Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6c2bc29c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6c2bc29c
编写于
9月 10, 2019
作者:
G
gongweibao
提交者:
GitHub
9月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix float16 optimizer. (#19682)
Fix float16 optimizer
上级
713c05dd
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
47 addition
and
21 deletion
+47
-21
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
python/paddle/fluid/contrib/mixed_precision/decorator.py
python/paddle/fluid/contrib/mixed_precision/decorator.py
+18
-4
python/paddle/fluid/contrib/tests/test_image_classification_fp16.py
...dle/fluid/contrib/tests/test_image_classification_fp16.py
+2
-1
python/paddle/fluid/incubate/fleet/base/fleet_base.py
python/paddle/fluid/incubate/fleet/base/fleet_base.py
+3
-1
python/paddle/fluid/incubate/fleet/collective/__init__.py
python/paddle/fluid/incubate/fleet/collective/__init__.py
+4
-1
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+19
-13
未找到文件。
paddle/fluid/API.spec
浏览文件 @
6c2bc29c
...
...
@@ -505,7 +505,7 @@ paddle.fluid.contrib.HDFSClient.upload (ArgSpec(args=['self', 'hdfs_path', 'loca
paddle.fluid.contrib.multi_download (ArgSpec(args=['client', 'hdfs_path', 'local_path', 'trainer_id', 'trainers', 'multi_processes'], varargs=None, keywords=None, defaults=(5,)), ('document', '100927be598ed8f9eaa1f3ef1b23568a'))
paddle.fluid.contrib.multi_upload (ArgSpec(args=['client', 'hdfs_path', 'local_path', 'multi_processes', 'overwrite', 'sync'], varargs=None, keywords=None, defaults=(5, False, True)), ('document', '183f34c83d30dbe16e09e8716c41958a'))
paddle.fluid.contrib.extend_with_decoupled_weight_decay (ArgSpec(args=['base_optimizer'], varargs=None, keywords=None, defaults=None), ('document', 'a1095dfd4ec725747f662d69cd7659d4'))
paddle.fluid.contrib.mixed_precision.decorate (ArgSpec(args=['optimizer', 'amp_lists', 'init_loss_scaling', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'incr_ratio', 'decr_ratio', 'use_dynamic_loss_scaling'], varargs=None, keywords=None, defaults=(None, 1.0, 1000, 2, 2.0, 0.8, False)), ('document', '
d05e71f5b0bd6d92bb94e70e00b3f9cf
'))
paddle.fluid.contrib.mixed_precision.decorate (ArgSpec(args=['optimizer', 'amp_lists', 'init_loss_scaling', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'incr_ratio', 'decr_ratio', 'use_dynamic_loss_scaling'], varargs=None, keywords=None, defaults=(None, 1.0, 1000, 2, 2.0, 0.8, False)), ('document', '
5f118631fc8632afb981b3a26daae731
'))
paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists ('paddle.fluid.contrib.mixed_precision.fp16_lists.AutoMixedPrecisionLists', ('document', 'c116ec6bb5d30998792daea8db21ee40'))
paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists.__init__ (ArgSpec(args=['self', 'custom_white_list', 'custom_black_list'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.fused_elemwise_activation (ArgSpec(args=['x', 'y', 'functor_list', 'axis', 'scale', 'save_intermediate_out'], varargs=None, keywords=None, defaults=(-1, 0.0, True)), ('document', '1c4b247a2858cea8d9d8750693688270'))
...
...
python/paddle/fluid/contrib/mixed_precision/decorator.py
浏览文件 @
6c2bc29c
...
...
@@ -172,21 +172,34 @@ class OptimizerWithMixedPrecison(object):
return
optimize_ops
def
minimize
(
self
,
loss
):
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""
Perform optimization by minimizing the given loss.
Args:
loss (Variable): The loss Variable.
startup_program (Program): startup_program for initializing parameters
in `parameter_list`.
parameter_list (list): list of Variables to update.
no_grad_set (set|None): set of Variables should be ignored.
Returns:
The scaled loss by scaling factor, the list of optimize ops, and a
list of scaled parameters and gradients.
"""
scaled_params_grads
,
scaled_loss
=
self
.
backward
(
loss
)
scaled_params_grads
,
scaled_loss
=
self
.
backward
(
loss
,
startup_program
=
startup_program
,
parameter_list
=
parameter_list
,
no_grad_set
=
no_grad_set
)
optimize_ops
=
self
.
apply_gradients
(
scaled_params_grads
)
return
scaled_loss
,
optimize_ops
,
scaled_params_grads
return
optimize_ops
,
scaled_params_grads
def
decorate
(
optimizer
,
...
...
@@ -228,7 +241,8 @@ def decorate(optimizer,
mp_optimizer = fluid.contrib.mixed_precision.decorate(
optimizer=optimizer, init_loss_scaling=8.0)
scaled_loss, _, _ = mp_optimizer.minimize(loss)
ops, param_grads = mp_optimizer.minimize(loss)
scaled_loss = mp_optimizer.get_loss_scaling()
"""
if
amp_lists
is
None
:
amp_lists
=
AutoMixedPrecisionLists
()
...
...
python/paddle/fluid/contrib/tests/test_image_classification_fp16.py
浏览文件 @
6c2bc29c
...
...
@@ -138,7 +138,8 @@ def train(net_type, use_cuda, save_dirname, is_local):
init_loss_scaling
=
8.0
,
use_dynamic_loss_scaling
=
True
)
scaled_loss
,
_
,
_
=
mp_optimizer
.
minimize
(
avg_cost
)
mp_optimizer
.
minimize
(
avg_cost
)
scaled_loss
=
mp_optimizer
.
get_loss_scaling
()
BATCH_SIZE
=
128
PASS_NUM
=
1
...
...
python/paddle/fluid/incubate/fleet/base/fleet_base.py
浏览文件 @
6c2bc29c
...
...
@@ -23,6 +23,7 @@ from paddle.fluid.optimizer import SGD
from
paddle.fluid.incubate.fleet.base.role_maker
import
MPISymetricRoleMaker
from
paddle.fluid.incubate.fleet.base.role_maker
import
RoleMakerBase
from
paddle.fluid.incubate.fleet.base.role_maker
import
UserDefinedRoleMaker
from
paddle.fluid.contrib.mixed_precision.decorator
import
OptimizerWithMixedPrecison
class
Mode
:
...
...
@@ -257,7 +258,8 @@ class DistributedOptimizer(object):
__metaclass__
=
abc
.
ABCMeta
def
__init__
(
self
,
optimizer
,
strategy
=
None
):
if
not
isinstance
(
optimizer
,
SGD
.
__bases__
):
if
not
isinstance
(
optimizer
,
SGD
.
__bases__
)
\
and
not
isinstance
(
optimizer
,
OptimizerWithMixedPrecison
):
raise
TypeError
(
"optimizer must be an instance of Optimizer"
)
self
.
_optimizer
=
optimizer
...
...
python/paddle/fluid/incubate/fleet/collective/__init__.py
浏览文件 @
6c2bc29c
...
...
@@ -347,7 +347,10 @@ class CollectiveOptimizer(DistributedOptimizer):
self
.
_strategy
)
optimize_ops
,
param_grads
=
self
.
_optimizer
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
loss
,
startup_program
=
startup_program
,
parameter_list
=
parameter_list
,
no_grad_set
=
no_grad_set
)
fleet
.
_origin_program
=
main_program
fleet
.
main_program
=
self
.
_try_to_compile
(
startup_program
,
main_program
)
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
6c2bc29c
...
...
@@ -464,6 +464,8 @@ class Optimizer(object):
Examples:
See examples in `apply_gradients`.
"""
no_grad_set
=
self
.
_get_no_grad_set
(
loss
,
no_grad_set
)
self
.
_dtype
=
loss
.
dtype
if
framework
.
in_dygraph_mode
():
if
parameter_list
is
not
None
:
...
...
@@ -563,6 +565,23 @@ class Optimizer(object):
optimize_ops
=
self
.
apply_gradients
(
params_grads
)
return
optimize_ops
def
_get_no_grad_set
(
self
,
loss
,
no_grad_set
=
None
):
if
no_grad_set
is
None
:
no_grad_set
=
set
()
elif
isinstance
(
no_grad_set
,
set
)
or
isinstance
(
no_grad_set
,
list
)
or
isinstance
(
no_grad_set
,
tuple
):
no_grad_set
=
set
(
no_grad_set
)
else
:
assert
"no_grad_set should be a set, but the passed type is {}"
.
format
(
type
(
no_grad_set
))
parameters
=
loss
.
block
.
program
.
global_block
().
all_parameters
()
param_no_trainable
=
set
(
[
param
.
name
for
param
in
parameters
if
param
.
trainable
is
False
])
# If the parameter is no trainable, it should not have a gradient.
no_grad_set
.
update
(
param_no_trainable
)
return
no_grad_set
@
imperative_base
.
no_grad
def
minimize
(
self
,
loss
,
...
...
@@ -589,19 +608,6 @@ class Optimizer(object):
and list of (param, grad) Variables pair for optimization.
"""
assert
isinstance
(
loss
,
Variable
),
"The loss should be an Variable."
if
no_grad_set
is
None
:
no_grad_set
=
set
()
elif
isinstance
(
no_grad_set
,
set
)
or
isinstance
(
no_grad_set
,
list
)
or
isinstance
(
no_grad_set
,
tuple
):
no_grad_set
=
set
(
no_grad_set
)
else
:
assert
"no_grad_set should be a set, but the passed type is {}"
.
format
(
type
(
no_grad_set
))
parameters
=
loss
.
block
.
program
.
global_block
().
all_parameters
()
param_no_trainable
=
set
(
[
param
.
name
for
param
in
parameters
if
param
.
trainable
is
False
])
# If the parameter is no trainable, it should not have a gradient.
no_grad_set
.
update
(
param_no_trainable
)
params_grads
=
self
.
backward
(
loss
,
startup_program
=
startup_program
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录