Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6a279dfd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6a279dfd
编写于
5月 10, 2023
作者:
Y
Yuanle Liu
提交者:
GitHub
5月 10, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
scale, square, sum, swish trt op converter support zero dim (#53660)
上级
65e57a7d
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
133 addition
and
72 deletion
+133
-72
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+41
-21
test/ir/inference/test_trt_convert_scale.py
test/ir/inference/test_trt_convert_scale.py
+10
-13
test/ir/inference/test_trt_convert_square.py
test/ir/inference/test_trt_convert_square.py
+34
-30
test/ir/inference/test_trt_convert_sum.py
test/ir/inference/test_trt_convert_sum.py
+38
-4
test/ir/inference/test_trt_convert_swish.py
test/ir/inference/test_trt_convert_swish.py
+10
-4
未找到文件。
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
6a279dfd
...
@@ -105,7 +105,7 @@ struct SimpleOpTypeSetTeller : public Teller {
...
@@ -105,7 +105,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"erf"
,
"floor"
,
"round"
,
"erf"
,
"floor"
,
"round"
,
"sign"
,
"silu"
,
"logical_not"
,
"sign"
,
"silu"
,
"logical_not"
,
"reciprocal"
,
"tanh_shrink"
,
"logsigmoid"
,
"reciprocal"
,
"tanh_shrink"
,
"logsigmoid"
,
"rsqrt"
};
"rsqrt"
,
"swish"
};
std
::
unordered_set
<
std
::
string
>
unary_list
=
{
std
::
unordered_set
<
std
::
string
>
unary_list
=
{
"exp"
,
"log"
,
"sqrt"
,
"abs"
,
"sin"
,
"exp"
,
"log"
,
"sqrt"
,
"abs"
,
"sin"
,
"cos"
,
"tan"
,
"tanh"
,
"sinh"
,
"cosh"
,
"cos"
,
"tan"
,
"tanh"
,
"sinh"
,
"cosh"
,
...
@@ -1194,9 +1194,9 @@ struct SimpleOpTypeSetTeller : public Teller {
...
@@ -1194,9 +1194,9 @@ struct SimpleOpTypeSetTeller : public Teller {
dtype
==
framework
::
proto
::
VarType
::
FP16
))
{
dtype
==
framework
::
proto
::
VarType
::
FP16
))
{
return
false
;
return
false
;
}
}
if
(
x_shape
.
size
()
==
1
)
{
if
(
x_shape
.
size
()
==
1
||
x_shape
.
size
()
==
0
)
{
VLOG
(
3
)
VLOG
(
3
)
<<
"Scale op does not support 0 or 1-dimensional input in "
<<
"Scale op does not support 1-dimensional input in
tensorrt"
;
"
tensorrt"
;
return
false
;
return
false
;
}
}
}
else
{
}
else
{
...
@@ -1548,8 +1548,24 @@ struct SimpleOpTypeSetTeller : public Teller {
...
@@ -1548,8 +1548,24 @@ struct SimpleOpTypeSetTeller : public Teller {
return
false
;
return
false
;
}
}
}
}
// remember that 1D input in static shape mode is filtered at the beginning
if
(
op_type
==
"sum"
)
{
if
(
op_type
==
"sum"
)
{
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
VLOG
(
3
)
<<
"The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass."
;
return
false
;
}
auto
x_var_name
=
desc
.
Input
(
"X"
)[
0
];
auto
*
x_var
=
block
->
FindVar
(
x_var_name
);
const
auto
x_shape
=
x_var
->
GetShape
();
if
(
!
with_dynamic_shape
&&
(
x_shape
.
size
()
==
0
||
x_shape
.
size
()
==
1
))
{
VLOG
(
3
)
<<
op_type
<<
" op does not support input's dim is 0 or 1 in tensorrt "
"with static shape."
;
return
false
;
}
return
true
;
return
true
;
}
}
...
@@ -1803,22 +1819,7 @@ struct SimpleOpTypeSetTeller : public Teller {
...
@@ -1803,22 +1819,7 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
}
}
}
}
if
(
op_type
==
"swish"
)
{
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
VLOG
(
3
)
<<
"The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass."
;
return
false
;
}
auto
x_var_name
=
desc
.
Input
(
"X"
)[
0
];
auto
*
x_var_desc
=
block
->
FindVar
(
x_var_name
);
const
auto
x_shape
=
x_var_desc
->
GetShape
();
if
(
x_shape
.
size
()
==
1
)
{
VLOG
(
3
)
<<
"swish op does not support input's dim is 1 in tensorrt."
;
return
false
;
}
}
if
(
op_type
==
"prelu"
)
{
if
(
op_type
==
"prelu"
)
{
if
(
desc
.
Input
(
"X"
).
size
()
!=
1
)
{
if
(
desc
.
Input
(
"X"
).
size
()
!=
1
)
{
VLOG
(
3
)
<<
"Invalid input X's size of prelu TRT converter. "
VLOG
(
3
)
<<
"Invalid input X's size of prelu TRT converter. "
...
@@ -2180,6 +2181,25 @@ struct SimpleOpTypeSetTeller : public Teller {
...
@@ -2180,6 +2181,25 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
}
}
if
(
op_type
==
"square"
)
{
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
VLOG
(
3
)
<<
"The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass."
;
return
false
;
}
auto
x_var_name
=
desc
.
Input
(
"X"
)[
0
];
auto
*
x_var
=
block
->
FindVar
(
x_var_name
);
const
auto
x_shape
=
x_var
->
GetShape
();
if
(
!
with_dynamic_shape
&&
x_shape
.
size
()
==
0
)
{
VLOG
(
3
)
<<
op_type
<<
" op does not support input's dim is 0 in tensorrt "
"with static shape."
;
return
false
;
}
}
if
(
op_type
==
"clip"
)
{
if
(
op_type
==
"clip"
)
{
// Paddle-TRT does not support the input tensors: Min and Max
// Paddle-TRT does not support the input tensors: Min and Max
auto
clip_inputs
=
desc
.
Inputs
();
auto
clip_inputs
=
desc
.
Inputs
();
...
...
test/ir/inference/test_trt_convert_scale.py
浏览文件 @
6a279dfd
...
@@ -43,12 +43,14 @@ class TrtConvertScaleTest(TrtLayerAutoScanTest):
...
@@ -43,12 +43,14 @@ class TrtConvertScaleTest(TrtLayerAutoScanTest):
)
)
elif
self
.
dims
==
1
:
elif
self
.
dims
==
1
:
return
np
.
ones
([
24
]).
astype
(
np
.
int32
if
is_int
else
np
.
float32
)
return
np
.
ones
([
24
]).
astype
(
np
.
int32
if
is_int
else
np
.
float32
)
elif
self
.
dims
==
0
:
return
np
.
ones
([]).
astype
(
np
.
int32
if
is_int
else
np
.
float32
)
def
generate_weight1
(
attrs
:
List
[
Dict
[
str
,
Any
]],
is_int
):
def
generate_weight1
(
attrs
:
List
[
Dict
[
str
,
Any
]],
is_int
):
return
np
.
ones
([
1
]).
astype
(
np
.
int32
if
is_int
else
np
.
float32
)
return
np
.
ones
([
1
]).
astype
(
np
.
int32
if
is_int
else
np
.
float32
)
for
num_input
in
[
0
,
1
]:
for
num_input
in
[
0
,
1
]:
for
dims
in
[
1
,
2
,
3
,
4
]:
for
dims
in
[
0
,
1
,
2
,
3
,
4
]:
for
batch
in
[
1
,
2
]:
for
batch
in
[
1
,
2
]:
for
scale
in
[
0.1
,
-
1.0
]:
for
scale
in
[
0.1
,
-
1.0
]:
for
bias
in
[
0.0
,
1.2
]:
for
bias
in
[
0.0
,
1.2
]:
...
@@ -141,6 +143,10 @@ class TrtConvertScaleTest(TrtLayerAutoScanTest):
...
@@ -141,6 +143,10 @@ class TrtConvertScaleTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
min_input_shape
=
{
"scale_input"
:
[
24
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"scale_input"
:
[
24
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"scale_input"
:
[
48
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"scale_input"
:
[
48
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"scale_input"
:
[
24
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"scale_input"
:
[
24
]}
elif
self
.
dims
==
0
:
self
.
dynamic_shape
.
min_input_shape
=
{
"scale_input"
:
[]}
self
.
dynamic_shape
.
max_input_shape
=
{
"scale_input"
:
[]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"scale_input"
:
[]}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
...
@@ -148,6 +154,8 @@ class TrtConvertScaleTest(TrtLayerAutoScanTest):
...
@@ -148,6 +154,8 @@ class TrtConvertScaleTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
not
dynamic_shape
and
(
self
.
dims
==
1
or
self
.
dims
==
0
):
return
0
,
3
return
1
,
2
return
1
,
2
attrs
=
[
attrs
=
[
...
@@ -189,23 +197,12 @@ class TrtConvertScaleTest(TrtLayerAutoScanTest):
...
@@ -189,23 +197,12 @@ class TrtConvertScaleTest(TrtLayerAutoScanTest):
)
)
def
teller2
(
program_config
,
predictor_config
):
def
teller2
(
program_config
,
predictor_config
):
if
self
.
dims
==
1
and
len
(
self
.
dynamic_shape
.
min_input_shape
)
==
0
:
return
True
return
False
self
.
add_skip_case
(
teller2
,
SkipReasons
.
TRT_NOT_SUPPORT
,
"INPUT DIM EQUAL TO 1 OF STATIC SHAPE NOT SUPPORT"
,
)
def
teller3
(
program_config
,
predictor_config
):
if
self
.
is_int
and
len
(
self
.
dynamic_shape
.
min_input_shape
)
==
0
:
if
self
.
is_int
and
len
(
self
.
dynamic_shape
.
min_input_shape
)
==
0
:
return
True
return
True
return
False
return
False
self
.
add_skip_case
(
self
.
add_skip_case
(
teller
3
,
teller
2
,
SkipReasons
.
TRT_NOT_SUPPORT
,
SkipReasons
.
TRT_NOT_SUPPORT
,
"INTEGER INPUT OF STATIC SHAPE NOT SUPPORT"
,
"INTEGER INPUT OF STATIC SHAPE NOT SUPPORT"
,
)
)
...
...
test/ir/inference/test_trt_convert_square.py
浏览文件 @
6a279dfd
...
@@ -29,7 +29,9 @@ class TrtConvertSquareTest(TrtLayerAutoScanTest):
...
@@ -29,7 +29,9 @@ class TrtConvertSquareTest(TrtLayerAutoScanTest):
def
sample_program_configs
(
self
):
def
sample_program_configs
(
self
):
def
generate_input1
(
dims
):
def
generate_input1
(
dims
):
if
dims
==
1
:
if
dims
==
0
:
return
np
.
ones
([]).
astype
(
np
.
float32
)
elif
dims
==
1
:
return
np
.
ones
([
3
]).
astype
(
np
.
float32
)
return
np
.
ones
([
3
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
elif
dims
==
2
:
return
np
.
ones
([
3
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
3
,
64
]).
astype
(
np
.
float32
)
...
@@ -38,40 +40,42 @@ class TrtConvertSquareTest(TrtLayerAutoScanTest):
...
@@ -38,40 +40,42 @@ class TrtConvertSquareTest(TrtLayerAutoScanTest):
else
:
else
:
return
np
.
ones
([
1
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
1
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
for
dims
in
[
0
,
1
,
2
,
3
,
4
]:
for
alpha
in
[
1.0
,
2.0
,
3.0
]:
self
.
dims
=
dims
self
.
dims
=
dims
ops_config
=
[
{
ops_config
=
[
"op_type"
:
"square"
,
{
"op_inputs"
:
{
"op_type"
:
"square"
,
"X"
:
[
"input_data"
],
"op_inputs"
:
{
"X"
:
[
"input_data"
],
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
{},
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dims
)
)
},
},
outputs
=
[
"output_data"
],
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
)
"op_attrs"
:
{},
}
yield
program_config
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dims
)
)
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
def
sample_predictor_configs
(
self
,
program_config
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
if
self
.
dims
==
0
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[]}
elif
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
128
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
128
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
64
]}
...
@@ -102,7 +106,7 @@ class TrtConvertSquareTest(TrtLayerAutoScanTest):
...
@@ -102,7 +106,7 @@ class TrtConvertSquareTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
not
dynamic_shape
and
self
.
dims
==
1
:
if
not
dynamic_shape
and
(
self
.
dims
==
1
or
self
.
dims
==
0
)
:
return
0
,
3
return
0
,
3
return
1
,
2
return
1
,
2
...
...
test/ir/inference/test_trt_convert_sum.py
浏览文件 @
6a279dfd
...
@@ -37,6 +37,8 @@ class TrtConvertSumTest(TrtLayerAutoScanTest):
...
@@ -37,6 +37,8 @@ class TrtConvertSumTest(TrtLayerAutoScanTest):
return
np
.
ones
([
batch
,
24
]).
astype
(
np
.
float32
)
return
np
.
ones
([
batch
,
24
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
1
:
elif
self
.
dims
==
1
:
return
np
.
ones
([
24
]).
astype
(
np
.
float32
)
return
np
.
ones
([
24
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
0
:
return
np
.
ones
([]).
astype
(
np
.
float32
)
def
generate_input2
(
batch
):
def
generate_input2
(
batch
):
if
self
.
dims
==
4
:
if
self
.
dims
==
4
:
...
@@ -47,6 +49,8 @@ class TrtConvertSumTest(TrtLayerAutoScanTest):
...
@@ -47,6 +49,8 @@ class TrtConvertSumTest(TrtLayerAutoScanTest):
return
np
.
ones
([
batch
,
24
]).
astype
(
np
.
float32
)
return
np
.
ones
([
batch
,
24
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
1
:
elif
self
.
dims
==
1
:
return
np
.
ones
([
24
]).
astype
(
np
.
float32
)
return
np
.
ones
([
24
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
0
:
return
np
.
ones
([]).
astype
(
np
.
float32
)
def
generate_input3
(
batch
):
def
generate_input3
(
batch
):
if
self
.
dims
==
4
:
if
self
.
dims
==
4
:
...
@@ -57,8 +61,10 @@ class TrtConvertSumTest(TrtLayerAutoScanTest):
...
@@ -57,8 +61,10 @@ class TrtConvertSumTest(TrtLayerAutoScanTest):
return
np
.
ones
([
batch
,
24
]).
astype
(
np
.
float32
)
return
np
.
ones
([
batch
,
24
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
1
:
elif
self
.
dims
==
1
:
return
np
.
ones
([
24
]).
astype
(
np
.
float32
)
return
np
.
ones
([
24
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
0
:
return
np
.
ones
([]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
for
dims
in
[
0
,
1
,
2
,
3
,
4
]:
for
batch
in
[
1
,
4
]:
for
batch
in
[
1
,
4
]:
self
.
dims
=
dims
self
.
dims
=
dims
ops_config
=
[
ops_config
=
[
...
@@ -157,6 +163,22 @@ class TrtConvertSumTest(TrtLayerAutoScanTest):
...
@@ -157,6 +163,22 @@ class TrtConvertSumTest(TrtLayerAutoScanTest):
"input2"
:
[
24
],
"input2"
:
[
24
],
"input3"
:
[
24
],
"input3"
:
[
24
],
}
}
elif
self
.
dims
==
0
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input1"
:
[],
"input2"
:
[],
"input3"
:
[],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input1"
:
[],
"input2"
:
[],
"input3"
:
[],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input1"
:
[],
"input2"
:
[],
"input3"
:
[],
}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
...
@@ -164,7 +186,7 @@ class TrtConvertSumTest(TrtLayerAutoScanTest):
...
@@ -164,7 +186,7 @@ class TrtConvertSumTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
dynamic_shape
):
def
generate_trt_nodes_num
(
dynamic_shape
):
if
self
.
dims
==
1
and
not
dynamic_shape
:
if
(
self
.
dims
==
1
or
self
.
dims
==
0
)
and
not
dynamic_shape
:
return
0
,
5
return
0
,
5
return
1
,
4
return
1
,
4
...
@@ -205,8 +227,10 @@ class TrtConvertSumTest1(TrtLayerAutoScanTest):
...
@@ -205,8 +227,10 @@ class TrtConvertSumTest1(TrtLayerAutoScanTest):
return
np
.
ones
([
batch
,
24
]).
astype
(
np
.
float32
)
return
np
.
ones
([
batch
,
24
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
1
:
elif
self
.
dims
==
1
:
return
np
.
ones
([
24
]).
astype
(
np
.
float32
)
return
np
.
ones
([
24
]).
astype
(
np
.
float32
)
else
:
return
np
.
ones
([]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
for
dims
in
[
0
,
1
,
2
,
3
,
4
]:
for
batch
in
[
1
,
4
]:
for
batch
in
[
1
,
4
]:
self
.
dims
=
dims
self
.
dims
=
dims
ops_config
=
[
ops_config
=
[
...
@@ -263,6 +287,16 @@ class TrtConvertSumTest1(TrtLayerAutoScanTest):
...
@@ -263,6 +287,16 @@ class TrtConvertSumTest1(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"input1"
:
[
24
],
"input1"
:
[
24
],
}
}
elif
self
.
dims
==
0
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input1"
:
[],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input1"
:
[],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input1"
:
[],
}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
...
@@ -270,7 +304,7 @@ class TrtConvertSumTest1(TrtLayerAutoScanTest):
...
@@ -270,7 +304,7 @@ class TrtConvertSumTest1(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
dynamic_shape
):
def
generate_trt_nodes_num
(
dynamic_shape
):
if
self
.
dims
==
1
and
not
dynamic_shape
:
if
(
self
.
dims
==
1
or
self
.
dims
==
0
)
and
not
dynamic_shape
:
return
0
,
3
return
0
,
3
return
1
,
2
return
1
,
2
...
...
test/ir/inference/test_trt_convert_swish.py
浏览文件 @
6a279dfd
...
@@ -29,7 +29,9 @@ class TrtConvertSwishTest(TrtLayerAutoScanTest):
...
@@ -29,7 +29,9 @@ class TrtConvertSwishTest(TrtLayerAutoScanTest):
def
sample_program_configs
(
self
):
def
sample_program_configs
(
self
):
def
generate_input1
(
dims
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_input1
(
dims
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
dims
==
1
:
if
dims
==
0
:
return
np
.
ones
([]).
astype
(
np
.
float32
)
elif
dims
==
1
:
return
np
.
ones
([
3
]).
astype
(
np
.
float32
)
return
np
.
ones
([
3
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
elif
dims
==
2
:
return
np
.
ones
([
3
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
3
,
64
]).
astype
(
np
.
float32
)
...
@@ -38,7 +40,7 @@ class TrtConvertSwishTest(TrtLayerAutoScanTest):
...
@@ -38,7 +40,7 @@ class TrtConvertSwishTest(TrtLayerAutoScanTest):
else
:
else
:
return
np
.
ones
([
1
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
1
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
for
dims
in
[
0
,
1
,
2
,
3
,
4
]:
for
beta
in
[
1.0
,
2.0
,
3.0
]:
for
beta
in
[
1.0
,
2.0
,
3.0
]:
self
.
dims
=
dims
self
.
dims
=
dims
...
@@ -73,7 +75,11 @@ class TrtConvertSwishTest(TrtLayerAutoScanTest):
...
@@ -73,7 +75,11 @@ class TrtConvertSwishTest(TrtLayerAutoScanTest):
self
,
program_config
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
if
self
.
dims
==
0
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[]}
elif
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
128
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
128
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
64
]}
...
@@ -104,7 +110,7 @@ class TrtConvertSwishTest(TrtLayerAutoScanTest):
...
@@ -104,7 +110,7 @@ class TrtConvertSwishTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
self
.
dims
==
1
:
if
(
self
.
dims
==
1
or
self
.
dims
==
0
)
and
not
dynamic_shape
:
return
0
,
3
return
0
,
3
return
1
,
2
return
1
,
2
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录