Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6bd5b7ce
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6bd5b7ce
编写于
3月 15, 2023
作者:
T
thunder95
提交者:
GitHub
3月 15, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【PaddlePaddle Hackathon 4 No.35】为 Paddle 优化 prelu op 在 GPU 上的计算性能 (#51131)
* untracked files * prelu_perf * remove unused files * upd * fix bug
上级
12d43da9
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
89 addition
and
154 deletion
+89
-154
paddle/phi/kernels/funcs/index_impl.cu.h
paddle/phi/kernels/funcs/index_impl.cu.h
+1
-1
paddle/phi/kernels/gpu/prelu_funcs.h
paddle/phi/kernels/gpu/prelu_funcs.h
+62
-136
paddle/phi/kernels/gpu/prelu_kernel.cu
paddle/phi/kernels/gpu/prelu_kernel.cu
+26
-17
未找到文件。
paddle/phi/kernels/funcs/index_impl.cu.h
浏览文件 @
6bd5b7ce
...
@@ -43,7 +43,7 @@ __global__ void VectorizedIndexKernel(T *out,
...
@@ -43,7 +43,7 @@ __global__ void VectorizedIndexKernel(T *out,
out
+
data_offset
,
&
result
[
0
],
BLOCK_NUM_X
*
VecSize
);
out
+
data_offset
,
&
result
[
0
],
BLOCK_NUM_X
*
VecSize
);
}
}
size_t
num
=
numel
-
data_offset
;
size_t
num
=
numel
-
data_offset
;
if
(
num
>
0
)
{
if
(
static_cast
<
int
>
(
num
)
>
0
)
{
kps
::
InitWithDataIndex
<
size_t
,
VecSize
,
1
>
(
&
args
[
0
],
data_offset
);
kps
::
InitWithDataIndex
<
size_t
,
VecSize
,
1
>
(
&
args
[
0
],
data_offset
);
kps
::
ElementwiseUnary
<
size_t
,
T
,
VecSize
,
1
,
Functor
>
(
kps
::
ElementwiseUnary
<
size_t
,
T
,
VecSize
,
1
,
Functor
>
(
&
result
[
0
],
&
args
[
0
],
func
);
&
result
[
0
],
&
args
[
0
],
func
);
...
...
paddle/phi/kernels/gpu/prelu_funcs.h
浏览文件 @
6bd5b7ce
...
@@ -28,157 +28,83 @@ inline static int PADDLE_GET_BLOCKS(const int N) {
...
@@ -28,157 +28,83 @@ inline static int PADDLE_GET_BLOCKS(const int N) {
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
PReluChannelFirstWiseKernel
(
const
T
*
input
,
struct
PReluChannelFirstWiseCUDAFunctor
{
const
T
*
alpha
,
const
T
*
x_
;
T
*
output
,
const
T
*
alpha_
;
size_t
channel_num
,
size_t
channel_num_
;
size_t
plane_size
,
size_t
plane_size_
;
size_t
numel
)
{
int
numel_
;
CUDA_KERNEL_LOOP
(
index
,
numel
)
{
size_t
temp
=
index
/
plane_size
;
HOSTDEVICE
inline
PReluChannelFirstWiseCUDAFunctor
(
const
T
*
x
,
size_t
channel_index
=
temp
%
channel_num
;
const
T
*
alpha
,
T
scale
=
alpha
[
channel_index
];
int
numel
,
T
x
=
input
[
index
];
size_t
channel_num
,
size_t
plane_size
)
:
x_
(
x
),
alpha_
(
alpha
),
numel_
(
numel
),
channel_num_
(
channel_num
),
plane_size_
(
plane_size
)
{}
HOSTDEVICE
inline
T
operator
()(
const
unsigned
int
n
)
const
{
T
zero
=
static_cast
<
T
>
(
0
);
T
zero
=
static_cast
<
T
>
(
0
);
output
[
index
]
=
(
x
>
zero
)
?
x
:
scale
*
x
;
size_t
temp
=
n
/
plane_size_
;
size_t
channel_index
=
temp
%
channel_num_
;
T
scale
=
alpha_
[
channel_index
];
T
x
=
x_
[
n
];
return
(
x
>
zero
)
?
x
:
scale
*
x
;
}
}
}
}
;
template
<
typename
T
>
template
<
typename
T
>
__global__
void
PReluChannelLastWiseKernel
(
const
T
*
input
,
struct
PReluChannelLastWiseCUDAFunctor
{
const
T
*
alpha
,
const
T
*
x_
;
T
*
output
,
const
T
*
alpha_
;
size_t
channel_num
,
size_t
channel_num_
;
size_t
numel
)
{
CUDA_KERNEL_LOOP
(
index
,
numel
)
{
size_t
channel_index
=
index
%
channel_num
;
T
scale
=
alpha
[
channel_index
];
T
x
=
input
[
index
];
T
zero
=
static_cast
<
T
>
(
0
);
output
[
index
]
=
(
x
>
zero
)
?
x
:
scale
*
x
;
}
}
template
<
typename
T
>
HOSTDEVICE
inline
PReluChannelLastWiseCUDAFunctor
(
const
T
*
x
,
__global__
void
PReluElementWiseKernel
(
const
T
*
input
,
const
T
*
alpha
,
const
T
*
alpha
,
size_t
channel_num
)
T
*
output
,
:
x_
(
x
),
alpha_
(
alpha
),
channel_num_
(
channel_num
)
{}
size_t
spatial_size
,
size_t
numel
)
{
CUDA_KERNEL_LOOP
(
index
,
numel
)
{
size_t
element_index
=
index
%
spatial_size
;
T
scale
=
alpha
[
element_index
];
T
x
=
input
[
index
];
T
zero
=
static_cast
<
T
>
(
0
);
output
[
index
]
=
(
x
>
zero
)
?
x
:
scale
*
x
;
}
}
template
<
typename
T
>
HOSTDEVICE
inline
T
operator
()(
const
unsigned
int
n
)
const
{
__global__
void
PReluScalarKernel
(
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
size_t
numel
)
{
T
scale
=
alpha
[
0
];
CUDA_KERNEL_LOOP
(
index
,
numel
)
{
T
x
=
input
[
index
];
T
zero
=
static_cast
<
T
>
(
0
);
T
zero
=
static_cast
<
T
>
(
0
);
output
[
index
]
=
(
x
>
zero
)
?
x
:
scale
*
x
;
size_t
channel_index
=
n
%
channel_num_
;
T
scale
=
alpha_
[
channel_index
];
T
x
=
x_
[
n
];
return
(
x
>
zero
)
?
x
:
scale
*
x
;
}
}
}
template
<
typename
T
>
class
PreluChannelWiseDirectCUDAFunctor
{
public:
void
operator
()(
gpuStream_t
stream
,
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
size_t
batch_size
,
size_t
channel
,
bool
channel_last
,
size_t
numel
);
};
};
template
<
typename
T
>
template
<
typename
T
>
class
PreluElementWiseDirectCUDAFunctor
{
struct
PreluElementWiseDirectCUDAFunctor
{
public:
const
T
*
x_
;
void
operator
()(
gpuStream_t
stream
,
const
T
*
alpha_
;
const
T
*
input
,
size_t
spatial_size_
;
const
T
*
alpha
,
T
*
output
,
size_t
batch_size
,
size_t
numel
);
};
template
<
typename
T
>
HOSTDEVICE
inline
PreluElementWiseDirectCUDAFunctor
(
const
T
*
x
,
class
PreluScalarDirectCUDAFunctor
{
const
T
*
alpha
,
public:
size_t
spatial_size
)
void
operator
()(
gpuStream_t
stream
,
:
x_
(
x
),
alpha_
(
alpha
),
spatial_size_
(
spatial_size
)
{}
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
size_t
numel
);
};
template
<
typename
T
>
HOSTDEVICE
inline
T
operator
()(
const
unsigned
int
n
)
const
{
void
PreluChannelWiseDirectCUDAFunctor
<
T
>::
operator
()(
gpuStream_t
stream
,
T
zero
=
static_cast
<
T
>
(
0
);
const
T
*
input
,
size_t
element_index
=
n
%
spatial_size_
;
const
T
*
alpha
,
T
scale
=
alpha_
[
element_index
];
T
*
output
,
T
x
=
x_
[
n
];
size_t
batch_size
,
return
(
x
>
zero
)
?
x
:
scale
*
x
;
size_t
channel
,
bool
channel_last
,
size_t
numel
)
{
if
(
channel_last
)
{
PReluChannelLastWiseKernel
<<<
PADDLE_GET_BLOCKS
(
numel
),
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
channel
,
numel
);
}
else
{
PReluChannelFirstWiseKernel
<<<
PADDLE_GET_BLOCKS
(
numel
),
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
channel
,
numel
/
batch_size
/
channel
,
numel
);
}
}
}
};
template
<
typename
T
>
void
PreluElementWiseDirectCUDAFunctor
<
T
>::
operator
()(
gpuStream_t
stream
,
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
size_t
batch_size
,
size_t
numel
)
{
PReluElementWiseKernel
<<<
PADDLE_GET_BLOCKS
(
numel
),
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
numel
/
batch_size
,
numel
);
}
template
<
typename
T
>
template
<
typename
T
>
void
PreluScalarDirectCUDAFunctor
<
T
>::
operator
()(
gpuStream_t
stream
,
struct
PreluScalarDirectCUDAFunctor
{
const
T
*
input
,
const
T
*
scalar_
;
const
T
*
alpha
,
HOSTDEVICE
inline
PreluScalarDirectCUDAFunctor
(
const
T
*
scalar
)
T
*
output
,
:
scalar_
(
scalar
)
{}
size_t
numel
)
{
HOSTDEVICE
inline
T
operator
()(
const
T
x
)
const
{
PReluScalarKernel
<<<
PADDLE_GET_BLOCKS
(
numel
),
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
T
zero
=
static_cast
<
T
>
(
0
);
input
,
alpha
,
output
,
numel
);
return
(
x
>
zero
)
?
x
:
scalar_
[
0
]
*
x
;
}
}
};
template
class
PreluChannelWiseDirectCUDAFunctor
<
float
>;
template
class
PreluChannelWiseDirectCUDAFunctor
<
phi
::
dtype
::
float16
>;
template
class
PreluChannelWiseDirectCUDAFunctor
<
double
>;
template
class
PreluElementWiseDirectCUDAFunctor
<
float
>;
template
class
PreluElementWiseDirectCUDAFunctor
<
phi
::
dtype
::
float16
>;
template
class
PreluElementWiseDirectCUDAFunctor
<
double
>;
template
class
PreluScalarDirectCUDAFunctor
<
float
>;
template
class
PreluScalarDirectCUDAFunctor
<
phi
::
dtype
::
float16
>;
template
class
PreluScalarDirectCUDAFunctor
<
double
>;
}
// namespace phi
}
// namespace phi
paddle/phi/kernels/gpu/prelu_kernel.cu
浏览文件 @
6bd5b7ce
...
@@ -16,6 +16,8 @@
...
@@ -16,6 +16,8 @@
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
#include "paddle/phi/kernels/gpu/prelu_funcs.h"
#include "paddle/phi/kernels/gpu/prelu_funcs.h"
namespace
phi
{
namespace
phi
{
...
@@ -27,36 +29,43 @@ void PReluKernel(const Context& dev_ctx,
...
@@ -27,36 +29,43 @@ void PReluKernel(const Context& dev_ctx,
const
std
::
string
&
data_format
,
const
std
::
string
&
data_format
,
const
std
::
string
&
mode
,
const
std
::
string
&
mode
,
DenseTensor
*
out
)
{
DenseTensor
*
out
)
{
dev_ctx
.
template
Alloc
<
T
>(
out
);
const
T
*
x_ptr
=
x
.
data
<
T
>
();
const
T
*
x_ptr
=
x
.
data
<
T
>
();
T
*
o_ptr
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
const
T
*
alpha_ptr
=
alpha
.
data
<
T
>
();
const
T
*
alpha_ptr
=
alpha
.
data
<
T
>
();
int
numel
=
x
.
numel
();
int
numel
=
x
.
numel
();
auto
dim
=
x
.
dims
();
auto
dim
=
x
.
dims
();
auto
x_rank
=
dim
.
size
();
auto
x_rank
=
dim
.
size
();
VLOG
(
4
)
<<
"dim[0]:"
<<
dim
[
0
]
<<
", dim[1]:"
<<
dim
[
1
]
<<
", dim["
VLOG
(
4
)
<<
"dim[0]:"
<<
dim
[
0
]
<<
", dim[1]:"
<<
dim
[
1
]
<<
", dim["
<<
x_rank
-
1
<<
"]:"
<<
dim
[
x_rank
-
1
]
<<
", numel:"
<<
numel
;
<<
x_rank
-
1
<<
"]:"
<<
dim
[
x_rank
-
1
]
<<
", numel:"
<<
numel
<<
", mode:"
<<
mode
<<
", format:"
<<
data_format
;
if
(
mode
==
"channel"
)
{
if
(
mode
==
"channel"
)
{
bool
channel_last
=
data_format
==
"NHWC"
;
bool
channel_last
=
data_format
==
"NHWC"
;
size_t
channel
=
channel_last
?
dim
[
x_rank
-
1
]
:
dim
[
1
];
size_t
channel
=
channel_last
?
dim
[
x_rank
-
1
]
:
dim
[
1
];
PreluChannelWiseDirectCUDAFunctor
<
T
>
prelu_channel_wise
;
if
(
channel_last
)
{
prelu_channel_wise
(
dev_ctx
.
stream
(),
auto
func
=
PReluChannelLastWiseCUDAFunctor
<
T
>
(
x_ptr
,
alpha_ptr
,
channel
);
x_ptr
,
phi
::
IndexKernel
<
T
,
PReluChannelLastWiseCUDAFunctor
<
T
>>
(
alpha_ptr
,
dev_ctx
,
out
,
func
);
o_ptr
,
}
else
{
dim
[
0
],
size_t
plane_size
=
numel
/
dim
[
0
]
/
channel
;
channel
,
auto
func
=
PReluChannelFirstWiseCUDAFunctor
<
T
>
(
channel_last
,
x_ptr
,
alpha_ptr
,
numel
,
channel
,
plane_size
);
numel
);
phi
::
IndexKernel
<
T
,
PReluChannelFirstWiseCUDAFunctor
<
T
>>
(
dev_ctx
,
out
,
func
);
}
}
else
if
(
mode
==
"element"
)
{
}
else
if
(
mode
==
"element"
)
{
PreluElementWiseDirectCUDAFunctor
<
T
>
prelu_element_wise
;
size_t
spatial_size
=
numel
/
dim
[
0
];
prelu_element_wise
(
auto
func
=
dev_ctx
.
stream
(),
x_ptr
,
alpha_ptr
,
o_ptr
,
dim
[
0
],
numel
);
PreluElementWiseDirectCUDAFunctor
<
T
>
(
x_ptr
,
alpha_ptr
,
spatial_size
);
phi
::
IndexKernel
<
T
,
PreluElementWiseDirectCUDAFunctor
<
T
>>
(
dev_ctx
,
out
,
func
);
}
else
{
}
else
{
PreluScalarDirectCUDAFunctor
<
T
>
prelu_scalar
;
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
x
};
prelu_scalar
(
dev_ctx
.
stream
(),
x_ptr
,
alpha_ptr
,
o_ptr
,
numel
);
std
::
vector
<
DenseTensor
*>
outs
=
{
out
};
auto
func
=
PreluScalarDirectCUDAFunctor
<
T
>
(
alpha_ptr
);
phi
::
funcs
::
ElementwiseKernel
<
T
>
(
dev_ctx
,
ins
,
&
outs
,
func
);
}
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录