Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6a93f0f3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6a93f0f3
编写于
6月 05, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add the calculation implementation of GemmConvGradFilterFunction
上级
afbe556e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
99 addition
and
37 deletion
+99
-37
paddle/function/ConvOp.h
paddle/function/ConvOp.h
+16
-0
paddle/function/GemmConvOp.cpp
paddle/function/GemmConvOp.cpp
+71
-19
paddle/function/GemmFunctor.h
paddle/function/GemmFunctor.h
+12
-18
未找到文件。
paddle/function/ConvOp.h
浏览文件 @
6a93f0f3
...
@@ -89,11 +89,13 @@ public:
...
@@ -89,11 +89,13 @@ public:
protected:
protected:
std
::
vector
<
size_t
>
strides_
;
std
::
vector
<
size_t
>
strides_
;
std
::
vector
<
size_t
>
paddings_
;
std
::
vector
<
size_t
>
paddings_
;
/// Group size, refer to grouped convolution in
/// Group size, refer to grouped convolution in
/// Alex Krizhevsky's paper: when group=2, the first half of the
/// Alex Krizhevsky's paper: when group=2, the first half of the
/// filters are only connected to the first half of the input channels,
/// filters are only connected to the first half of the input channels,
/// and the second half only connected to the second half.
/// and the second half only connected to the second half.
size_t
groups_
;
size_t
groups_
;
inline
int
strideH
()
const
{
return
strides_
[
0
];
}
inline
int
strideH
()
const
{
return
strides_
[
0
];
}
inline
int
strideW
()
const
{
return
strides_
[
1
];
}
inline
int
strideW
()
const
{
return
strides_
[
1
];
}
...
@@ -101,6 +103,20 @@ protected:
...
@@ -101,6 +103,20 @@ protected:
inline
int
paddingH
()
const
{
return
paddings_
[
0
];
}
inline
int
paddingH
()
const
{
return
paddings_
[
0
];
}
inline
int
paddingW
()
const
{
return
paddings_
[
1
];
}
inline
int
paddingW
()
const
{
return
paddings_
[
1
];
}
// A temporary memory in convolution calculation.
MemoryHandlePtr
memory_
;
template
<
DeviceType
Device
>
void
resizeBuffer
(
size_t
newSize
)
{
if
(
!
memory_
||
newSize
*
sizeof
(
real
)
>
memory_
->
getAllocSize
())
{
if
(
Device
==
DEVICE_TYPE_CPU
)
{
memory_
=
std
::
make_shared
<
CpuMemoryHandle
>
(
newSize
*
sizeof
(
real
));
}
else
{
memory_
=
std
::
make_shared
<
GpuMemoryHandle
>
(
newSize
*
sizeof
(
real
));
}
}
}
};
};
}
// namespace paddle
}
// namespace paddle
paddle/function/GemmConvOp.cpp
浏览文件 @
6a93f0f3
...
@@ -110,7 +110,7 @@ public:
...
@@ -110,7 +110,7 @@ public:
size_t
size
=
inputChannels
/
groups_
*
filterHeight
*
filterWidth
*
size_t
size
=
inputChannels
/
groups_
*
filterHeight
*
filterWidth
*
outputHeight
*
outputWidth
;
outputHeight
*
outputWidth
;
resizeBuffer
(
size
);
resizeBuffer
<
Device
>
(
size
);
real
*
colData
=
reinterpret_cast
<
real
*>
(
memory_
->
getBuf
());
real
*
colData
=
reinterpret_cast
<
real
*>
(
memory_
->
getBuf
());
Im2ColFunctor
<
Device
,
real
>
im2col
;
Im2ColFunctor
<
Device
,
real
>
im2col
;
...
@@ -120,7 +120,7 @@ public:
...
@@ -120,7 +120,7 @@ public:
(
outputChannels
/
groups_
)
*
outputHeight
*
outputWidth
;
(
outputChannels
/
groups_
)
*
outputHeight
*
outputWidth
;
size_t
filterOffset
=
inputs
[
1
].
shape
().
getElements
()
/
groups_
;
size_t
filterOffset
=
inputs
[
1
].
shape
().
getElements
()
/
groups_
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
for
(
in
t
g
=
0
;
g
<
groups_
;
g
++
)
{
for
(
size_
t
g
=
0
;
g
<
groups_
;
g
++
)
{
im2col
(
inputData
+
g
*
inputOffset
,
im2col
(
inputData
+
g
*
inputOffset
,
inputChannels
/
groups_
,
inputChannels
/
groups_
,
inputHeight
,
inputHeight
,
...
@@ -138,7 +138,9 @@ public:
...
@@ -138,7 +138,9 @@ public:
int
M
=
outputChannels
/
groups_
;
int
M
=
outputChannels
/
groups_
;
int
N
=
outputHeight
*
outputWidth
;
int
N
=
outputHeight
*
outputWidth
;
int
K
=
inputChannels
/
groups_
*
filterHeight
*
filterWidth
;
int
K
=
inputChannels
/
groups_
*
filterHeight
*
filterWidth
;
gemm
(
M
,
gemm
(
CblasNoTrans
,
CblasNoTrans
,
M
,
N
,
N
,
K
,
K
,
1.0
f
,
1.0
f
,
...
@@ -154,19 +156,6 @@ public:
...
@@ -154,19 +156,6 @@ public:
outputData
+=
outputChannels
*
outputHeight
*
outputWidth
;
outputData
+=
outputChannels
*
outputHeight
*
outputWidth
;
}
}
}
}
void
resizeBuffer
(
size_t
newSize
)
{
if
(
!
memory_
||
newSize
*
sizeof
(
real
)
>
memory_
->
getAllocSize
())
{
if
(
Device
==
DEVICE_TYPE_CPU
)
{
memory_
=
std
::
make_shared
<
CpuMemoryHandle
>
(
newSize
*
sizeof
(
real
));
}
else
{
memory_
=
std
::
make_shared
<
GpuMemoryHandle
>
(
newSize
*
sizeof
(
real
));
}
}
}
private:
MemoryHandlePtr
memory_
;
};
};
/*
/*
...
@@ -202,10 +191,73 @@ public:
...
@@ -202,10 +191,73 @@ public:
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
const
TensorShape
&
outputGrad
=
inputs
[
0
].
shape
();
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ASSIGN_TO
);
const
TensorShape
&
output
=
inputs
[
0
].
shape
();
const
TensorShape
&
input
=
inputs
[
1
].
shape
();
const
TensorShape
&
input
=
inputs
[
1
].
shape
();
const
TensorShape
&
filterGrad
=
outputs
[
0
].
shape
();
const
TensorShape
&
filter
=
outputs
[
0
].
shape
();
check
(
input
,
filterGrad
,
outputGrad
);
check
(
input
,
filter
,
output
);
size_t
batchSize
=
input
[
0
];
size_t
inputChannels
=
input
[
1
];
size_t
inputHeight
=
input
[
2
];
size_t
inputWidth
=
input
[
3
];
size_t
filterHeight
=
filter
[
2
];
size_t
filterWidth
=
filter
[
3
];
size_t
outputChannels
=
output
[
1
];
size_t
outputHeight
=
output
[
2
];
size_t
outputWidth
=
output
[
3
];
real
*
outputGrad
=
inputs
[
0
].
data
<
real
>
();
real
*
inputData
=
inputs
[
1
].
data
<
real
>
();
real
*
filterGrad
=
outputs
[
0
].
data
<
real
>
();
size_t
size
=
inputChannels
/
groups_
*
filterHeight
*
filterWidth
*
outputHeight
*
outputWidth
;
resizeBuffer
<
Device
>
(
size
);
real
*
colData
=
reinterpret_cast
<
real
*>
(
memory_
->
getBuf
());
Im2ColFunctor
<
Device
,
real
>
im2col
;
GemmFunctor
<
Device
,
real
>
gemm
;
size_t
inputOffset
=
(
inputChannels
/
groups_
)
*
inputHeight
*
inputWidth
;
size_t
outputOffset
=
(
outputChannels
/
groups_
)
*
outputHeight
*
outputWidth
;
size_t
filterOffset
=
filter
.
getElements
()
/
groups_
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
for
(
size_t
g
=
0
;
g
<
groups_
;
g
++
)
{
im2col
(
inputData
+
g
*
inputOffset
,
inputChannels
/
groups_
,
inputHeight
,
inputWidth
,
filterHeight
,
filterWidth
,
strideH
(),
strideW
(),
paddingH
(),
paddingW
(),
outputHeight
,
outputWidth
,
colData
);
int
M
=
outputChannels
/
groups_
;
int
K
=
outputHeight
*
outputWidth
;
int
N
=
inputChannels
/
groups_
*
filterHeight
*
filterWidth
;
gemm
(
CblasNoTrans
,
CblasTrans
,
M
,
N
,
K
,
1.0
f
,
outputGrad
+
g
*
outputOffset
,
K
,
colData
,
K
,
1.0
f
,
filterGrad
+
g
*
filterOffset
,
N
);
}
}
inputData
+=
inputChannels
*
inputHeight
*
inputWidth
;
outputGrad
+=
outputChannels
*
outputHeight
*
outputWidth
;
}
}
};
};
...
...
paddle/function/GemmFunctor.h
浏览文件 @
6a93f0f3
...
@@ -26,7 +26,9 @@ namespace paddle {
...
@@ -26,7 +26,9 @@ namespace paddle {
template
<
DeviceType
Device
,
class
T
>
template
<
DeviceType
Device
,
class
T
>
class
GemmFunctor
{
class
GemmFunctor
{
public:
public:
void
operator
()(
const
int
M
,
void
operator
()(
const
CBLAS_TRANSPOSE
transA
,
const
CBLAS_TRANSPOSE
TransB
,
const
int
M
,
const
int
N
,
const
int
N
,
const
int
K
,
const
int
K
,
const
T
alpha
,
const
T
alpha
,
...
@@ -42,7 +44,9 @@ public:
...
@@ -42,7 +44,9 @@ public:
template
<
class
T
>
template
<
class
T
>
class
GemmFunctor
<
DEVICE_TYPE_CPU
,
T
>
{
class
GemmFunctor
<
DEVICE_TYPE_CPU
,
T
>
{
public:
public:
void
operator
()(
const
int
M
,
void
operator
()(
const
CBLAS_TRANSPOSE
transA
,
const
CBLAS_TRANSPOSE
TransB
,
const
int
M
,
const
int
N
,
const
int
N
,
const
int
K
,
const
int
K
,
const
T
alpha
,
const
T
alpha
,
...
@@ -53,26 +57,16 @@ public:
...
@@ -53,26 +57,16 @@ public:
const
T
beta
,
const
T
beta
,
T
*
C
,
T
*
C
,
const
int
ldc
)
{
const
int
ldc
)
{
gemm
<
T
>
(
CblasNoTrans
,
gemm
<
T
>
(
transA
,
TransB
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
CblasNoTrans
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
}
}
};
};
template
<
class
T
>
template
<
class
T
>
class
GemmFunctor
<
DEVICE_TYPE_GPU
,
T
>
{
class
GemmFunctor
<
DEVICE_TYPE_GPU
,
T
>
{
public:
public:
void
operator
()(
const
int
M
,
void
operator
()(
const
CBLAS_TRANSPOSE
transA
,
const
CBLAS_TRANSPOSE
TransB
,
const
int
M
,
const
int
N
,
const
int
N
,
const
int
K
,
const
int
K
,
const
T
alpha
,
const
T
alpha
,
...
@@ -84,9 +78,9 @@ public:
...
@@ -84,9 +78,9 @@ public:
T
*
C
,
T
*
C
,
const
int
ldc
)
{
const
int
ldc
)
{
hl_matrix_mul
((
T
*
)
A
,
hl_matrix_mul
((
T
*
)
A
,
HPPL_OP_N
,
transA
==
CblasNoTrans
?
HPPL_OP_N
:
HPPL_OP_T
,
(
T
*
)
B
,
(
T
*
)
B
,
HPPL_OP_N
,
TransB
==
CblasNoTrans
?
HPPL_OP_N
:
HPPL_OP_T
,
C
,
C
,
M
,
M
,
N
,
N
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录