>
mask
,
int
val
)
{
for
(
size_t
i
=
0
;
i
<
mask
.
size
();
i
++
)
{
if
(
mask
[
i
]
==
val
)
{
return
i
;
}
...
...
@@ -341,14 +71,7 @@ static inline T sigmoid(T x) {
}
template
<
typename
T
>
static
inline
void
sigmoid_arrray
(
T
*
arr
,
int
len
)
{
for
(
int
i
=
0
;
i
<
len
;
i
++
)
{
arr
[
i
]
=
sigmoid
(
arr
[
i
]);
}
}
template
<
typename
T
>
static
inline
Box
<
T
>
get_yolo_box
(
const
T
*
x
,
std
::
vector
<
int
>
anchors
,
int
i
,
static
inline
Box
<
T
>
GetYoloBox
(
const
T
*
x
,
std
::
vector
<
int
>
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size
,
int
input_size
,
int
index
,
int
stride
)
{
Box
<
T
>
b
;
...
...
@@ -360,8 +83,7 @@ static inline Box<T> get_yolo_box(const T* x, std::vector<int> anchors, int i,
}
template
<
typename
T
>
static
inline
Box
<
T
>
get_gt_box
(
const
T
*
gt
,
int
batch
,
int
max_boxes
,
int
idx
)
{
static
inline
Box
<
T
>
GetGtBox
(
const
T
*
gt
,
int
batch
,
int
max_boxes
,
int
idx
)
{
Box
<
T
>
b
;
b
.
x
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
];
b
.
y
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
+
1
];
...
...
@@ -371,7 +93,7 @@ static inline Box<T> get_gt_box(const T* gt, int batch, int max_boxes,
}
template
<
typename
T
>
static
inline
T
o
verlap
(
T
c1
,
T
w1
,
T
c2
,
T
w2
)
{
static
inline
T
BoxO
verlap
(
T
c1
,
T
w1
,
T
c2
,
T
w2
)
{
T
l1
=
c1
-
w1
/
2.0
;
T
l2
=
c2
-
w2
/
2.0
;
T
left
=
l1
>
l2
?
l1
:
l2
;
...
...
@@ -382,15 +104,15 @@ static inline T overlap(T c1, T w1, T c2, T w2) {
}
template
<
typename
T
>
static
inline
T
box_iou
(
Box
<
T
>
b1
,
Box
<
T
>
b2
)
{
T
w
=
o
verlap
(
b1
.
x
,
b1
.
w
,
b2
.
x
,
b2
.
w
);
T
h
=
o
verlap
(
b1
.
y
,
b1
.
h
,
b2
.
y
,
b2
.
h
);
static
inline
T
CalcBoxIoU
(
Box
<
T
>
b1
,
Box
<
T
>
b2
)
{
T
w
=
BoxO
verlap
(
b1
.
x
,
b1
.
w
,
b2
.
x
,
b2
.
w
);
T
h
=
BoxO
verlap
(
b1
.
y
,
b1
.
h
,
b2
.
y
,
b2
.
h
);
T
inter_area
=
(
w
<
0
||
h
<
0
)
?
0.0
:
w
*
h
;
T
union_area
=
b1
.
w
*
b1
.
h
+
b2
.
w
*
b2
.
h
-
inter_area
;
return
inter_area
/
union_area
;
}
static
inline
int
entry_i
ndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
static
inline
int
GetEntryI
ndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
,
int
entry
)
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
entry
*
stride
+
hw_idx
;
}
...
...
@@ -523,7 +245,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
T
*
loss_data
=
loss
->
mutable_data
<
T
>
({
n
},
ctx
.
GetPlace
());
memset
(
loss_data
,
0
,
n
*
sizeof
(
int
));
memset
(
loss_data
,
0
,
loss
->
numel
()
*
sizeof
(
T
));
Tensor
objness
;
int
*
objness_data
=
...
...
@@ -538,22 +260,18 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
box_idx
=
entry_index
(
i
,
j
,
k
*
w
+
l
,
mask_num
,
an_stride
,
stride
,
0
);
Box
<
T
>
pred
=
get_yolo_box
(
input_data
,
anchors
,
l
,
k
,
anchor_mask
[
j
],
h
,
input_size
,
box_idx
,
stride
);
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
mask_num
,
an_stride
,
stride
,
0
);
Box
<
T
>
pred
=
GetYoloBox
(
input_data
,
anchors
,
l
,
k
,
anchor_mask
[
j
],
h
,
input_size
,
box_idx
,
stride
);
T
best_iou
=
0
;
// int best_t = 0;
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
if
(
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
])
&&
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
+
1
]
))
{
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
if
(
LessEqualZero
<
T
>
(
gt
.
w
)
||
LessEqualZero
<
T
>
(
gt
.
h
))
{
continue
;
}
Box
<
T
>
gt
=
get_gt_box
(
gt_box_data
,
i
,
b
,
t
);
T
iou
=
box_iou
(
pred
,
gt
);
T
iou
=
CalcBoxIoU
(
pred
,
gt
);
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
// best_t = t;
}
}
...
...
@@ -565,11 +283,10 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
}
}
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
if
(
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
])
&&
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
+
1
]
))
{
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
if
(
LessEqualZero
<
T
>
(
gt
.
w
)
||
LessEqualZero
<
T
>
(
gt
.
h
))
{
continue
;
}
Box
<
T
>
gt
=
get_gt_box
(
gt_box_data
,
i
,
b
,
t
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
Box
<
T
>
gt_shift
=
gt
;
...
...
@@ -583,7 +300,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
an_box
.
y
=
0.0
;
an_box
.
w
=
anchors
[
2
*
an_idx
]
/
static_cast
<
T
>
(
input_size
);
an_box
.
h
=
anchors
[
2
*
an_idx
+
1
]
/
static_cast
<
T
>
(
input_size
);
float
iou
=
box_iou
<
T
>
(
an_box
,
gt_shift
);
float
iou
=
CalcBoxIoU
<
T
>
(
an_box
,
gt_shift
);
// TO DO: iou > 0.5 ?
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
...
...
@@ -591,9 +308,9 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
}
}
int
mask_idx
=
mask_i
ndex
(
anchor_mask
,
best_n
);
int
mask_idx
=
GetMaskI
ndex
(
anchor_mask
,
best_n
);
if
(
mask_idx
>=
0
)
{
int
box_idx
=
entry_i
ndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
int
box_idx
=
GetEntryI
ndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLoss
<
T
>
(
loss_data
+
i
,
input_data
,
gt
,
anchors
,
best_n
,
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
...
...
@@ -602,7 +319,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
objness_data
[
obj_idx
]
=
1
;
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
entry_i
ndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
int
label_idx
=
GetEntryI
ndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLoss
<
T
>
(
loss_data
+
i
,
input_data
,
label_idx
,
label
,
class_num
,
stride
);
...
...
@@ -612,52 +329,6 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
CalcObjnessLoss
<
T
>
(
loss_data
,
input_data
+
4
*
stride
,
objness_data
,
n
,
mask_num
,
h
,
w
,
stride
,
an_stride
);
// Tensor conf_mask, obj_mask;
// Tensor tx, ty, tw, th, tweight, tconf, tclass;
// conf_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// obj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tweight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
//
// math::SetConstant<platform::CPUDeviceContext, T> constant;
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &conf_mask, static_cast<T>(1.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &obj_mask, static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &tx,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &ty,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &tw,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &th,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &tweight, static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &tconf,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &tclass,
// static_cast<T>(0.0));
//
// PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors,
// input_size,
// h, &conf_mask, &obj_mask, &tx, &ty, &tw, &th,
// &tweight,
// &tconf, &tclass);
//
// T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
// memset(loss_data, 0, n * sizeof(T));
// CalcYolov3Loss<T>(loss_data, *input, tx, ty, tw, th, tweight, tconf,
// tclass,
// conf_mask, obj_mask);
}
};
...
...
@@ -706,22 +377,18 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
box_idx
=
entry_index
(
i
,
j
,
k
*
w
+
l
,
mask_num
,
an_stride
,
stride
,
0
);
Box
<
T
>
pred
=
get_yolo_box
(
input_data
,
anchors
,
l
,
k
,
anchor_mask
[
j
],
h
,
input_size
,
box_idx
,
stride
);
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
mask_num
,
an_stride
,
stride
,
0
);
Box
<
T
>
pred
=
GetYoloBox
(
input_data
,
anchors
,
l
,
k
,
anchor_mask
[
j
],
h
,
input_size
,
box_idx
,
stride
);
T
best_iou
=
0
;
// int best_t = 0;
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
if
(
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
])
&&
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
+
1
]
))
{
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
if
(
LessEqualZero
<
T
>
(
gt
.
w
)
||
LessEqualZero
<
T
>
(
gt
.
h
))
{
continue
;
}
Box
<
T
>
gt
=
get_gt_box
(
gt_box_data
,
i
,
b
,
t
);
T
iou
=
box_iou
(
pred
,
gt
);
T
iou
=
CalcBoxIoU
(
pred
,
gt
);
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
// best_t = t;
}
}
...
...
@@ -733,11 +400,10 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
}
}
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
if
(
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
])
&&
isZero
<
T
>
(
gt_box_data
[
i
*
b
*
4
+
t
*
4
+
1
]
))
{
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
if
(
LessEqualZero
<
T
>
(
gt
.
w
)
||
LessEqualZero
<
T
>
(
gt
.
h
))
{
continue
;
}
Box
<
T
>
gt
=
get_gt_box
(
gt_box_data
,
i
,
b
,
t
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
Box
<
T
>
gt_shift
=
gt
;
...
...
@@ -751,7 +417,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
an_box
.
y
=
0.0
;
an_box
.
w
=
anchors
[
2
*
an_idx
]
/
static_cast
<
T
>
(
input_size
);
an_box
.
h
=
anchors
[
2
*
an_idx
+
1
]
/
static_cast
<
T
>
(
input_size
);
float
iou
=
box_iou
<
T
>
(
an_box
,
gt_shift
);
float
iou
=
CalcBoxIoU
<
T
>
(
an_box
,
gt_shift
);
// TO DO: iou > 0.5 ?
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
...
...
@@ -759,9 +425,9 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
}
}
int
mask_idx
=
mask_i
ndex
(
anchor_mask
,
best_n
);
int
mask_idx
=
GetMaskI
ndex
(
anchor_mask
,
best_n
);
if
(
mask_idx
>=
0
)
{
int
box_idx
=
entry_i
ndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
int
box_idx
=
GetEntryI
ndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
gt
,
anchors
,
best_n
,
box_idx
,
...
...
@@ -771,7 +437,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
objness_data
[
obj_idx
]
=
1
;
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
entry_i
ndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
int
label_idx
=
GetEntryI
ndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
label_idx
,
label
,
class_num
,
stride
);
...
...
@@ -782,58 +448,6 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
CalcObjnessLossGrad
<
T
>
(
input_grad_data
+
4
*
stride
,
loss_grad_data
,
input_data
+
4
*
stride
,
objness_data
,
n
,
mask_num
,
h
,
w
,
stride
,
an_stride
);
// const int n = input->dims()[0];
// const int c = input->dims()[1];
// const int h = input->dims()[2];
// const int w = input->dims()[3];
// const int an_num = anchors.size() / 2;
//
// Tensor conf_mask, obj_mask;
// Tensor tx, ty, tw, th, tweight, tconf, tclass;
// conf_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// obj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tweight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
// tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
//
// math::SetConstant<platform::CPUDeviceContext, T> constant;
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &conf_mask, static_cast<T>(1.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &obj_mask, static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &tx,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &ty,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &tw,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(), &th,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &tweight, static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &tconf,
// static_cast<T>(0.0));
// constant(ctx.template device_context<platform::CPUDeviceContext>(),
// &tclass,
// static_cast<T>(0.0));
//
// PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors,
// input_size,
// h, &conf_mask, &obj_mask, &tx, &ty, &tw, &th,
// &tweight,
// &tconf, &tclass);
//
// T* input_grad_data =
// input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
// CalcYolov3LossGrad<T>(input_grad_data, *loss_grad, *input, tx, ty, tw,
// th,
// tweight, tconf, tclass, conf_mask, obj_mask);
}
};
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
6c5a5d07
...
...
@@ -22,32 +22,6 @@ from op_test import OpTest
from
paddle.fluid
import
core
# def l1loss(x, y, weight):
# n = x.shape[0]
# x = x.reshape((n, -1))
# y = y.reshape((n, -1))
# weight = weight.reshape((n, -1))
# return (np.abs(y - x) * weight).sum(axis=1)
#
#
# def mse(x, y, weight):
# n = x.shape[0]
# x = x.reshape((n, -1))
# y = y.reshape((n, -1))
# weight = weight.reshape((n, -1))
# return ((y - x)**2 * weight).sum(axis=1)
#
#
# def sce(x, label, weight):
# n = x.shape[0]
# x = x.reshape((n, -1))
# label = label.reshape((n, -1))
# weight = weight.reshape((n, -1))
# sigmoid_x = expit(x)
# term1 = label * np.log(sigmoid_x)
# term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
# return ((-term1 - term2) * weight).sum(axis=1)
def
l1loss
(
x
,
y
):
return
abs
(
x
-
y
)
...
...
@@ -60,116 +34,6 @@ def sce(x, label):
return
-
term1
-
term2
def
box_iou
(
box1
,
box2
):
b1_x1
=
box1
[
0
]
-
box1
[
2
]
/
2
b1_x2
=
box1
[
0
]
+
box1
[
2
]
/
2
b1_y1
=
box1
[
1
]
-
box1
[
3
]
/
2
b1_y2
=
box1
[
1
]
+
box1
[
3
]
/
2
b2_x1
=
box2
[
0
]
-
box2
[
2
]
/
2
b2_x2
=
box2
[
0
]
+
box2
[
2
]
/
2
b2_y1
=
box2
[
1
]
-
box2
[
3
]
/
2
b2_y2
=
box2
[
1
]
+
box2
[
3
]
/
2
b1_area
=
(
b1_x2
-
b1_x1
)
*
(
b1_y2
-
b1_y1
)
b2_area
=
(
b2_x2
-
b2_x1
)
*
(
b2_y2
-
b2_y1
)
inter_rect_x1
=
max
(
b1_x1
,
b2_x1
)
inter_rect_y1
=
max
(
b1_y1
,
b2_y1
)
inter_rect_x2
=
min
(
b1_x2
,
b2_x2
)
inter_rect_y2
=
min
(
b1_y2
,
b2_y2
)
inter_area
=
max
(
inter_rect_x2
-
inter_rect_x1
,
0
)
*
max
(
inter_rect_y2
-
inter_rect_y1
,
0
)
return
inter_area
/
(
b1_area
+
b2_area
+
inter_area
)
def
build_target
(
gtboxes
,
gtlabel
,
attrs
,
grid_size
):
n
,
b
,
_
=
gtboxes
.
shape
ignore_thresh
=
attrs
[
"ignore_thresh"
]
anchors
=
attrs
[
"anchors"
]
class_num
=
attrs
[
"class_num"
]
input_size
=
attrs
[
"input_size"
]
an_num
=
len
(
anchors
)
//
2
conf_mask
=
np
.
ones
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
obj_mask
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tx
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
ty
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tw
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
th
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tweight
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tconf
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tcls
=
np
.
zeros
(
(
n
,
an_num
,
grid_size
,
grid_size
,
class_num
)).
astype
(
'float32'
)
for
i
in
range
(
n
):
for
j
in
range
(
b
):
if
gtboxes
[
i
,
j
,
:].
sum
()
==
0
:
continue
gt_label
=
gtlabel
[
i
,
j
]
gx
=
gtboxes
[
i
,
j
,
0
]
*
grid_size
gy
=
gtboxes
[
i
,
j
,
1
]
*
grid_size
gw
=
gtboxes
[
i
,
j
,
2
]
*
input_size
gh
=
gtboxes
[
i
,
j
,
3
]
*
input_size
gi
=
int
(
gx
)
gj
=
int
(
gy
)
gtbox
=
[
0
,
0
,
gw
,
gh
]
max_iou
=
0
for
k
in
range
(
an_num
):
anchor_box
=
[
0
,
0
,
anchors
[
2
*
k
],
anchors
[
2
*
k
+
1
]]
iou
=
box_iou
(
gtbox
,
anchor_box
)
if
iou
>
max_iou
:
max_iou
=
iou
best_an_index
=
k
if
iou
>
ignore_thresh
:
conf_mask
[
i
,
best_an_index
,
gj
,
gi
]
=
0
conf_mask
[
i
,
best_an_index
,
gj
,
gi
]
=
1
obj_mask
[
i
,
best_an_index
,
gj
,
gi
]
=
1
tx
[
i
,
best_an_index
,
gj
,
gi
]
=
gx
-
gi
ty
[
i
,
best_an_index
,
gj
,
gi
]
=
gy
-
gj
tw
[
i
,
best_an_index
,
gj
,
gi
]
=
np
.
log
(
gw
/
anchors
[
2
*
best_an_index
])
th
[
i
,
best_an_index
,
gj
,
gi
]
=
np
.
log
(
gh
/
anchors
[
2
*
best_an_index
+
1
])
tweight
[
i
,
best_an_index
,
gj
,
gi
]
=
2.0
-
gtboxes
[
i
,
j
,
2
]
*
gtboxes
[
i
,
j
,
3
]
tconf
[
i
,
best_an_index
,
gj
,
gi
]
=
1
tcls
[
i
,
best_an_index
,
gj
,
gi
,
gt_label
]
=
1
return
(
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tcls
,
conf_mask
,
obj_mask
)
def
YoloV3Loss
(
x
,
gtbox
,
gtlabel
,
attrs
):
n
,
c
,
h
,
w
=
x
.
shape
an_num
=
len
(
attrs
[
'anchors'
])
//
2
class_num
=
attrs
[
"class_num"
]
x
=
x
.
reshape
((
n
,
an_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
pred_x
=
x
[:,
:,
:,
:,
0
]
pred_y
=
x
[:,
:,
:,
:,
1
]
pred_w
=
x
[:,
:,
:,
:,
2
]
pred_h
=
x
[:,
:,
:,
:,
3
]
pred_conf
=
x
[:,
:,
:,
:,
4
]
pred_cls
=
x
[:,
:,
:,
:,
5
:]
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tcls
,
conf_mask
,
obj_mask
=
build_target
(
gtbox
,
gtlabel
,
attrs
,
x
.
shape
[
2
])
obj_weight
=
obj_mask
*
tweight
obj_mask_expand
=
np
.
tile
(
np
.
expand_dims
(
obj_mask
,
4
),
(
1
,
1
,
1
,
1
,
int
(
attrs
[
'class_num'
])))
loss_x
=
sce
(
pred_x
,
tx
,
obj_weight
)
loss_y
=
sce
(
pred_y
,
ty
,
obj_weight
)
loss_w
=
l1loss
(
pred_w
,
tw
,
obj_weight
)
loss_h
=
l1loss
(
pred_h
,
th
,
obj_weight
)
loss_obj
=
sce
(
pred_conf
,
tconf
,
conf_mask
)
loss_class
=
sce
(
pred_cls
,
tcls
,
obj_mask_expand
)
return
loss_x
+
loss_y
+
loss_w
+
loss_h
+
loss_obj
+
loss_class
def
sigmoid
(
x
):
return
1.0
/
(
1.0
+
np
.
exp
(
-
1.0
*
x
))
...
...
@@ -291,8 +155,10 @@ class TestYolov3LossOp(OpTest):
self
.
op_type
=
'yolov3_loss'
x
=
logit
(
np
.
random
.
uniform
(
0
,
1
,
self
.
x_shape
).
astype
(
'float32'
))
gtbox
=
np
.
random
.
random
(
size
=
self
.
gtbox_shape
).
astype
(
'float32'
)
gtlabel
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
self
.
gtbox_shape
[:
2
]).
astype
(
'int32'
)
gtlabel
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
self
.
gtbox_shape
[:
2
])
gtmask
=
np
.
random
.
randint
(
0
,
2
,
self
.
gtbox_shape
[:
2
])
gtbox
=
gtbox
*
gtmask
[:,
:,
np
.
newaxis
]
gtlabel
=
gtlabel
*
gtmask
self
.
attrs
=
{
"anchors"
:
self
.
anchors
,
...
...
@@ -302,7 +168,11 @@ class TestYolov3LossOp(OpTest):
"downsample"
:
self
.
downsample
,
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
,
'GTLabel'
:
gtlabel
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
.
astype
(
'float32'
),
'GTLabel'
:
gtlabel
.
astype
(
'int32'
)
}
self
.
outputs
=
{
'Loss'
:
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
self
.
attrs
)}
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录