Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6a6a3ff1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6a6a3ff1
编写于
11月 08, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
11月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
argsort support n > 16384 and add argsort_grad op for xpu, test=kunlun (#47701)
上级
793c35ef
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
165 addition
and
192 deletion
+165
-192
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+4
-0
paddle/phi/kernels/xpu/argsort_grad_kernel.cc
paddle/phi/kernels/xpu/argsort_grad_kernel.cc
+110
-0
paddle/phi/kernels/xpu/argsort_kernel.cc
paddle/phi/kernels/xpu/argsort_kernel.cc
+48
-192
python/paddle/fluid/tests/unittests/xpu/test_argsort_op_xpu.py
...n/paddle/fluid/tests/unittests/xpu/test_argsort_op_xpu.py
+3
-0
未找到文件。
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
6a6a3ff1
...
@@ -38,6 +38,10 @@ XPUOpMap& get_kl2_ops() {
...
@@ -38,6 +38,10 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"arg_max"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"arg_max"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"argsort_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"argsort"
,
{
"argsort"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
...
...
paddle/phi/kernels/xpu/argsort_grad_kernel.cc
0 → 100644
浏览文件 @
6a6a3ff1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/argsort_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ArgsortGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
indices
,
const
DenseTensor
&
input
,
const
DenseTensor
&
out_grad
,
int
axis
,
bool
descending
,
DenseTensor
*
in_grad
)
{
auto
in_dims
=
indices
.
dims
();
axis
=
(
axis
<
0
)
?
(
in_dims
.
size
()
+
axis
)
:
axis
;
dev_ctx
.
template
Alloc
<
T
>(
in_grad
);
int
r
=
xpu
::
constant
<
T
>
(
dev_ctx
.
x_context
(),
in_grad
->
data
<
T
>
(),
in_grad
->
numel
(),
static_cast
<
T
>
(
0.0
));
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"constant"
);
if
(
out_grad
.
numel
()
==
0
)
return
;
bool
is_need_transpose
=
true
;
if
(
axis
==
-
1
||
axis
+
1
==
in_dims
.
size
())
{
is_need_transpose
=
false
;
}
int
len_before
=
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
0
,
axis
));
int
len_after
=
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
axis
+
1
,
in_dims
.
size
()));
int
m
=
len_before
*
len_after
;
int
n
=
in_dims
[
axis
];
int
len
=
m
*
n
;
std
::
vector
<
int
>
permute_vec
{
0
,
2
,
1
};
std
::
vector
<
int
>
data_shape
{
len_before
,
n
,
len_after
};
std
::
vector
<
int
>
data_shape_trans
{
len_before
,
len_after
,
n
};
const
int64_t
*
indices_data
=
indices
.
data
<
int64_t
>
();
const
T
*
out_grad_data
=
out_grad
.
data
<
T
>
();
T
*
in_grad_data
=
in_grad
->
data
<
T
>
();
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
if
(
is_need_transpose
)
{
int64_t
*
indices_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
len
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
indices_data_trans
);
T
*
out_grad_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
out_grad_data_trans
);
T
*
in_grad_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
in_grad_data_trans
);
r
=
xpu
::
transpose
<
int64_t
>
(
dev_ctx
.
x_context
(),
indices_data
,
indices_data_trans
,
data_shape
,
permute_vec
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
out_grad_data
,
out_grad_data_trans
,
data_shape
,
permute_vec
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
indices_data
=
indices_data_trans
;
out_grad_data
=
out_grad_data_trans
;
in_grad_data
=
in_grad_data_trans
;
}
r
=
xpu
::
sort_grad
<
T
,
int64_t
>
(
dev_ctx
.
x_context
(),
out_grad_data
,
indices_data
,
in_grad_data
,
m
,
n
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"sort_grad"
);
if
(
is_need_transpose
)
{
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
in_grad_data
,
in_grad
->
data
<
T
>
(),
data_shape_trans
,
permute_vec
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
argsort_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
ArgsortGradKernel
,
float
,
int
,
int64_t
)
{}
paddle/phi/kernels/xpu/argsort_kernel.cc
浏览文件 @
6a6a3ff1
...
@@ -14,171 +14,12 @@
...
@@ -14,171 +14,12 @@
#include "paddle/phi/kernels/argsort_kernel.h"
#include "paddle/phi/kernels/argsort_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
namespace
phi
{
const
int
XPU_SORT_MAX_SIZE
=
16384
;
template
<
typename
T
,
typename
TID
>
static
inline
void
xpu_argsort
(
xpu
::
Context
*
ctx
,
const
T
*
input_data
,
T
*
output_data
,
TID
*
indices_data
,
int
m
,
int
n
,
bool
descending
)
{
int
ret
=
xpu
::
sort
(
ctx
,
input_data
,
output_data
,
indices_data
,
m
,
n
,
descending
);
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
errors
::
External
(
"XPU sort kernel return wrong value[%d %s]."
,
ret
,
XPUAPIErrorMsg
[
ret
]));
}
template
<
typename
T
>
static
inline
void
xpu_transpose
(
xpu
::
Context
*
ctx
,
const
T
*
x
,
T
*
y
,
const
std
::
vector
<
int
>&
xshape
,
const
std
::
vector
<
int
>&
permute
)
{
int
ret
=
xpu
::
transpose
(
ctx
,
x
,
y
,
xshape
,
permute
);
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
errors
::
External
(
"XPU transpose kernel return wrong value[%d %s]"
,
ret
,
XPUAPIErrorMsg
[
ret
]));
}
template
<
typename
TX
,
typename
TY
>
static
inline
void
xpu_cast
(
xpu
::
Context
*
ctx
,
const
TX
*
x
,
TY
*
y
,
int
len
)
{
int
ret
=
xpu
::
cast_v2
(
ctx
,
x
,
y
,
len
);
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
errors
::
External
(
"XPU cast kernel return wrong value[%d %s]"
,
ret
,
XPUAPIErrorMsg
[
ret
]));
}
template
<
typename
T
,
bool
VALUE_NEED_CAST
=
false
,
bool
INDEX_NEED_CAST
=
false
>
struct
XPUArgsort
{
void
operator
()(
xpu
::
Context
*
ctx
,
const
T
*
input_data
,
T
*
output_data
,
int64_t
*
indices_data
,
const
std
::
vector
<
int
>&
data_shape
,
const
std
::
vector
<
int
>&
permute
,
bool
descending
)
{
xpu
::
ctx_guard
RAII_GUARD
(
ctx
);
int
m
=
data_shape
[
0
]
*
data_shape
[
2
];
int
n
=
data_shape
[
1
];
int
len
=
data_shape
[
0
]
*
data_shape
[
1
]
*
data_shape
[
2
];
std
::
vector
<
int
>
trans_data_shape
{
data_shape
[
0
],
data_shape
[
2
],
data_shape
[
1
]};
T
*
input_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
T
*
output_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
int64_t
*
indices_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
len
);
xpu_transpose
(
ctx
,
input_data
,
input_data_trans
,
data_shape
,
permute
);
xpu_argsort
(
ctx
,
input_data_trans
,
output_data_trans
,
indices_data_trans
,
m
,
n
,
descending
);
xpu_transpose
(
ctx
,
output_data_trans
,
output_data
,
trans_data_shape
,
permute
);
xpu_transpose
(
ctx
,
indices_data_trans
,
indices_data
,
trans_data_shape
,
permute
);
}
};
template
<
typename
T
>
struct
XPUArgsort
<
T
,
false
,
true
>
{
void
operator
()(
xpu
::
Context
*
ctx
,
const
T
*
input_data
,
T
*
output_data
,
int64_t
*
indices_data
,
const
std
::
vector
<
int
>&
data_shape
,
const
std
::
vector
<
int
>&
permute
,
bool
descending
)
{
xpu
::
ctx_guard
RAII_GUARD
(
ctx
);
int
m
=
data_shape
[
0
]
*
data_shape
[
2
];
int
n
=
data_shape
[
1
];
int
len
=
data_shape
[
0
]
*
data_shape
[
1
]
*
data_shape
[
2
];
std
::
vector
<
int
>
trans_data_shape
{
data_shape
[
0
],
data_shape
[
2
],
data_shape
[
1
]};
T
*
input_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
T
*
output_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
int
*
indices_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
len
);
int64_t
*
cast_data_int64
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
len
);
xpu_transpose
(
ctx
,
input_data
,
input_data_trans
,
data_shape
,
permute
);
xpu_argsort
(
ctx
,
input_data_trans
,
output_data_trans
,
indices_data_trans
,
m
,
n
,
descending
);
xpu_transpose
(
ctx
,
output_data_trans
,
output_data
,
trans_data_shape
,
permute
);
xpu_cast
(
ctx
,
indices_data_trans
,
cast_data_int64
,
len
);
xpu_transpose
(
ctx
,
cast_data_int64
,
indices_data
,
trans_data_shape
,
permute
);
}
};
template
<
>
struct
XPUArgsort
<
int64_t
,
true
,
true
>
{
void
operator
()(
xpu
::
Context
*
ctx
,
const
int64_t
*
input_data
,
int64_t
*
output_data
,
int64_t
*
indices_data
,
const
std
::
vector
<
int
>&
data_shape
,
const
std
::
vector
<
int
>&
permute
,
bool
descending
)
{
xpu
::
ctx_guard
RAII_GUARD
(
ctx
);
int
m
=
data_shape
[
0
]
*
data_shape
[
2
];
int
n
=
data_shape
[
1
];
int
len
=
data_shape
[
0
]
*
data_shape
[
1
]
*
data_shape
[
2
];
std
::
vector
<
int
>
trans_data_shape
{
data_shape
[
0
],
data_shape
[
2
],
data_shape
[
1
]};
int
*
input_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
len
);
int
*
output_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
len
);
int
*
indices_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
len
);
int
*
cast_data_int
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
len
);
int64_t
*
cast_data_int64
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
len
);
xpu_cast
(
ctx
,
input_data
,
cast_data_int
,
len
);
xpu_transpose
(
ctx
,
cast_data_int
,
input_data_trans
,
data_shape
,
permute
);
xpu_argsort
(
ctx
,
input_data_trans
,
output_data_trans
,
indices_data_trans
,
m
,
n
,
descending
);
xpu_cast
(
ctx
,
output_data_trans
,
cast_data_int64
,
len
);
xpu_transpose
(
ctx
,
cast_data_int64
,
output_data
,
trans_data_shape
,
permute
);
xpu_cast
(
ctx
,
indices_data_trans
,
cast_data_int64
,
len
);
xpu_transpose
(
ctx
,
cast_data_int64
,
indices_data
,
trans_data_shape
,
permute
);
}
};
template
<
typename
T
,
typename
Context
>
template
<
typename
T
,
typename
Context
>
void
ArgsortKernel
(
const
Context
&
dev_ctx
,
void
ArgsortKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
input
,
...
@@ -190,52 +31,67 @@ void ArgsortKernel(const Context& dev_ctx,
...
@@ -190,52 +31,67 @@ void ArgsortKernel(const Context& dev_ctx,
axis
=
(
axis
<
0
)
?
(
in_dims
.
size
()
+
axis
)
:
axis
;
axis
=
(
axis
<
0
)
?
(
in_dims
.
size
()
+
axis
)
:
axis
;
int
n
=
in_dims
[
axis
];
int
n
=
in_dims
[
axis
];
PADDLE_ENFORCE_LT
(
n
,
XPU_SORT_MAX_SIZE
,
errors
::
InvalidArgument
(
"The axis dimension of Input should less than %d, but got %d."
,
XPU_SORT_MAX_SIZE
,
in_dims
[
axis
]));
auto
input_data
=
input
.
data
<
T
>
();
auto
input_data
=
input
.
data
<
T
>
();
auto
output_data
=
dev_ctx
.
template
Alloc
<
T
>(
output
);
auto
output_data
=
dev_ctx
.
template
Alloc
<
T
>(
output
);
auto
indices_data
=
dev_ctx
.
template
Alloc
<
int64_t
>(
indices
);
auto
indices_data
=
dev_ctx
.
template
Alloc
<
int64_t
>(
indices
);
bool
is_need_transpose
=
true
;
if
(
axis
==
-
1
||
axis
+
1
==
in_dims
.
size
())
{
is_need_transpose
=
false
;
}
int
len_before
=
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
0
,
axis
));
int
len_before
=
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
0
,
axis
));
int
len_after
=
int
len_after
=
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
axis
+
1
,
in_dims
.
size
()));
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
axis
+
1
,
in_dims
.
size
()));
bool
int64_need_cast
=
int
m
=
len_before
*
len_after
;
(
std
::
is_same
<
T
,
int64_t
>::
value
&&
n
>
(
XPU_SORT_MAX_SIZE
/
2
))
?
true
int
len
=
m
*
n
;
:
false
;
bool
index_need_cast
=
(
n
>
(
XPU_SORT_MAX_SIZE
/
2
))
?
true
:
false
;
std
::
vector
<
int
>
permute_vec
{
0
,
2
,
1
};
std
::
vector
<
int
>
permute_vec
{
0
,
2
,
1
};
std
::
vector
<
int
>
data_shape
{
len_before
,
n
,
len_after
};
std
::
vector
<
int
>
data_shape
{
len_before
,
n
,
len_after
};
std
::
vector
<
int
>
data_shape_trans
{
len_before
,
len_after
,
n
};
if
(
int64_need_cast
)
{
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
XPUArgsort
<
T
,
true
,
true
>
()(
dev_ctx
.
x_context
(),
if
(
is_need_transpose
)
{
input_data
,
T
*
input_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
output_data
,
PADDLE_ENFORCE_XDNN_NOT_NULL
(
input_data_trans
);
indices_data
,
T
*
output_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
data_shape
,
PADDLE_ENFORCE_XDNN_NOT_NULL
(
output_data_trans
);
permute_vec
,
int64_t
*
indices_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
len
);
descending
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
indices_data_trans
);
}
else
if
(
index_need_cast
)
{
XPUArgsort
<
T
,
false
,
true
>
()(
dev_ctx
.
x_context
(),
int
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
input_data
,
input_data
,
output_data
,
input_data_trans
,
indices_data
,
data_shape
,
data_shape
,
permute_vec
);
permute_vec
,
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
descending
);
}
else
{
input_data
=
input_data_trans
;
XPUArgsort
<
T
,
false
,
false
>
()(
dev_ctx
.
x_context
(),
output_data
=
output_data_trans
;
indices_data
=
indices_data_trans
;
}
int
ret
=
xpu
::
sort
<
T
,
int64_t
>
(
dev_ctx
.
x_context
(),
input_data
,
input_data
,
output_data
,
output_data
,
indices_data
,
indices_data
,
data_shape
,
m
,
permute_vec
,
n
,
descending
);
descending
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"sort"
);
if
(
is_need_transpose
)
{
int
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
output_data
,
output
->
data
<
T
>
(),
data_shape_trans
,
permute_vec
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
r
=
xpu
::
transpose
<
int64_t
>
(
dev_ctx
.
x_context
(),
indices_data
,
indices
->
data
<
int64_t
>
(),
data_shape_trans
,
permute_vec
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
}
}
}
}
...
...
python/paddle/fluid/tests/unittests/xpu/test_argsort_op_xpu.py
浏览文件 @
6a6a3ff1
...
@@ -94,6 +94,9 @@ class XPUTestArgsortOp(XPUOpTestWrapper):
...
@@ -94,6 +94,9 @@ class XPUTestArgsortOp(XPUOpTestWrapper):
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
{
'X'
},
'Out'
)
support_types
=
get_xpu_op_support_types
(
'argsort'
)
support_types
=
get_xpu_op_support_types
(
'argsort'
)
for
stype
in
support_types
:
for
stype
in
support_types
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录