Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6b52ec51
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6b52ec51
编写于
2月 28, 2017
作者:
W
wangkuiyi
提交者:
GitHub
2月 28, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1490 from wangkuiyi/imdb-dataset
Add IMDB dataset without need of NLTK
上级
c6bfb712
eb1e34d2
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
170 addition
and
0 deletion
+170
-0
python/paddle/v2/dataset/common.py
python/paddle/v2/dataset/common.py
+7
-0
python/paddle/v2/dataset/imdb.py
python/paddle/v2/dataset/imdb.py
+120
-0
python/paddle/v2/dataset/tests/imdb_test.py
python/paddle/v2/dataset/tests/imdb_test.py
+43
-0
未找到文件。
python/paddle/v2/dataset/common.py
浏览文件 @
6b52ec51
...
...
@@ -32,3 +32,10 @@ def download(url, module_name, md5sum):
shutil
.
copyfileobj
(
r
.
raw
,
f
)
return
filename
def
dict_add
(
a_dict
,
ele
):
if
ele
in
a_dict
:
a_dict
[
ele
]
+=
1
else
:
a_dict
[
ele
]
=
1
python/paddle/v2/dataset/imdb.py
0 → 100644
浏览文件 @
6b52ec51
# /usr/bin/env python
# -*- coding:utf-8 -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
IMDB dataset: http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz
"""
import
paddle.v2.dataset.common
import
tarfile
import
Queue
import
re
import
string
import
threading
__all__
=
[
'build_dict'
,
'train'
,
'test'
]
URL
=
'http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz'
MD5
=
'7c2ac02c03563afcf9b574c7e56c153a'
# Read files that match pattern. Tokenize and yield each file.
def
tokenize
(
pattern
):
with
tarfile
.
open
(
paddle
.
v2
.
dataset
.
common
.
download
(
URL
,
'imdb'
,
MD5
))
as
tarf
:
# Note that we should use tarfile.next(), which does
# sequential access of member files, other than
# tarfile.extractfile, which does random access and might
# destroy hard disks.
tf
=
tarf
.
next
()
while
tf
!=
None
:
if
bool
(
pattern
.
match
(
tf
.
name
)):
# newline and punctuations removal and ad-hoc tokenization.
yield
tarf
.
extractfile
(
tf
).
read
().
rstrip
(
"
\n\r
"
).
translate
(
None
,
string
.
punctuation
).
lower
().
split
()
tf
=
tarf
.
next
()
def
build_dict
(
pattern
,
cutoff
):
word_freq
=
{}
for
doc
in
tokenize
(
pattern
):
for
word
in
doc
:
paddle
.
v2
.
dataset
.
common
.
dict_add
(
word_freq
,
word
)
# Not sure if we should prune less-frequent words here.
word_freq
=
filter
(
lambda
x
:
x
[
1
]
>
cutoff
,
word_freq
.
items
())
dictionary
=
sorted
(
word_freq
,
key
=
lambda
x
:
(
-
x
[
1
],
x
[
0
]))
words
,
_
=
list
(
zip
(
*
dictionary
))
word_idx
=
dict
(
zip
(
words
,
xrange
(
len
(
words
))))
word_idx
[
'<unk>'
]
=
len
(
words
)
return
word_idx
def
reader_creator
(
pos_pattern
,
neg_pattern
,
word_idx
,
buffer_size
):
UNK
=
word_idx
[
'<unk>'
]
qs
=
[
Queue
.
Queue
(
maxsize
=
buffer_size
),
Queue
.
Queue
(
maxsize
=
buffer_size
)]
def
load
(
pattern
,
queue
):
for
doc
in
tokenize
(
pattern
):
queue
.
put
(
doc
)
queue
.
put
(
None
)
def
reader
():
# Creates two threads that loads positive and negative samples
# into qs.
t0
=
threading
.
Thread
(
target
=
load
,
args
=
(
pos_pattern
,
qs
[
0
],
))
t0
.
daemon
=
True
t0
.
start
()
t1
=
threading
.
Thread
(
target
=
load
,
args
=
(
neg_pattern
,
qs
[
1
],
))
t1
.
daemon
=
True
t1
.
start
()
# Read alternatively from qs[0] and qs[1].
i
=
0
doc
=
qs
[
i
].
get
()
while
doc
!=
None
:
yield
[
word_idx
.
get
(
w
,
UNK
)
for
w
in
doc
],
i
%
2
i
+=
1
doc
=
qs
[
i
%
2
].
get
()
# If any queue is empty, reads from the other queue.
i
+=
1
doc
=
qs
[
i
%
2
].
get
()
while
doc
!=
None
:
yield
[
word_idx
.
get
(
w
,
UNK
)
for
w
in
doc
],
i
%
2
doc
=
qs
[
i
%
2
].
get
()
return
reader
()
def
train
(
word_idx
):
return
reader_creator
(
re
.
compile
(
"aclImdb/train/pos/.*\.txt$"
),
re
.
compile
(
"aclImdb/train/neg/.*\.txt$"
),
word_idx
,
1000
)
def
test
(
word_idx
):
return
reader_creator
(
re
.
compile
(
"aclImdb/test/pos/.*\.txt$"
),
re
.
compile
(
"aclImdb/test/neg/.*\.txt$"
),
word_idx
,
1000
)
python/paddle/v2/dataset/tests/imdb_test.py
0 → 100644
浏览文件 @
6b52ec51
import
paddle.v2.dataset.imdb
import
unittest
import
re
TRAIN_POS_PATTERN
=
re
.
compile
(
"aclImdb/train/pos/.*\.txt$"
)
TRAIN_NEG_PATTERN
=
re
.
compile
(
"aclImdb/train/neg/.*\.txt$"
)
TRAIN_PATTERN
=
re
.
compile
(
"aclImdb/train/.*\.txt$"
)
TEST_POS_PATTERN
=
re
.
compile
(
"aclImdb/test/pos/.*\.txt$"
)
TEST_NEG_PATTERN
=
re
.
compile
(
"aclImdb/test/neg/.*\.txt$"
)
TEST_PATTERN
=
re
.
compile
(
"aclImdb/test/.*\.txt$"
)
class
TestIMDB
(
unittest
.
TestCase
):
word_idx
=
None
def
test_build_dict
(
self
):
if
self
.
word_idx
==
None
:
self
.
word_idx
=
paddle
.
v2
.
dataset
.
imdb
.
build_dict
(
TRAIN_PATTERN
,
150
)
self
.
assertEqual
(
len
(
self
.
word_idx
),
7036
)
def
check_dataset
(
self
,
dataset
,
expected_size
):
if
self
.
word_idx
==
None
:
self
.
word_idx
=
paddle
.
v2
.
dataset
.
imdb
.
build_dict
(
TRAIN_PATTERN
,
150
)
sum
=
0
for
l
in
dataset
(
self
.
word_idx
):
self
.
assertEqual
(
l
[
1
],
sum
%
2
)
sum
+=
1
self
.
assertEqual
(
sum
,
expected_size
)
def
test_train
(
self
):
self
.
check_dataset
(
paddle
.
v2
.
dataset
.
imdb
.
train
,
25000
)
def
test_test
(
self
):
self
.
check_dataset
(
paddle
.
v2
.
dataset
.
imdb
.
test
,
25000
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录