提交 6a31509d 编写于 作者: M minqiyang

Port release 0.15.0 code to python3

上级 8f2ce7ca
...@@ -36,6 +36,7 @@ import paddle.fluid as fluid ...@@ -36,6 +36,7 @@ import paddle.fluid as fluid
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
from paddle.fluid import core from paddle.fluid import core
from test_dist_base import TestDistRunnerBase, runtime_main from test_dist_base import TestDistRunnerBase, runtime_main
import paddle.compat as cpt
from paddle.compat import long_type from paddle.compat import long_type
import hashlib import hashlib
...@@ -315,8 +316,9 @@ def pad_batch_data(insts, ...@@ -315,8 +316,9 @@ def pad_batch_data(insts,
""" """
return_list = [] return_list = []
max_len = max(len(inst) for inst in insts) max_len = max(len(inst) for inst in insts)
num_token = reduce(lambda x, y: x + y, num_token = six.moves.reduce(
[len(inst) for inst in insts]) if return_num_token else 0 lambda x, y: x + y,
[len(inst) for inst in insts]) if return_num_token else 0
# Any token included in dict can be used to pad, since the paddings' loss # Any token included in dict can be used to pad, since the paddings' loss
# will be masked out by weights and make no effect on parameter gradients. # will be masked out by weights and make no effect on parameter gradients.
inst_data = np.array( inst_data = np.array(
...@@ -328,7 +330,7 @@ def pad_batch_data(insts, ...@@ -328,7 +330,7 @@ def pad_batch_data(insts,
return_list += [inst_weight.astype("float32").reshape([-1, 1])] return_list += [inst_weight.astype("float32").reshape([-1, 1])]
else: # position data else: # position data
inst_pos = np.array([ inst_pos = np.array([
range(1, len(inst) + 1) + [0] * (max_len - len(inst)) list(range(1, len(inst) + 1)) + [0] * (max_len - len(inst))
for inst in insts for inst in insts
]) ])
return_list += [inst_pos.astype("int64").reshape([-1, 1])] return_list += [inst_pos.astype("int64").reshape([-1, 1])]
...@@ -385,10 +387,11 @@ def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx, ...@@ -385,10 +387,11 @@ def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx,
return_num_token=True) return_num_token=True)
data_input_dict = dict( data_input_dict = dict(
zip(data_input_names, [ list(
src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos, zip(data_input_names, [
trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
])) trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
])))
return data_input_dict, np.asarray([num_token], dtype="float32") return data_input_dict, np.asarray([num_token], dtype="float32")
...@@ -561,7 +564,7 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler, ...@@ -561,7 +564,7 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
np.log(TrainTaskConfig.label_smooth_eps / ( np.log(TrainTaskConfig.label_smooth_eps / (
ModelHyperParams.trg_vocab_size - 1) + 1e-20)) ModelHyperParams.trg_vocab_size - 1) + 1e-20))
init = False init = False
for pass_id in xrange(TrainTaskConfig.pass_num): for pass_id in six.moves.xrange(TrainTaskConfig.pass_num):
pass_start_time = time.time() pass_start_time = time.time()
for batch_id, data in enumerate(train_data()): for batch_id, data in enumerate(train_data()):
if batch_id >= 5: if batch_id >= 5:
...@@ -587,11 +590,11 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler, ...@@ -587,11 +590,11 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
ModelHyperParams.eos_idx, ModelHyperParams.n_head, ModelHyperParams.eos_idx, ModelHyperParams.n_head,
ModelHyperParams.d_model) ModelHyperParams.d_model)
total_num_token += num_token total_num_token += num_token
feed_kv_pairs = data_input_dict.items() feed_kv_pairs = list(data_input_dict.items())
if TrainTaskConfig.local: if TrainTaskConfig.local:
feed_kv_pairs += { feed_kv_pairs += list({
lr_scheduler.learning_rate.name: lr_rate lr_scheduler.learning_rate.name: lr_rate
}.items() }.items())
feed_list.append(dict(feed_kv_pairs)) feed_list.append(dict(feed_kv_pairs))
if not init: if not init:
...@@ -873,6 +876,7 @@ class DataReader(object): ...@@ -873,6 +876,7 @@ class DataReader(object):
f = tarfile.open(fpaths[0], "r") f = tarfile.open(fpaths[0], "r")
for line in f.extractfile(tar_fname): for line in f.extractfile(tar_fname):
line = cpt.to_text(line)
fields = line.strip("\n").split(self._field_delimiter) fields = line.strip("\n").split(self._field_delimiter)
if (not self._only_src and len(fields) == 2) or ( if (not self._only_src and len(fields) == 2) or (
self._only_src and len(fields) == 1): self._only_src and len(fields) == 1):
...@@ -882,8 +886,9 @@ class DataReader(object): ...@@ -882,8 +886,9 @@ class DataReader(object):
if not os.path.isfile(fpath): if not os.path.isfile(fpath):
raise IOError("Invalid file: %s" % fpath) raise IOError("Invalid file: %s" % fpath)
with open(fpath, "r") as f: with open(fpath, "rb") as f:
for line in f: for line in f:
line = cpt.to_text(line)
fields = line.strip("\n").split(self._field_delimiter) fields = line.strip("\n").split(self._field_delimiter)
if (not self._only_src and len(fields) == 2) or ( if (not self._only_src and len(fields) == 2) or (
self._only_src and len(fields) == 1): self._only_src and len(fields) == 1):
...@@ -892,8 +897,9 @@ class DataReader(object): ...@@ -892,8 +897,9 @@ class DataReader(object):
@staticmethod @staticmethod
def load_dict(dict_path, reverse=False): def load_dict(dict_path, reverse=False):
word_dict = {} word_dict = {}
with open(dict_path, "r") as fdict: with open(dict_path, "rb") as fdict:
for idx, line in enumerate(fdict): for idx, line in enumerate(fdict):
line = cpt.to_text(line)
if reverse: if reverse:
word_dict[idx] = line.strip("\n") word_dict[idx] = line.strip("\n")
else: else:
...@@ -1034,7 +1040,7 @@ def multi_head_attention(queries, ...@@ -1034,7 +1040,7 @@ def multi_head_attention(queries,
# size of the input as the output dimension size. # size of the input as the output dimension size.
return layers.reshape( return layers.reshape(
x=trans_x, x=trans_x,
shape=map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]])) shape=list(map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]])))
def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate): def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate):
""" """
......
...@@ -293,7 +293,7 @@ class DistributeTranspiler(object): ...@@ -293,7 +293,7 @@ class DistributeTranspiler(object):
input_deps = grad_name_to_send_dummy_out.values() input_deps = grad_name_to_send_dummy_out.values()
program.global_block().append_op( program.global_block().append_op(
type="send_barrier", type="send_barrier",
inputs={"X": input_deps}, inputs={"X": list(input_deps)},
outputs={"Out": send_barrier_out}, outputs={"Out": send_barrier_out},
attrs={ attrs={
"endpoints": pserver_endpoints, "endpoints": pserver_endpoints,
...@@ -394,7 +394,7 @@ class DistributeTranspiler(object): ...@@ -394,7 +394,7 @@ class DistributeTranspiler(object):
Args: Args:
recv_vars (list): Variable list to recv for current trainer_id recv_vars (list): Variable list to recv for current trainer_id
eplist (list): A list of strings indicating eplist (list): A list of strings indicating
Returns: Returns:
Program: trainer side startup program. Program: trainer side startup program.
...@@ -448,7 +448,7 @@ class DistributeTranspiler(object): ...@@ -448,7 +448,7 @@ class DistributeTranspiler(object):
if len(splited_var) <= 1: if len(splited_var) <= 1:
continue continue
# NOTE: if enable memory optimization, origin vars maybe removed. # NOTE: if enable memory optimization, origin vars maybe removed.
if startup_program.global_block().vars.has_key(varname): if varname in startup_program.global_block().vars:
orig_param = startup_program.global_block().vars[varname] orig_param = startup_program.global_block().vars[varname]
else: else:
origin_param_var = self.origin_program.global_block().vars[ origin_param_var = self.origin_program.global_block().vars[
...@@ -677,7 +677,7 @@ class DistributeTranspiler(object): ...@@ -677,7 +677,7 @@ class DistributeTranspiler(object):
Args: Args:
endpoint (str): current pserver endpoint. endpoint (str): current pserver endpoint.
Returns: Returns:
tuple: (main_program, startup_program), of type "Program" tuple: (main_program, startup_program), of type "Program"
""" """
...@@ -700,7 +700,7 @@ class DistributeTranspiler(object): ...@@ -700,7 +700,7 @@ class DistributeTranspiler(object):
endpoint (str): current pserver endpoint. endpoint (str): current pserver endpoint.
pserver_program (Program): deprecated, call get_pserver_program first. pserver_program (Program): deprecated, call get_pserver_program first.
startup_program (Program): deprecated, should pass startup_program startup_program (Program): deprecated, should pass startup_program
when initalizing when initalizing
Returns: Returns:
Program: parameter server side startup program. Program: parameter server side startup program.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册