Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
68fe1d54
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
68fe1d54
编写于
6月 28, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into change_paddle_build_doc
上级
e265e611
2ecc5622
变更
55
隐藏空白更改
内联
并排
Showing
55 changed file
with
1422 addition
and
218 deletion
+1422
-218
paddle/contrib/inference/CMakeLists.txt
paddle/contrib/inference/CMakeLists.txt
+9
-1
paddle/contrib/inference/demo/CMakeLists.txt
paddle/contrib/inference/demo/CMakeLists.txt
+5
-0
paddle/contrib/inference/paddle_inference_api.h
paddle/contrib/inference/paddle_inference_api.h
+8
-3
paddle/contrib/inference/paddle_inference_api_impl.cc
paddle/contrib/inference/paddle_inference_api_impl.cc
+5
-1
paddle/contrib/inference/paddle_inference_api_impl.h
paddle/contrib/inference/paddle_inference_api_impl.h
+1
-1
paddle/contrib/inference/paddle_inference_api_tensorrt_subgraph_engine.cc
...nference/paddle_inference_api_tensorrt_subgraph_engine.cc
+126
-0
paddle/contrib/inference/test_paddle_inference_api_tensorrt_subgraph_engine.cc
...nce/test_paddle_inference_api_tensorrt_subgraph_engine.cc
+64
-0
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+4
-0
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+8
-4
paddle/fluid/inference/analysis/analyzer.cc
paddle/fluid/inference/analysis/analyzer.cc
+82
-0
paddle/fluid/inference/analysis/analyzer.h
paddle/fluid/inference/analysis/analyzer.h
+66
-0
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+29
-0
paddle/fluid/inference/analysis/argument.h
paddle/fluid/inference/analysis/argument.h
+3
-0
paddle/fluid/inference/analysis/data_flow_graph.cc
paddle/fluid/inference/analysis/data_flow_graph.cc
+20
-1
paddle/fluid/inference/analysis/data_flow_graph.h
paddle/fluid/inference/analysis/data_flow_graph.h
+17
-6
paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc
...fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc
+108
-16
paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h
.../fluid/inference/analysis/data_flow_graph_to_fluid_pass.h
+2
-4
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.cc
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.cc
+10
-5
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h
+9
-4
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass_tester.cc
...fluid/inference/analysis/dfg_graphviz_draw_pass_tester.cc
+2
-2
paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.cc
...fluid/inference/analysis/fluid_to_data_flow_graph_pass.cc
+19
-4
paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h
.../fluid/inference/analysis/fluid_to_data_flow_graph_pass.h
+1
-2
paddle/fluid/inference/analysis/helper.cc
paddle/fluid/inference/analysis/helper.cc
+60
-0
paddle/fluid/inference/analysis/helper.h
paddle/fluid/inference/analysis/helper.h
+21
-1
paddle/fluid/inference/analysis/node.cc
paddle/fluid/inference/analysis/node.cc
+11
-0
paddle/fluid/inference/analysis/node.h
paddle/fluid/inference/analysis/node.h
+48
-42
paddle/fluid/inference/analysis/node_attr_flags.h
paddle/fluid/inference/analysis/node_attr_flags.h
+32
-0
paddle/fluid/inference/analysis/pass.h
paddle/fluid/inference/analysis/pass.h
+3
-0
paddle/fluid/inference/analysis/pass_manager.cc
paddle/fluid/inference/analysis/pass_manager.cc
+12
-0
paddle/fluid/inference/analysis/pass_manager.h
paddle/fluid/inference/analysis/pass_manager.h
+1
-11
paddle/fluid/inference/analysis/pass_manager_tester.cc
paddle/fluid/inference/analysis/pass_manager_tester.cc
+1
-0
paddle/fluid/inference/analysis/subgraph_splitter.cc
paddle/fluid/inference/analysis/subgraph_splitter.cc
+19
-13
paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.cc
...id/inference/analysis/tensorrt_subgraph_node_mark_pass.cc
+78
-0
paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h
...uid/inference/analysis/tensorrt_subgraph_node_mark_pass.h
+53
-0
paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass_tester.cc
...rence/analysis/tensorrt_subgraph_node_mark_pass_tester.cc
+50
-0
paddle/fluid/inference/analysis/tensorrt_subgraph_pass.cc
paddle/fluid/inference/analysis/tensorrt_subgraph_pass.cc
+1
-1
paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h
paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h
+5
-0
paddle/fluid/inference/analysis/tensorrt_subgraph_pass_tester.cc
...fluid/inference/analysis/tensorrt_subgraph_pass_tester.cc
+25
-26
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+2
-1
paddle/fluid/operators/adam_op.cc
paddle/fluid/operators/adam_op.cc
+6
-3
paddle/fluid/operators/adam_op.h
paddle/fluid/operators/adam_op.h
+4
-0
paddle/fluid/operators/average_accumulates_op.cc
paddle/fluid/operators/average_accumulates_op.cc
+11
-11
paddle/fluid/operators/average_accumulates_op.h
paddle/fluid/operators/average_accumulates_op.h
+3
-2
paddle/fluid/operators/fill_zeros_like_op.cc
paddle/fluid/operators/fill_zeros_like_op.cc
+7
-3
paddle/fluid/operators/fill_zeros_like_op.h
paddle/fluid/operators/fill_zeros_like_op.h
+24
-6
paddle/fluid/operators/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt_engine_op.h
+1
-0
paddle/fluid/operators/tensorrt_engine_op_test.cc
paddle/fluid/operators/tensorrt_engine_op_test.cc
+3
-40
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+3
-1
python/paddle/dataset/mnist.py
python/paddle/dataset/mnist.py
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+38
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/test_dist_mnist.py
python/paddle/fluid/tests/unittests/test_dist_mnist.py
+210
-0
python/paddle/fluid/tests/unittests/test_fill_zeros_like_op_for_array.py
...luid/tests/unittests/test_fill_zeros_like_op_for_array.py
+88
-0
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+1
-1
python/paddle/v2/dataset/mnist.py
python/paddle/v2/dataset/mnist.py
+1
-1
未找到文件。
paddle/contrib/inference/CMakeLists.txt
浏览文件 @
68fe1d54
...
...
@@ -18,7 +18,7 @@ if(APPLE)
endif
(
APPLE
)
set
(
inference_deps paddle_inference_api paddle_fluid_api
)
set
(
inference_deps paddle_inference_api paddle_fluid_api
paddle_inference_tensorrt_subgraph_engine
)
function
(
inference_api_test TARGET_NAME
)
if
(
WITH_TESTING
)
...
...
@@ -50,6 +50,14 @@ cc_test(test_paddle_inference_api
inference_api_test
(
test_paddle_inference_api_impl
ARGS test_word2vec test_image_classification
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
cc_library
(
paddle_inference_tensorrt_subgraph_engine
SRCS paddle_inference_api_tensorrt_subgraph_engine.cc
DEPS paddle_inference_api analysis tensorrt_engine paddle_inference_api paddle_fluid_api
)
inference_api_test
(
test_paddle_inference_api_tensorrt_subgraph_engine ARGS test_word2vec
)
endif
()
if
(
WITH_ANAKIN AND WITH_TESTING
)
# only needed in CI
# Due to Anakin do not have official library releases and the versions of protobuf and cuda do not match Paddle's,
# so anakin library will not be merged to our official inference library. To use anakin prediction API, one need to
...
...
paddle/contrib/inference/demo/CMakeLists.txt
浏览文件 @
68fe1d54
...
...
@@ -15,6 +15,11 @@
inference_api_test
(
simple_on_word2vec ARGS test_word2vec
)
option
(
WITH_INFERENCE_DEMO
"Compile with Inference demo"
OFF
)
if
(
NOT WITH_INFERENCE_DEMO
)
return
()
endif
()
set
(
DEMO_INSTALL_DIR
"
${
PADDLE_BINARY_DIR
}
/inference_demo"
)
set
(
URL_ROOT http://paddlemodels.bj.bcebos.com/inference-vis-demos%2F
)
...
...
paddle/contrib/inference/paddle_inference_api.h
浏览文件 @
68fe1d54
...
...
@@ -73,12 +73,12 @@ struct PaddleTensor {
};
enum
class
PaddleEngineKind
{
kNative
=
0
,
// Use the native Fluid facility.
kAnakin
,
// Use Anakin for inference.
kNative
=
0
,
// Use the native Fluid facility.
kAnakin
,
// Use Anakin for inference.
kAutoMixedTensorRT
,
// Automatically mix Fluid with TensorRT.
// TODO(Superjomn) support following engines latter.
// kTensorRT, // Use TensorRT for inference.
// kAutoMixedAnakin, // Automatically mix Fluid with Anakin.
// kAutoMixedTensorRT, // Automatically mix Fluid with TensorRT.
};
/*
...
...
@@ -130,6 +130,11 @@ struct AnakinConfig : public PaddlePredictor::Config {
int
max_batch_size
{
-
1
};
};
struct
TensorRTConfig
:
public
NativeConfig
{
// Determine whether a subgraph will be executed by TRT.
int
min_subgraph_size
{
1
};
};
// A factory to help create different predictors.
//
// FOR EXTENSION DEVELOPER:
...
...
paddle/contrib/inference/paddle_inference_api_impl.cc
浏览文件 @
68fe1d54
...
...
@@ -89,6 +89,7 @@ bool NativePaddlePredictor::Init(
LOG
(
ERROR
)
<<
"fail to load inference model."
;
return
false
;
}
ctx_
=
executor_
->
Prepare
(
*
inference_program_
,
0
);
executor_
->
CreateVariables
(
*
inference_program_
,
sub_scope_
?
sub_scope_
:
scope_
.
get
(),
0
);
...
...
@@ -119,6 +120,7 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
return
false
;
}
for
(
size_t
i
=
0
;
i
<
feed_target_names_
.
size
();
++
i
)
{
VLOG
(
4
)
<<
"setting "
<<
i
<<
"-th target"
;
feed_targets
[
feed_target_names_
[
i
]]
=
&
feeds
[
i
];
}
// get fetch variable
...
...
@@ -130,14 +132,16 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
}
// Run the inference program
// if share variables, we need not create variables
VLOG
(
4
)
<<
"Run prepared context"
;
executor_
->
RunPreparedContext
(
ctx_
.
get
(),
sub_scope_
!=
nullptr
?
sub_scope_
:
scope_
.
get
(),
&
feed_targets
,
&
fetch_targets
,
false
/* don't create variable eatch time */
);
VLOG
(
4
)
<<
"Finish prepared context"
;
if
(
!
GetFetch
(
fetchs
,
output_data
))
{
LOG
(
ERROR
)
<<
"fail to get fetchs"
;
LOG
(
ERROR
)
<<
"fail to get fetch
e
s"
;
return
false
;
}
VLOG
(
3
)
<<
"predict cost: "
<<
timer
.
toc
()
<<
"ms"
;
...
...
paddle/contrib/inference/paddle_inference_api_impl.h
浏览文件 @
68fe1d54
...
...
@@ -44,7 +44,7 @@ class NativePaddlePredictor : public PaddlePredictor {
~
NativePaddlePredictor
()
override
;
pr
ivate
:
pr
otected
:
bool
SetFeed
(
const
std
::
vector
<
PaddleTensor
>
&
input_datas
,
std
::
vector
<
framework
::
LoDTensor
>
*
feeds
);
bool
GetFetch
(
const
std
::
vector
<
framework
::
LoDTensor
>
&
fetchs
,
...
...
paddle/contrib/inference/paddle_inference_api_tensorrt_subgraph_engine.cc
0 → 100644
浏览文件 @
68fe1d54
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/contrib/inference/paddle_inference_api.h"
#include "paddle/contrib/inference/paddle_inference_api_impl.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace
paddle
{
using
inference
::
analysis
::
Argument
;
using
inference
::
Singleton
;
using
inference
::
analysis
::
Analyzer
;
using
framework
::
proto
::
ProgramDesc
;
class
TensorRTSubgraphPredictor
:
public
NativePaddlePredictor
{
public:
explicit
TensorRTSubgraphPredictor
(
const
TensorRTConfig
&
config
)
:
NativePaddlePredictor
(
config
),
config_
(
config
)
{}
bool
Init
(
const
std
::
shared_ptr
<
framework
::
Scope
>&
parent_scope
)
{
VLOG
(
3
)
<<
"Predictor::init()"
;
if
(
config_
.
use_gpu
)
{
place_
=
paddle
::
platform
::
CUDAPlace
(
config_
.
device
);
}
else
{
place_
=
paddle
::
platform
::
CPUPlace
();
}
if
(
parent_scope
)
{
scope_
=
parent_scope
;
sub_scope_
=
&
(
parent_scope
->
NewScope
());
}
else
{
paddle
::
framework
::
InitDevices
(
false
);
scope_
.
reset
(
new
paddle
::
framework
::
Scope
());
}
executor_
.
reset
(
new
paddle
::
framework
::
Executor
(
place_
));
// Initialize the inference program
if
(
!
config_
.
model_dir
.
empty
())
{
// Parameters are saved in separate files sited in
// the specified `dirname`.
inference_program_
=
paddle
::
inference
::
Load
(
executor_
.
get
(),
scope_
.
get
(),
config_
.
model_dir
);
}
else
if
(
!
config_
.
prog_file
.
empty
()
&&
!
config_
.
param_file
.
empty
())
{
// All parameters are saved in a single file.
// The file names should be consistent with that used
// in Python API `fluid.io.save_inference_model`.
inference_program_
=
paddle
::
inference
::
Load
(
executor_
.
get
(),
scope_
.
get
(),
config_
.
prog_file
,
config_
.
param_file
);
}
else
{
LOG
(
ERROR
)
<<
"fail to load inference model."
;
return
false
;
}
// Analyze inference_program
Argument
argument
;
argument
.
origin_program_desc
.
reset
(
new
ProgramDesc
(
*
inference_program_
->
Proto
()));
Singleton
<
Analyzer
>::
Global
().
Run
(
&
argument
);
CHECK
(
argument
.
transformed_program_desc
);
VLOG
(
5
)
<<
"transformed program:
\n
"
<<
argument
.
transformed_program_desc
->
SerializeAsString
();
VLOG
(
5
)
<<
"to prepare executor"
;
*
inference_program_
->
Proto
()
=
*
argument
.
transformed_program_desc
;
ctx_
=
executor_
->
Prepare
(
*
inference_program_
,
0
);
VLOG
(
5
)
<<
"to create variables"
;
executor_
->
CreateVariables
(
*
inference_program_
,
sub_scope_
?
sub_scope_
:
scope_
.
get
(),
0
);
// Get the feed_target_names and fetch_target_names
feed_target_names_
=
inference_program_
->
GetFeedTargetNames
();
fetch_target_names_
=
inference_program_
->
GetFetchTargetNames
();
return
true
;
}
private:
TensorRTConfig
config_
;
};
template
<
>
std
::
unique_ptr
<
PaddlePredictor
>
CreatePaddlePredictor
<
TensorRTConfig
,
PaddleEngineKind
::
kAutoMixedTensorRT
>
(
const
TensorRTConfig
&
config
)
{
VLOG
(
3
)
<<
"create TensorRTSubgraphPredictor"
;
if
(
config
.
use_gpu
)
{
// 1. GPU memeroy
PADDLE_ENFORCE_GT
(
config
.
fraction_of_gpu_memory
,
0.
f
,
"fraction_of_gpu_memory in the config should be set to range (0., 1.]"
);
PADDLE_ENFORCE_GE
(
config
.
device
,
0
,
"Invalid device id %d"
,
config
.
device
);
std
::
vector
<
std
::
string
>
flags
;
if
(
config
.
fraction_of_gpu_memory
>=
0.0
f
||
config
.
fraction_of_gpu_memory
<=
0.95
f
)
{
flags
.
push_back
(
"dummpy"
);
std
::
string
flag
=
"--fraction_of_gpu_memory_to_use="
+
std
::
to_string
(
config
.
fraction_of_gpu_memory
);
flags
.
push_back
(
flag
);
VLOG
(
3
)
<<
"set flag: "
<<
flag
;
framework
::
InitGflags
(
flags
);
}
}
std
::
unique_ptr
<
PaddlePredictor
>
predictor
(
new
TensorRTSubgraphPredictor
(
config
));
if
(
!
dynamic_cast
<
TensorRTSubgraphPredictor
*>
(
predictor
.
get
())
->
Init
(
nullptr
))
{
return
nullptr
;
}
return
std
::
move
(
predictor
);
}
}
// namespace paddle
paddle/contrib/inference/test_paddle_inference_api_tensorrt_subgraph_engine.cc
0 → 100644
浏览文件 @
68fe1d54
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "paddle/contrib/inference/paddle_inference_api.h"
namespace
paddle
{
DEFINE_string
(
dirname
,
""
,
"Directory of the inference model."
);
void
Main
(
bool
use_gpu
)
{
//# 1. Create PaddlePredictor with a config.
TensorRTConfig
config
;
config
.
model_dir
=
FLAGS_dirname
+
"word2vec.inference.model"
;
config
.
use_gpu
=
use_gpu
;
config
.
fraction_of_gpu_memory
=
0.15
;
config
.
device
=
0
;
auto
predictor
=
CreatePaddlePredictor
<
TensorRTConfig
,
PaddleEngineKind
::
kAutoMixedTensorRT
>
(
config
);
for
(
int
batch_id
=
0
;
batch_id
<
3
;
batch_id
++
)
{
//# 2. Prepare input.
int64_t
data
[
4
]
=
{
1
,
2
,
3
,
4
};
PaddleTensor
tensor
{.
name
=
""
,
.
shape
=
std
::
vector
<
int
>
({
4
,
1
}),
.
data
=
PaddleBuf
(
data
,
sizeof
(
data
)),
.
dtype
=
PaddleDType
::
INT64
};
// For simplicity, we set all the slots with the same data.
std
::
vector
<
PaddleTensor
>
slots
(
4
,
tensor
);
//# 3. Run
std
::
vector
<
PaddleTensor
>
outputs
;
CHECK
(
predictor
->
Run
(
slots
,
&
outputs
));
//# 4. Get output.
ASSERT_EQ
(
outputs
.
size
(),
1UL
);
LOG
(
INFO
)
<<
"output buffer size: "
<<
outputs
.
front
().
data
.
length
();
const
size_t
num_elements
=
outputs
.
front
().
data
.
length
()
/
sizeof
(
float
);
// The outputs' buffers are in CPU memory.
for
(
size_t
i
=
0
;
i
<
std
::
min
(
5UL
,
num_elements
);
i
++
)
{
LOG
(
INFO
)
<<
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
];
}
}
}
TEST
(
paddle_inference_api_tensorrt_subgraph_engine
,
main
)
{
Main
(
true
);
}
}
// namespace paddle
\ No newline at end of file
paddle/fluid/framework/operator.cc
浏览文件 @
68fe1d54
...
...
@@ -713,6 +713,10 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
t
=
&
var
->
Get
<
LoDTensor
>
();
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
t
=
&
(
var
->
Get
<
SelectedRows
>
().
value
());
}
else
if
(
var
->
IsType
<
LoDTensorArray
>
())
{
const
LoDTensorArray
&
arr
=
var
->
Get
<
LoDTensorArray
>
();
PADDLE_ENFORCE
(
arr
.
size
()
>
0
);
t
=
&
(
arr
[
0
]);
}
if
(
t
!=
nullptr
)
{
int
tmp
=
static_cast
<
int
>
(
ToDataType
(
t
->
type
()));
...
...
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
68fe1d54
set
(
FLUID_CORE_MODULES proto_desc memory lod_tensor executor init
)
cc_library
(
analysis SRCS pass_manager.cc dot.cc node.cc data_flow_graph.cc graph_traits.cc subgraph_splitter.cc
fluid_to_data_flow_graph_pass.cc
data_flow_graph_to_fluid_pass.cc
tensorrt_subgraph_pass.cc
dfg_graphviz_draw_pass.cc
DEPS framework_proto
)
tensorrt_subgraph_pass.cc
tensorrt_subgraph_node_mark_pass.cc
analyzer.cc
helper.cc
DEPS framework_proto proto_desc
)
cc_test
(
test_node SRCS node_tester.cc DEPS analysis
)
cc_test
(
test_dot SRCS dot_tester.cc DEPS analysis
)
...
...
@@ -28,5 +30,7 @@ inference_analysis_test(test_data_flow_graph_to_fluid_pass SRCS data_flow_graph_
inference_analysis_test
(
test_fluid_to_data_flow_graph_pass SRCS fluid_to_data_flow_graph_pass_tester.cc
)
inference_analysis_test
(
test_subgraph_splitter SRCS subgraph_splitter_tester.cc
)
inference_analysis_test
(
test_dfg_graphviz_draw_pass SRCS dfg_graphviz_draw_pass_tester.cc
)
#
inference_analysis_test(test_tensorrt_subgraph_pass SRCS tensorrt_subgraph_pass_tester.cc)
inference_analysis_test
(
test_tensorrt_subgraph_pass SRCS tensorrt_subgraph_pass_tester.cc
)
inference_analysis_test
(
test_pass_manager SRCS pass_manager_tester.cc
)
inference_analysis_test
(
test_tensorrt_subgraph_node_mark_pass SRCS tensorrt_subgraph_node_mark_pass_tester.cc
)
inference_analysis_test
(
test_analyzer SRCS analyzer_tester.cc
)
paddle/fluid/inference/analysis/analyzer.cc
0 → 100644
浏览文件 @
68fe1d54
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h"
#include "paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h"
#include "paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h"
#include "paddle/fluid/inference/analysis/pass_manager.h"
#include "paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h"
#include "paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
DEFINE_bool
(
inference_analysis_enable_tensorrt_subgraph_engine
,
false
,
"Enable subgraph to TensorRT engine for acceleration"
);
DEFINE_string
(
inference_analysis_graphviz_log_root
,
"./"
,
"Graphviz debuger for data flow graphs."
);
class
DfgPassManagerImpl
final
:
public
DfgPassManager
{
public:
DfgPassManagerImpl
()
{
// TODO(Superjomn) set the key with pass reprs.
AddPass
(
"fluid-to-data-flow-graph"
,
new
FluidToDataFlowGraphPass
);
if
(
FLAGS_inference_analysis_enable_tensorrt_subgraph_engine
)
{
auto
trt_teller
=
[](
const
Node
*
node
)
{
if
(
!
node
->
IsFunction
())
return
false
;
return
static_cast
<
const
Function
*>
(
node
)
->
func_type
()
==
"mul"
;
};
AddPass
(
"tensorrt-subgraph-marker"
,
new
TensorRTSubgraphNodeMarkPass
(
trt_teller
));
AddPass
(
"tensorrt-subgraph"
,
new
TensorRTSubGraphPass
(
trt_teller
));
}
AddPass
(
"data-flow-graph-to-fluid"
,
new
DataFlowGraphToFluidPass
);
}
std
::
string
repr
()
const
override
{
return
"dfg-pass-manager"
;
}
std
::
string
description
()
const
override
{
return
"DFG pass manager."
;
}
private:
void
AddPass
(
const
std
::
string
&
name
,
Pass
*
pass
)
{
LOG
(
INFO
)
<<
"Adding pass "
<<
name
;
Register
(
name
,
pass
);
AddGraphvizDebugerPass
(
pass
);
}
// Add the graphviz debuger pass if the parent pass has one.
void
AddGraphvizDebugerPass
(
Pass
*
pass
)
{
auto
*
debuger_pass
=
pass
->
CreateGraphvizDebugerPass
();
if
(
debuger_pass
)
{
LOG
(
INFO
)
<<
" - register debug pass ["
<<
debuger_pass
->
repr
()
<<
"]"
;
Register
(
debuger_pass
->
repr
(),
debuger_pass
);
}
}
};
Analyzer
::
Analyzer
()
{
Register
(
"manager1"
,
new
DfgPassManagerImpl
);
}
void
Analyzer
::
Run
(
Argument
*
argument
)
{
for
(
auto
&
x
:
data_
)
{
PADDLE_ENFORCE
(
x
->
Initialize
(
argument
));
x
->
RunAll
();
PADDLE_ENFORCE
(
x
->
Finalize
());
}
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
\ No newline at end of file
paddle/fluid/inference/analysis/analyzer.h
0 → 100644
浏览文件 @
68fe1d54
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file contains Analyzer, an class that exposed as a library that analyze
* and optimize
* Fluid ProgramDesc for inference. Similar to LLVM, it has multiple flags to
* control whether
* an process is applied on the program.
*
* The processes are called Passes in analysis, the Passes are placed in a
* pipeline, the first
* Pass is the FluidToDataFlowGraphPass which transforms a Fluid ProgramDesc to
* a data flow
* graph, the last Pass is DataFlowGraphToFluidPass which transforms a data flow
* graph to a
* Fluid ProgramDesc. The passes in the middle of the pipeline can be any Passes
* which take a
* node or data flow graph as input.
*
* The Analyzer can be used in two methods, the first is a executable file which
* can be used to
* pre-process the inference model and can be controlled by passing difference
* command flags;
* the other way is to compose inside the inference API as a runtime pre-process
* phase in the
* inference service.
*/
#include <gflags/gflags.h>
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/pass_manager.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
// TODO(Superjomn) add a definition flag like PADDLE_WITH_TENSORRT and hide this
// flag if not available.
DECLARE_bool
(
inference_analysis_enable_tensorrt_subgraph_engine
);
DECLARE_string
(
inference_analysis_graphviz_log_root
);
class
Analyzer
:
public
OrderedRegistry
<
PassManager
>
{
public:
// Register all the pass-managers.
Analyzer
();
void
Run
(
Argument
*
argument
);
DISABLE_COPY_AND_ASSIGN
(
Analyzer
);
};
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/analyzer_tester.cc
0 → 100644
浏览文件 @
68fe1d54
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
TEST_F
(
DFG_Tester
,
main
)
{
Analyzer
analyser
;
analyser
.
Run
(
&
argument
);
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/argument.h
浏览文件 @
68fe1d54
...
...
@@ -41,6 +41,9 @@ struct Argument {
// The original program desc.
std
::
unique_ptr
<
framework
::
proto
::
ProgramDesc
>
origin_program_desc
;
// The processed program desc.
std
::
unique_ptr
<
framework
::
proto
::
ProgramDesc
>
transformed_program_desc
;
};
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
...
...
paddle/fluid/inference/analysis/data_flow_graph.cc
浏览文件 @
68fe1d54
...
...
@@ -20,7 +20,7 @@ namespace paddle {
namespace
inference
{
namespace
analysis
{
// It is a better idea that the inputs and outputs of this graph is set manully
// It is a better idea that the inputs and outputs of this graph is set manu
a
lly
// before, but there must be a Pass that helps to prune the unnecessary ops that
// do not contribute to the given targets, so in this pass, analysis and get the
// inputs and outputs is OK.
...
...
@@ -50,6 +50,25 @@ void DataFlowGraph::Build() {
outputs
.
push_back
(
out
);
}
}
Clean
();
}
void
DataFlowGraph
::
Clean
()
{
for
(
auto
&
node
:
nodes
.
nodes
())
{
std
::
unordered_set
<
Node
*>
inlinks_set
(
node
->
inlinks
.
begin
(),
node
->
inlinks
.
end
());
std
::
unordered_set
<
Node
*>
outlinks_set
(
node
->
outlinks
.
begin
(),
node
->
outlinks
.
end
());
if
(
inlinks_set
.
size
()
<
node
->
inlinks
.
size
())
{
LOG
(
INFO
)
<<
"Clean: node "
<<
node
->
repr
()
<<
" prune duplicate inputs"
;
node
->
inlinks
.
assign
(
inlinks_set
.
begin
(),
inlinks_set
.
end
());
}
if
(
outlinks_set
.
size
()
<
node
->
outlinks
.
size
())
{
LOG
(
INFO
)
<<
"Clean: node "
<<
node
->
repr
()
<<
" prune duplicate inputs"
;
node
->
outlinks
.
assign
(
outlinks_set
.
begin
(),
outlinks_set
.
end
());
}
}
}
std
::
string
DataFlowGraph
::
DotString
()
const
{
...
...
paddle/fluid/inference/analysis/data_flow_graph.h
浏览文件 @
68fe1d54
...
...
@@ -47,6 +47,10 @@ struct DataFlowGraph {
// Output a DOT graph file for debug.
std
::
string
DotString
()
const
;
private:
// Remove duplicate edges and so on.
void
Clean
();
};
/*
...
...
@@ -133,17 +137,24 @@ struct GraphTraits<DataFlowGraph> {
// Extract the inputs and outputs of a graph. The inputs and outputs of a
// sub-graph is the inputs nodes and output nodes that doesn't inside the
// sub-graph.
std
::
pair
<
std
::
vector
<
Node
*>
,
std
::
vector
<
Node
*>>
static
ExtractInputAndOutputOfSubGraph
(
std
::
vector
<
Node
*>
&
graph
)
{
static
std
::
pair
<
std
::
vector
<
Node
*>
,
std
::
vector
<
Node
*>>
ExtractInputAndOutputOfSubGraph
(
std
::
vector
<
Node
*>
&
graph
)
{
std
::
unordered_set
<
Node
*>
nodes
(
graph
.
begin
(),
graph
.
end
());
std
::
unordered_set
<
Node
*>
inputs
;
std
::
unordered_set
<
Node
*>
outputs
;
// Input a Value, check whether its inlink is in the subgraph.
auto
inlink_in_subgraph
=
[
&
](
Node
*
n
)
{
for
(
auto
*
in
:
n
->
inlinks
)
{
if
(
nodes
.
count
(
in
))
return
true
;
}
return
false
;
};
for
(
auto
&
node
:
graph
)
{
for
(
auto
*
in
:
node
->
inlinks
)
{
if
(
!
nodes
.
count
(
in
)
&&
in
->
type
()
==
Node
::
Type
::
kValue
)
{
// The Value that is written by nodes inside a sub-graph shouldn't be the
// input of the sub-graph.
if
(
!
nodes
.
count
(
in
)
&&
in
->
type
()
==
Node
::
Type
::
kValue
&&
!
inlink_in_subgraph
(
in
))
{
inputs
.
insert
(
in
);
}
}
...
...
paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc
浏览文件 @
68fe1d54
...
...
@@ -13,21 +13,34 @@
// limitations under the License.
#include "paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/proto_desc.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
using
framework
::
proto
::
ProgramDesc
;
std
::
vector
<
std
::
string
>
ExtractParameters
(
const
std
::
vector
<
std
::
unique_ptr
<
Node
>>&
nodes
);
bool
DataFlowGraphToFluidPass
::
Initialize
(
Argument
*
argument
)
{
ANALYSIS_ARGUMENT_CHECK_FIELD
(
argument
)
ANALYSIS_ARGUMENT_CHECK_FIELD
(
argument
->
origin_program_desc
)
desc_
=
argument
->
origin_program_desc
.
get
();
// Here some logic from program_desc.cc and will not add new interfaces into
// framework::ProgramDesc class, use some UT to assure the correctness.
auto
*
block
=
desc_
->
mutable_blocks
()
->
Add
();
block
->
set_idx
(
framework
::
kRootBlockIndex
);
block
->
set_parent_idx
(
framework
::
kNoneBlockIndex
);
PADDLE_ENFORCE
(
!
argument
->
transformed_program_desc
);
// The transformed_program_desc should inherit all the VarDesc and BlockDesc
// from the original program desc. The operators of the main block(the first
// block) should rewritten by data flow graph.
argument
->
transformed_program_desc
.
reset
(
new
ProgramDesc
(
*
argument
->
origin_program_desc
));
argument
->
transformed_program_desc
->
mutable_blocks
(
framework
::
kRootBlockIndex
)
->
clear_ops
();
desc_
=
argument
->
transformed_program_desc
.
get
();
argument_
=
argument
;
return
true
;
}
...
...
@@ -37,14 +50,17 @@ void DataFlowGraphToFluidPass::Run(DataFlowGraph* graph) {
auto
traits
=
GraphTraits
<
DataFlowGraph
>
(
graph
);
for
(
auto
it
=
traits
.
nodes
().
begin
();
it
!=
traits
.
nodes
().
end
();
++
it
)
{
if
(
it
->
deleted
())
continue
;
switch
(
it
->
type
())
{
case
Node
::
Type
::
kFunction
:
LOG
(
INFO
)
<<
"add function "
<<
it
->
name
();
case
Node
::
Type
::
kFunction
:
{
LOG
(
INFO
)
<<
"add function "
<<
it
->
repr
();
AddFluidOp
(
&
(
*
it
));
break
;
case
Node
::
Type
::
kFunctionBlock
:
}
break
;
case
Node
::
Type
::
kFunctionBlock
:
{
LOG
(
INFO
)
<<
"add engine op "
<<
it
->
repr
()
<<
" , "
<<
static_cast
<
FunctionBlock
*>
(
&
(
*
it
))
->
subgraph
.
size
();
AddEngineOp
(
&
(
*
it
));
break
;
}
break
;
default:
continue
;
}
...
...
@@ -52,12 +68,10 @@ void DataFlowGraphToFluidPass::Run(DataFlowGraph* graph) {
}
void
DataFlowGraphToFluidPass
::
AddFluidOp
(
Node
*
node
)
{
LOG
(
INFO
)
<<
"processing func "
<<
node
->
name
();
auto
*
ori_op
=
static_cast
<
framework
::
proto
::
OpDesc
*>
(
node
->
pb_desc
());
// currently only the main block is analyzed.
auto
*
main_block
=
desc_
->
mutable_blocks
(
framework
::
kRootBlockIndex
);
auto
*
op
=
main_block
->
add_ops
();
LOG
(
INFO
)
<<
"to copy the op"
;
*
op
=
*
ori_op
;
// copy the attributes, by default, these will not be changed
// by analysis phrase.
// The inputs and outputs of the existing ops are not changed by tensorrt
...
...
@@ -65,11 +79,89 @@ void DataFlowGraphToFluidPass::AddFluidOp(Node* node) {
// NOTE It might be changed by other passes in the long run.
}
void
CreateTrtEngineOp
(
Node
*
node
,
const
DataFlowGraph
&
graph
,
const
framework
::
proto
::
BlockDesc
&
block
)
{
static
int
counter
{
0
};
PADDLE_ENFORCE
(
node
->
IsFunctionBlock
());
framework
::
OpDesc
desc
;
auto
*
func
=
static_cast
<
FunctionBlock
*>
(
node
);
// collect inputs
std
::
vector
<
std
::
string
>
io
;
for
(
auto
*
x
:
func
->
inlinks
)
{
io
.
push_back
(
x
->
name
());
}
desc
.
SetInput
(
"Xs"
,
io
);
// collect outputs
io
.
clear
();
for
(
auto
*
x
:
func
->
outlinks
)
{
io
.
push_back
(
x
->
name
());
}
desc
.
SetOutput
(
"Ys"
,
io
);
desc
.
SetType
(
"tensorrt_engine"
);
// Set attrs
SetAttr
(
desc
.
Proto
(),
"subgraph"
,
block
.
SerializeAsString
());
SetAttr
(
desc
.
Proto
(),
"engine_unique_key"
,
"trt-"
+
std
::
to_string
(
counter
++
));
SetAttr
(
desc
.
Proto
(),
"max_batch"
,
100
);
// TODO(Superjomn) add config latter
SetAttr
(
desc
.
Proto
(),
"max_workspace"
,
1024
);
// TODO(Superjomn) add config latter
SetAttr
(
desc
.
Proto
(),
"parameters"
,
ExtractParameters
(
graph
.
nodes
.
nodes
()));
node
->
SetPbMsg
(
desc
.
Proto
()
->
SerializeAsString
());
}
std
::
vector
<
std
::
string
>
ExtractParameters
(
const
std
::
vector
<
std
::
unique_ptr
<
Node
>>&
nodes
)
{
std
::
vector
<
std
::
string
>
parameters
;
for
(
const
auto
&
node
:
nodes
)
{
if
(
!
node
->
IsValue
())
continue
;
PADDLE_ENFORCE
(
!
node
->
pb_msg
().
empty
(),
"pb_msg should be set first"
);
framework
::
proto
::
VarDesc
var
;
var
.
ParseFromString
(
node
->
pb_msg
());
if
(
var
.
persistable
())
{
parameters
.
push_back
(
var
.
name
());
}
}
return
parameters
;
}
void
DataFlowGraphToFluidPass
::
AddEngineOp
(
Node
*
node
)
{
// auto* ori_op = static_cast<framework::proto::OpDesc*>(node->extra_info());
// auto* main_block = desc_->mutable_blocks(framework::kRootBlockIndex);
// auto* op = main_block->add_ops();
// TODO(Superjomn) Here need to expose some arguments for default setting.
PADDLE_ENFORCE
(
node
->
IsFunctionBlock
());
auto
*
block_node
=
static_cast
<
FunctionBlock
*>
(
node
);
framework
::
proto
::
BlockDesc
proto
;
framework
::
BlockDesc
block_desc
(
nullptr
,
&
proto
);
// copy ops.
for
(
auto
*
node
:
block_node
->
subgraph
)
{
auto
*
op
=
block_desc
.
AppendOp
();
PADDLE_ENFORCE
(
!
node
->
pb_msg
().
empty
());
op
->
Proto
()
->
ParseFromString
(
node
->
pb_msg
());
}
CreateTrtEngineOp
(
node
,
*
argument_
->
main_dfg
,
*
block_desc
.
Proto
());
auto
*
main_block
=
desc_
->
mutable_blocks
(
framework
::
kRootBlockIndex
);
auto
*
op
=
main_block
->
add_ops
();
PADDLE_ENFORCE
(
!
node
->
pb_msg
().
empty
(),
"failed to set desc for block"
);
op
->
ParseFromString
(
node
->
pb_msg
());
}
namespace
{
class
DFG_DebuggerPass
:
public
DFG_GraphvizDrawPass
{
public:
using
Config
=
DFG_GraphvizDrawPass
::
Config
;
DFG_DebuggerPass
(
const
Config
&
config
)
:
DFG_GraphvizDrawPass
(
config
)
{}
std
::
string
repr
()
const
override
{
return
"dfg-to-fluid-debuger-pass"
;
}
bool
Finalize
()
override
{
return
true
;
}
};
}
Pass
*
DataFlowGraphToFluidPass
::
CreateGraphvizDebugerPass
()
const
{
return
new
DFG_DebuggerPass
(
DFG_GraphvizDrawPass
::
Config
(
FLAGS_inference_analysis_graphviz_log_root
,
"data_flow_graph_to_fluid_graphviz_debugger"
));
}
}
// namespace analysis
...
...
paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h
浏览文件 @
68fe1d54
...
...
@@ -40,10 +40,7 @@ class DataFlowGraphToFluidPass final : public DataFlowGraphPass {
return
"Transform a DFG to a Fluid ProgramDesc"
;
}
Pass
*
CreatePrinterPass
(
std
::
ostream
&
os
,
const
std
::
string
&
banner
)
const
override
{
return
nullptr
;
}
Pass
*
CreateGraphvizDebugerPass
()
const
override
;
protected:
// Add a Fluid Op into the ProgramDesc.
...
...
@@ -53,6 +50,7 @@ class DataFlowGraphToFluidPass final : public DataFlowGraphPass {
private:
framework
::
proto
::
ProgramDesc
*
desc_
;
Argument
*
argument_
;
};
}
// namespace analysis
}
// namespace inference
...
...
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.cc
浏览文件 @
68fe1d54
...
...
@@ -18,12 +18,19 @@ namespace paddle {
namespace
inference
{
namespace
analysis
{
int
DFG_GraphvizDrawPass
::
counter_
{
0
};
void
DFG_GraphvizDrawPass
::
Run
(
DataFlowGraph
*
graph
)
{
auto
content
=
Draw
(
graph
);
std
::
ofstream
file
(
GenDotPath
());
auto
dot_path
=
GenDotPath
();
std
::
ofstream
file
(
dot_path
);
file
.
write
(
content
.
c_str
(),
content
.
size
());
file
.
close
();
LOG
(
INFO
)
<<
"draw dot to "
<<
GenDotPath
();
auto
png_path
=
dot_path
.
substr
(
0
,
dot_path
.
size
()
-
4
)
+
".png"
;
std
::
string
message
;
LOG
(
INFO
)
<<
"draw to "
<<
png_path
;
ExecShellCommand
(
"dot -Tpng "
+
dot_path
+
" -o "
+
png_path
,
&
message
);
}
std
::
string
DFG_GraphvizDrawPass
::
Draw
(
DataFlowGraph
*
graph
)
{
...
...
@@ -41,9 +48,7 @@ std::string DFG_GraphvizDrawPass::Draw(DataFlowGraph *graph) {
if
(
!
config_
.
display_deleted_node
&&
node
.
deleted
())
continue
;
for
(
auto
&
in
:
node
.
inlinks
)
{
if
(
!
config_
.
display_deleted_node
&&
in
->
deleted
())
continue
;
for
(
auto
&
in
:
node
.
inlinks
)
{
dot
.
AddEdge
(
in
->
repr
(),
node
.
repr
(),
{});
}
dot
.
AddEdge
(
in
->
repr
(),
node
.
repr
(),
{});
}
}
return
dot
.
Build
();
...
...
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h
浏览文件 @
68fe1d54
...
...
@@ -50,20 +50,25 @@ class DFG_GraphvizDrawPass : public DataFlowGraphPass {
bool
Initialize
(
Argument
*
argument
)
override
{
return
true
;
}
void
Run
(
DataFlowGraph
*
graph
)
override
;
bool
Finalize
()
override
{
return
Pass
::
Finalize
()
;
}
bool
Finalize
()
override
{
return
true
;
}
std
::
string
repr
()
const
override
{
return
"DFG graphviz drawer"
;
}
std
::
string
description
()
const
override
{
return
"Debug a DFG by draw with graphviz"
;
}
private:
protected:
// A counter to add a number prefix to the debugger image output so that they
// will sort in the triggered order.
static
int
counter_
;
// Path of the dot file to output.
std
::
string
GenDotPath
()
const
{
return
config_
.
dir
+
"/"
+
"graph_"
+
config_
.
id
+
".dot"
;
return
config_
.
dir
+
"/"
+
std
::
to_string
(
counter_
++
)
+
"-graph_"
+
config_
.
id
+
".dot"
;
}
std
::
string
Draw
(
DataFlowGraph
*
graph
);
virtual
std
::
string
Draw
(
DataFlowGraph
*
graph
);
Config
config_
;
};
...
...
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass_tester.cc
浏览文件 @
68fe1d54
...
...
@@ -31,7 +31,7 @@ TEST_F(DFG_Tester, dfg_graphviz_draw_pass_tester) {
pass
.
Run
(
&
dfg
);
// test content
std
::
ifstream
file
(
"./graph_test.dot"
);
std
::
ifstream
file
(
"./
0-
graph_test.dot"
);
ASSERT_TRUE
(
file
.
is_open
());
std
::
string
line
;
...
...
@@ -40,7 +40,7 @@ TEST_F(DFG_Tester, dfg_graphviz_draw_pass_tester) {
no
++
;
}
// DFG is sensitive to ProgramDesc, be careful to change the existing models.
ASSERT_EQ
(
no
,
11
2
);
ASSERT_EQ
(
no
,
8
2
);
}
}
// namespace analysis
...
...
paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.cc
浏览文件 @
68fe1d54
...
...
@@ -15,6 +15,8 @@ limitations under the License. */
#include <string>
#include <vector>
#include "analyzer.h"
#include "paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h"
#include "paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h"
namespace
paddle
{
...
...
@@ -33,7 +35,7 @@ bool FluidToDataFlowGraphPass::Initialize(Argument *argument) {
return
true
;
}
bool
FluidToDataFlowGraphPass
::
Finalize
()
{
return
Pass
::
Finalize
()
;
}
bool
FluidToDataFlowGraphPass
::
Finalize
()
{
return
true
;
}
void
FluidToDataFlowGraphPass
::
Run
(
DataFlowGraph
*
graph
)
{
PADDLE_ENFORCE
(
graph
);
...
...
@@ -46,6 +48,7 @@ void FluidToDataFlowGraphPass::Run(DataFlowGraph *graph) {
auto
*
v
=
graph
->
nodes
.
Create
(
Node
::
Type
::
kValue
);
v
->
SetName
(
var
.
name
());
v
->
SetPbDesc
(
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
&
var
)));
v
->
SetPbMsg
(
var
.
SerializeAsString
());
var2id
[
var
.
name
()]
=
v
->
id
();
}
for
(
int
i
=
0
;
i
<
main_block
.
ops_size
();
i
++
)
{
...
...
@@ -56,6 +59,8 @@ void FluidToDataFlowGraphPass::Run(DataFlowGraph *graph) {
// Link to the original protobuf message's memory, make it easier to
// generate from a data flow graph to fluid ProgramDesc.
o
->
SetPbDesc
(
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
&
op
)));
o
->
SetPbMsg
(
op
.
SerializeAsString
());
// set inputs and outputs
// TODO(Superjomn) make sure the InputNames is the real variable name.
for
(
int
j
=
0
;
j
<
op
.
inputs_size
();
j
++
)
{
...
...
@@ -79,9 +84,19 @@ void FluidToDataFlowGraphPass::Run(DataFlowGraph *graph) {
graph
->
Build
();
}
Pass
*
FluidToDataFlowGraphPass
::
CreatePrinterPass
(
std
::
ostream
&
os
,
const
std
::
string
&
banner
)
const
{
return
nullptr
;
namespace
{
class
DFG_DebuggerPass
:
public
DFG_GraphvizDrawPass
{
public:
using
Config
=
DFG_GraphvizDrawPass
::
Config
;
DFG_DebuggerPass
(
const
Config
&
config
)
:
DFG_GraphvizDrawPass
(
config
)
{}
std
::
string
repr
()
const
override
{
return
"fluid-to-dfg-debuger-pass"
;
}
bool
Finalize
()
override
{
return
true
;
}
};
}
Pass
*
FluidToDataFlowGraphPass
::
CreateGraphvizDebugerPass
()
const
{
return
new
DFG_DebuggerPass
(
DFG_GraphvizDrawPass
::
Config
(
FLAGS_inference_analysis_graphviz_log_root
,
"fluid-to-dfg-debuger"
));
}
}
// namespace analysis
...
...
paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h
浏览文件 @
68fe1d54
...
...
@@ -46,8 +46,7 @@ class FluidToDataFlowGraphPass final : public DataFlowGraphPass {
return
"transform a fluid ProgramDesc to a data flow graph."
;
}
Pass
*
CreatePrinterPass
(
std
::
ostream
&
os
,
const
std
::
string
&
banner
)
const
override
;
Pass
*
CreateGraphvizDebugerPass
()
const
override
;
private:
framework
::
proto
::
ProgramDesc
const
*
desc_
;
...
...
paddle/fluid/inference/analysis/helper.cc
0 → 100644
浏览文件 @
68fe1d54
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/framework/framework.pb.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
template
<
>
void
SetAttr
<
std
::
string
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
std
::
string
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
STRING
);
attr
->
set_s
(
data
);
}
template
<
>
void
SetAttr
<
int
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
int
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
INT
);
attr
->
set_i
(
data
);
}
template
<
>
void
SetAttr
<
int64_t
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
int64_t
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
LONG
);
attr
->
set_l
(
data
);
}
template
<
>
void
SetAttr
<
std
::
vector
<
std
::
string
>>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
std
::
vector
<
std
::
string
>
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
STRINGS
);
for
(
const
auto
&
s
:
data
)
{
attr
->
add_strings
(
s
.
c_str
());
}
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/helper.h
浏览文件 @
68fe1d54
...
...
@@ -14,10 +14,12 @@ limitations under the License. */
#pragma once
#include <cstdio>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -26,6 +28,10 @@ namespace paddle {
namespace
inference
{
namespace
analysis
{
template
<
typename
T
>
void
SetAttr
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
T
&
data
);
template
<
typename
Vec
>
int
AccuDims
(
Vec
&&
vec
,
int
size
)
{
int
res
=
1
;
...
...
@@ -93,7 +99,7 @@ template <typename T>
class
OrderedRegistry
{
public:
T
*
Register
(
const
std
::
string
&
name
,
T
*
x
)
{
PADDLE_ENFORCE
(
!
dic_
.
count
(
name
));
PADDLE_ENFORCE
(
!
dic_
.
count
(
name
)
,
"duplicate key [%s]"
,
name
);
dic_
[
name
]
=
data_
.
size
();
data_
.
emplace_back
(
std
::
unique_ptr
<
T
>
(
x
));
return
data_
.
back
().
get
();
...
...
@@ -117,6 +123,20 @@ T &GetFromScope(const framework::Scope &scope, const std::string &name) {
return
*
var
->
GetMutable
<
T
>
();
}
static
void
ExecShellCommand
(
const
std
::
string
&
cmd
,
std
::
string
*
message
)
{
char
buffer
[
128
];
std
::
shared_ptr
<
FILE
>
pipe
(
popen
(
cmd
.
c_str
(),
"r"
),
pclose
);
if
(
!
pipe
)
{
LOG
(
ERROR
)
<<
"error running command: "
<<
cmd
;
return
;
}
while
(
!
feof
(
pipe
.
get
()))
{
if
(
fgets
(
buffer
,
128
,
pipe
.
get
())
!=
nullptr
)
{
*
message
+=
buffer
;
}
}
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
...
...
paddle/fluid/inference/analysis/node.cc
浏览文件 @
68fe1d54
...
...
@@ -20,6 +20,17 @@ namespace paddle {
namespace
inference
{
namespace
analysis
{
template
<
>
std
::
string
&
NodeAttr
::
As
<
std
::
string
>
()
{
if
(
data_
.
empty
())
{
type_hash_
=
typeid
(
std
::
string
).
hash_code
();
}
PADDLE_ENFORCE_EQ
(
type_hash_
,
typeid
(
std
::
string
).
hash_code
());
return
data_
;
}
std
::
string
&
NodeAttr
::
String
()
{
return
As
<
std
::
string
>
();
}
std
::
vector
<
Dot
::
Attr
>
Value
::
dot_attrs
()
const
{
return
std
::
vector
<
Dot
::
Attr
>
({
Dot
::
Attr
(
"style"
,
"filled,rounded"
),
Dot
::
Attr
(
"shape"
,
"box"
),
...
...
paddle/fluid/inference/analysis/node.h
浏览文件 @
68fe1d54
...
...
@@ -35,6 +35,44 @@ namespace analysis {
class
NodeMap
;
// A helper class to maintain the status from Pass.
struct
NodeAttr
{
// NOTE T should be a primary type or a struct combined by several primary
// types.
// NOTE the STL containers should not use here.
// Some usages
// Attr attr;
// attr.Bool() = true;
bool
&
Bool
()
{
return
As
<
bool
>
();
}
float
&
Float
()
{
return
As
<
float
>
();
}
int32_t
&
Int32
()
{
return
As
<
int32_t
>
();
}
int64_t
&
Int64
()
{
return
As
<
int64_t
>
();
}
void
*&
Pointer
()
{
return
As
<
void
*>
();
}
std
::
string
&
String
();
private:
template
<
typename
T
>
T
&
As
()
{
// init storage in the first usage.
if
(
data_
.
empty
())
{
VLOG
(
4
)
<<
"resize data to "
<<
sizeof
(
T
);
type_hash_
=
typeid
(
T
).
hash_code
();
data_
.
resize
(
sizeof
(
T
));
}
PADDLE_ENFORCE
(
type_hash_
==
typeid
(
T
).
hash_code
(),
"type not matched, origin is %s, want %s"
,
DataTypeNamer
::
Global
().
repr
(
type_hash_
),
DataTypeNamer
::
Global
().
repr
<
T
>
());
PADDLE_ENFORCE_EQ
(
data_
.
size
(),
sizeof
(
T
),
"Node attr type recast error"
);
return
*
reinterpret_cast
<
T
*>
(
&
data_
[
0
]);
}
private:
std
::
string
data_
;
size_t
type_hash_
{
std
::
numeric_limits
<
size_t
>::
max
()};
};
/*
* Node Representation.
*
...
...
@@ -50,8 +88,6 @@ class Node {
Node
()
=
default
;
struct
Attr
;
// Cast to a subclass type, Function for example.
template
<
typename
Subclass
>
Subclass
&
As
()
{
...
...
@@ -71,7 +107,7 @@ class Node {
// Get an additional attribute and convert it to T data type. NOTE this will
// silently create a new attribute if not exists.
Attr
&
attr
(
const
std
::
string
&
name
)
const
{
return
attrs_
[
name
];
}
Node
Attr
&
attr
(
const
std
::
string
&
name
)
const
{
return
attrs_
[
name
];
}
int
id
()
const
{
return
id_
;
}
...
...
@@ -80,6 +116,9 @@ class Node {
void
SetPbDesc
(
void
*
pb
)
{
attr
(
"pb_desc"
).
Pointer
()
=
pb
;
}
void
*
pb_desc
()
const
{
return
attr
(
"pb_desc"
).
Pointer
();
}
void
SetPbMsg
(
const
std
::
string
&
s
)
{
attr
(
"pb_msg"
).
String
()
=
s
;
}
const
std
::
string
&
pb_msg
()
const
{
return
attr
(
"pb_msg"
).
String
();
}
void
SetDeleted
()
{
deleted_
=
true
;
}
bool
deleted
()
const
{
return
deleted_
;
}
...
...
@@ -94,43 +133,6 @@ class Node {
// Output links.
std
::
vector
<
Node
*>
outlinks
;
// A helper class to maintain the status from Pass.
struct
Attr
{
// NOTE T should be a primary type or a struct combined by several primary
// types.
// NOTE the STL containers should not use here.
// Some usages
// Attr attr;
// attr.Bool() = true;
bool
&
Bool
()
{
return
As
<
bool
>
();
}
float
&
Float
()
{
return
As
<
float
>
();
}
int32_t
&
Int32
()
{
return
As
<
int32_t
>
();
}
int64_t
&
Int64
()
{
return
As
<
int64_t
>
();
}
void
*&
Pointer
()
{
return
As
<
void
*>
();
}
private:
template
<
typename
T
>
T
&
As
()
{
// init storage in the first usage.
if
(
data_
.
empty
())
{
VLOG
(
4
)
<<
"resize data to "
<<
sizeof
(
T
);
type_hash_
=
typeid
(
T
).
hash_code
();
data_
.
resize
(
sizeof
(
T
));
}
PADDLE_ENFORCE
(
type_hash_
==
typeid
(
T
).
hash_code
(),
"type not matched, origin is %s, want %s"
,
DataTypeNamer
::
Global
().
repr
(
type_hash_
),
DataTypeNamer
::
Global
().
repr
<
T
>
());
PADDLE_ENFORCE_EQ
(
data_
.
size
(),
sizeof
(
T
),
"Node attr type recast error"
);
return
*
reinterpret_cast
<
T
*>
(
&
data_
[
0
]);
}
private:
std
::
string
data_
;
size_t
type_hash_
{
std
::
numeric_limits
<
size_t
>::
max
()};
};
// Type checks.
bool
IsFunction
()
const
{
return
type_
==
Node
::
Type
::
kFunction
;
}
bool
IsValue
()
const
{
return
type_
==
Node
::
Type
::
kValue
;
}
...
...
@@ -150,7 +152,7 @@ class Node {
Type
type_
{
Type
::
kNone
};
// Mark this node is deleted by some pass.
bool
deleted_
{
false
};
mutable
std
::
unordered_map
<
std
::
string
,
Attr
>
attrs_
;
mutable
std
::
unordered_map
<
std
::
string
,
Node
Attr
>
attrs_
;
};
class
Function
;
...
...
@@ -213,6 +215,10 @@ class Function : public Node {
struct
FunctionBlock
:
public
Node
{
std
::
string
repr
()
const
override
{
return
"block-"
+
std
::
to_string
(
id
());
}
std
::
vector
<
Node
*>
subgraph
;
protected:
FunctionBlock
()
{
SetType
(
Node
::
Type
::
kFunctionBlock
);
}
friend
class
NodeMap
;
};
class
NodeMap
{
...
...
@@ -227,7 +233,7 @@ class NodeMap {
void
Delete
(
size_t
id
);
const
std
::
vector
<
std
::
unique_ptr
<
Node
>>
&
nodes
()
{
return
nodes_
;
}
const
std
::
vector
<
std
::
unique_ptr
<
Node
>>
&
nodes
()
const
{
return
nodes_
;
}
size_t
size
()
const
{
return
nodes_
.
size
();
}
...
...
paddle/fluid/inference/analysis/node_attr_flags.h
0 → 100644
浏览文件 @
68fe1d54
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* This file contains all the flags that declared in Node::Attr.
*
* The Node::Attr is designed to share information between different passes, one
* can get other's attributes in a Node by the flags in this file.
*/
#pragma once
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
#define DECLARE_NODE_ATTR(flag__) const char ATTR_##flag__[] = #flag__;
DECLARE_NODE_ATTR
(
supported_by_tensorrt
)
// bool
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/pass.h
浏览文件 @
68fe1d54
...
...
@@ -60,6 +60,9 @@ class Pass {
return
nullptr
;
}
// Create a debugger Pass that draw the DFG by graphviz toolkit.
virtual
Pass
*
CreateGraphvizDebugerPass
()
const
{
return
nullptr
;
}
// Run on a single Node.
virtual
void
Run
(
Node
*
x
)
{
LOG
(
FATAL
)
<<
"not valid"
;
}
// Run on a single Function.
...
...
paddle/fluid/inference/analysis/pass_manager.cc
浏览文件 @
68fe1d54
...
...
@@ -19,6 +19,18 @@ namespace paddle {
namespace
inference
{
namespace
analysis
{
bool
PassManager
::
Initialize
(
Argument
*
argument
)
{
argument_
=
argument
;
for
(
auto
&
pass
:
data_
)
{
LOG
(
INFO
)
<<
"Initializing pass "
<<
pass
->
repr
();
if
(
!
pass
->
Initialize
(
argument
))
{
LOG
(
ERROR
)
<<
"Failed to initialize pass ["
<<
pass
->
repr
()
<<
"]"
;
return
false
;
}
}
return
true
;
}
void
DfgPassManager
::
RunAll
()
{
PADDLE_ENFORCE
(
argument_
);
for
(
auto
&
pass
:
data_
)
{
...
...
paddle/fluid/inference/analysis/pass_manager.h
浏览文件 @
68fe1d54
...
...
@@ -50,17 +50,7 @@ class PassManager : public OrderedRegistry<Pass> {
// globally shared, so pass them as the arguemnts for all the pass managers.
virtual
bool
Initialize
(
const
Argument
&
argument
)
{
return
false
;
}
virtual
bool
Initialize
(
Argument
*
argument
)
{
argument_
=
argument
;
for
(
auto
&
pass
:
data_
)
{
LOG
(
INFO
)
<<
"Initializing pass "
<<
pass
->
repr
();
if
(
!
pass
->
Initialize
(
argument
))
{
LOG
(
ERROR
)
<<
"Failed to initialize pass ["
<<
pass
->
repr
()
<<
"]"
;
return
false
;
}
}
return
true
;
}
virtual
bool
Initialize
(
Argument
*
argument
);
// Call all the passes' Finalize methods.
virtual
bool
Finalize
()
{
...
...
paddle/fluid/inference/analysis/pass_manager_tester.cc
浏览文件 @
68fe1d54
...
...
@@ -64,6 +64,7 @@ TEST_F(DFG_Tester, DFG_pass_manager) {
manager
.
Register
(
"graphviz"
,
new
DFG_GraphvizDrawPass
(
config
));
manager
.
Register
(
"dfg-to-fluid"
,
new
DataFlowGraphToFluidPass
);
ASSERT_TRUE
(
&
argument
);
ASSERT_TRUE
(
manager
.
Initialize
(
&
argument
));
manager
.
RunAll
();
}
...
...
paddle/fluid/inference/analysis/subgraph_splitter.cc
浏览文件 @
68fe1d54
...
...
@@ -119,10 +119,12 @@ void SubGraphFuse::operator()() { ReplaceNodesWithSubGraphs(); }
void
SubGraphFuse
::
ReplaceNodesWithSubGraphs
()
{
auto
subgraphs
=
SubGraphSplitter
(
graph_
,
node_inside_subgraph_teller_
)();
for
(
auto
&
subgraph
:
subgraphs
)
{
std
::
unordered_set
<
Node
*>
subgraph_uniq
(
subgraph
.
begin
(),
subgraph
.
end
());
// replace this sub-graph with the first node. Two steps: 1. Create a Block
// Node that contains this subgraph 2. Mark the nodes inside the sub-graph
// as deleted. 3. Replace the deleted node with the new Block Node.
auto
*
block_node
=
graph_
->
nodes
.
Create
(
Node
::
Type
::
kFunctionBlock
);
auto
*
block_node
=
static_cast
<
FunctionBlock
*>
(
graph_
->
nodes
.
Create
(
Node
::
Type
::
kFunctionBlock
));
auto
io
=
ExtractInputAndOutputOfSubGraph
(
subgraph
);
block_node
->
inlinks
=
std
::
move
(
io
.
first
);
block_node
->
outlinks
=
std
::
move
(
io
.
second
);
...
...
@@ -130,21 +132,25 @@ void SubGraphFuse::ReplaceNodesWithSubGraphs() {
// TODO(Superjomn) need a unified mechanism to treat deleted node in each
// pass.
node
->
SetDeleted
();
block_node
->
subgraph
.
push_back
(
node
);
}
std
::
unordered_map
<
Node
*
,
Node
*>
delelte_node_map
;
// deleted node to BlockNode
for
(
auto
*
n
:
block_node
->
inlinks
)
{
n
->
inlinks
.
clear
();
}
for
(
auto
*
n
:
block_node
->
outlinks
)
{
n
->
outlinks
.
clear
();
}
for
(
auto
*
n
:
block_node
->
inlinks
)
{
n
->
outlinks
.
push_back
(
block_node
);
// Change all the sub-graph's inputs and outputs corresponding inlink and
// outlink to this sub-graph node.
auto
inlink_or_outlink_cleaner
=
[
&
](
std
::
vector
<
Node
*>
&
nodes
)
{
for
(
auto
*&
n
:
nodes
)
{
if
(
subgraph_uniq
.
count
(
n
))
{
n
=
block_node
;
}
}
std
::
unordered_set
<
Node
*>
uniq
(
nodes
.
begin
(),
nodes
.
end
());
nodes
.
assign
(
uniq
.
begin
(),
uniq
.
end
());
};
for
(
auto
*
i
:
block_node
->
inlinks
)
{
inlink_or_outlink_cleaner
(
i
->
outlinks
);
}
for
(
auto
*
n
:
block_node
->
outlinks
)
{
n
->
inlinks
.
push_back
(
n
);
for
(
auto
*
&
o
:
block_node
->
outlinks
)
{
inlink_or_outlink_cleaner
(
o
->
inlinks
);
}
}
}
...
...
paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.cc
0 → 100644
浏览文件 @
68fe1d54
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h"
#include "paddle/fluid/inference/analysis/node_attr_flags.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
void
TensorRTSubgraphNodeMarkPass
::
Run
(
DataFlowGraph
*
graph
)
{
for
(
auto
&
node
:
graph
->
nodes
.
nodes
())
{
node
->
attr
(
ATTR_supported_by_tensorrt
).
Bool
()
=
teller_
(
node
.
get
());
}
}
class
DfgDebuggerPass
:
public
DFG_GraphvizDrawPass
{
public:
DfgDebuggerPass
(
const
DFG_GraphvizDrawPass
::
Config
&
config
)
:
DFG_GraphvizDrawPass
(
config
)
{}
std
::
string
repr
()
const
override
{
return
"tensorrt-subgraph-node-mark-debugger"
;
}
bool
Finalize
()
override
{
return
true
;
}
protected:
std
::
string
Draw
(
DataFlowGraph
*
graph
)
override
{
Dot
dot
;
// Add nodes
for
(
size_t
i
=
0
;
i
<
graph
->
nodes
.
size
();
i
++
)
{
const
Node
&
node
=
graph
->
nodes
.
Get
(
i
);
if
(
config_
.
display_deleted_node
||
!
node
.
deleted
())
{
auto
dot_attr
=
node
.
dot_attrs
();
if
(
node
.
attr
(
ATTR_supported_by_tensorrt
).
Bool
())
{
dot_attr
.
assign
(
{
Dot
::
Attr
{
"color"
,
"green"
},
Dot
::
Attr
{
"style"
,
"filled"
}});
}
dot
.
AddNode
(
node
.
repr
(),
dot_attr
);
}
}
// Add edges
for
(
size_t
i
=
0
;
i
<
graph
->
nodes
.
size
();
i
++
)
{
const
Node
&
node
=
graph
->
nodes
.
Get
(
i
);
if
(
!
config_
.
display_deleted_node
&&
node
.
deleted
())
continue
;
for
(
auto
&
in
:
node
.
inlinks
)
{
if
(
!
config_
.
display_deleted_node
&&
in
->
deleted
())
continue
;
dot
.
AddEdge
(
in
->
repr
(),
node
.
repr
(),
{});
}
}
return
dot
.
Build
();
}
};
Pass
*
TensorRTSubgraphNodeMarkPass
::
CreateGraphvizDebugerPass
()
const
{
DFG_GraphvizDrawPass
::
Config
config
(
FLAGS_inference_analysis_graphviz_log_root
,
"tensorrt_marked_node"
);
return
new
DfgDebuggerPass
(
config
);
}
bool
TensorRTSubgraphNodeMarkPass
::
Finalize
()
{
return
true
;
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h
0 → 100644
浏览文件 @
68fe1d54
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* This file defines TensorRTSubgraphNodeMarkPass which helps to mark the ops
* that supported by TensorRT engine.
*/
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/subgraph_splitter.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
/*
* Mark the operators that TensorRT engine supports.
*/
class
TensorRTSubgraphNodeMarkPass
:
public
DataFlowGraphPass
{
public:
using
teller_t
=
SubGraphSplitter
::
NodeInsideSubgraphTeller
;
TensorRTSubgraphNodeMarkPass
(
const
teller_t
&
teller
)
:
teller_
(
teller
)
{}
bool
Initialize
(
Argument
*
argument
)
override
{
return
true
;
}
// This class get a sub-graph as input and determine whether to transform this
// sub-graph into TensorRT.
void
Run
(
DataFlowGraph
*
graph
)
override
;
std
::
string
repr
()
const
{
return
"tensorrt-sub-subgraph-mark"
;
}
std
::
string
description
()
const
{
return
"tensorrt sub-graph mark pass"
;
}
Pass
*
CreateGraphvizDebugerPass
()
const
override
;
bool
Finalize
()
override
;
private:
teller_t
teller_
;
};
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass_tester.cc
0 → 100644
浏览文件 @
68fe1d54
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h"
#include <gtest/gtest.h>
#include "paddle/fluid/inference/analysis/node_attr_flags.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
TEST_F
(
DFG_Tester
,
tensorrt_subgraph_node_mark_pass
)
{
// init
FluidToDataFlowGraphPass
pass
;
ASSERT_TRUE
(
pass
.
Initialize
(
&
argument
));
argument
.
main_dfg
.
reset
(
new
DataFlowGraph
);
pass
.
Run
(
argument
.
main_dfg
.
get
());
TensorRTSubgraphNodeMarkPass
::
teller_t
teller
=
[](
const
Node
*
node
)
{
return
node
->
IsFunction
()
&&
static_cast
<
const
Function
*>
(
node
)
->
func_type
()
==
"mul"
;
};
TensorRTSubgraphNodeMarkPass
pass1
(
teller
);
ASSERT_TRUE
(
pass1
.
Initialize
(
&
argument
));
pass1
.
Run
(
argument
.
main_dfg
.
get
());
int
counter
{
0
};
for
(
auto
&
node
:
argument
.
main_dfg
->
nodes
.
nodes
())
{
counter
+=
node
->
attr
(
ATTR_supported_by_tensorrt
).
Bool
();
}
LOG
(
INFO
)
<<
counter
<<
" nodes marked"
;
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/tensorrt_subgraph_pass.cc
浏览文件 @
68fe1d54
...
...
@@ -24,7 +24,7 @@ TensorRTSubGraphPass::TensorRTSubGraphPass(
:
node_inside_subgraph_teller_
(
teller
)
{}
void
TensorRTSubGraphPass
::
Run
(
DataFlowGraph
*
graph
)
{
SubGraphFuse
(
graph
,
node_inside_subgraph_teller_
);
SubGraphFuse
(
graph
,
node_inside_subgraph_teller_
)
()
;
}
}
// namespace analysis
...
...
paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h
浏览文件 @
68fe1d54
...
...
@@ -38,6 +38,11 @@ class TensorRTSubGraphPass : public DataFlowGraphPass {
// sub-graph into TensorRT.
void
Run
(
DataFlowGraph
*
graph
)
override
;
bool
Finalize
()
override
{
return
true
;
}
std
::
string
repr
()
const
{
return
"tensorrt-sub-graph"
;
}
std
::
string
description
()
const
{
return
"tensorrt sub graph pass"
;
}
private:
NodeInsideSubgraphTeller
node_inside_subgraph_teller_
;
};
...
...
paddle/fluid/inference/analysis/tensorrt_subgraph_pass_tester.cc
浏览文件 @
68fe1d54
...
...
@@ -23,49 +23,48 @@ namespace paddle {
namespace
inference
{
namespace
analysis
{
DEFINE_string
(
model_dir
,
""
,
"inference test model dir
"
);
DEFINE_string
(
dot_dir
,
"./"
,
"
"
);
TEST
(
TensorRTSubGraph
,
single_pass
)
{
auto
desc
=
LoadProgramDesc
();
auto
dfg
=
ProgramDescToDFG
(
desc
);
SubGraphSplitter
::
NodeInsideSubgraphTeller
teller
=
[](
const
Node
*
node
)
{
TEST_F
(
DFG_Tester
,
tensorrt_single_pass
)
{
std
::
unordered_set
<
std
::
string
>
teller_set
(
{
"elementwise_add"
,
"mul"
,
"sigmoid"
});
SubGraphSplitter
::
NodeInsideSubgraphTeller
teller
=
[
&
](
const
Node
*
node
)
{
if
(
node
->
type
()
!=
Node
::
Type
::
kFunction
)
return
false
;
const
auto
*
func
=
static_cast
<
const
Function
*>
(
node
);
if
(
func
->
func_type
()
==
"elementwise_add"
||
func
->
func_type
()
==
"relu"
||
func
->
func_type
()
==
"conv2d"
||
func
->
func_type
()
==
"mul"
||
func
->
func_type
()
==
"sigmoid"
||
func
->
func_type
()
==
"softmax"
)
{
LOG
(
INFO
)
<<
"sub-graph marked "
<<
node
->
repr
();
return
true
;
}
if
(
teller_set
.
count
(
func
->
func_type
()))
return
true
;
return
false
;
};
DFG_GraphvizDrawPass
::
Config
config
{
"./"
,
"test"
};
DFG_GraphvizDrawPass
dfg_pass
(
config
);
dfg_pass
.
Initialize
();
DFG_GraphvizDrawPass
dfg_pass1
(
config
);
dfg_pass1
.
Initialize
();
dfg_pass
.
Run
(
&
dfg
);
LOG
(
INFO
)
<<
"init"
;
DFG_GraphvizDrawPass
::
Config
config
{
FLAGS_dot_dir
,
"origin"
};
DFG_GraphvizDrawPass
::
Config
config1
{
FLAGS_dot_dir
,
"fusion"
};
DFG_GraphvizDrawPass
dfg_pass
(
config
);
DFG_GraphvizDrawPass
dfg_pass1
(
config1
);
FluidToDataFlowGraphPass
pass0
;
TensorRTSubGraphPass
trt_pass
(
std
::
move
(
teller
));
trt_pass
.
Initialize
();
trt_pass
.
Run
(
&
dfg
);
LOG
(
INFO
)
<<
"Initialize"
;
dfg_pass
.
Initialize
(
&
argument
);
dfg_pass1
.
Initialize
(
&
argument
);
pass0
.
Initialize
(
&
argument
);
trt_pass
.
Initialize
(
&
argument
);
dfg_pass1
.
Run
(
&
dfg
);
LOG
(
INFO
)
<<
"Run"
;
argument
.
main_dfg
.
reset
(
new
DataFlowGraph
);
pass0
.
Run
(
argument
.
main_dfg
.
get
());
dfg_pass
.
Run
(
argument
.
main_dfg
.
get
());
trt_pass
.
Run
(
argument
.
main_dfg
.
get
());
dfg_pass1
.
Run
(
argument
.
main_dfg
.
get
());
// Check the TRT op's block desc
for
(
auto
node
:
dfg
.
nodes
.
nodes
())
{
for
(
auto
&
node
:
argument
.
main_dfg
->
nodes
.
nodes
())
{
if
(
node
->
IsFunctionBlock
())
{
LOG
(
INFO
)
<<
"get function block"
;
}
}
}
TEST
(
TensorRTSubGraph
,
pass_manager
)
{}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
68fe1d54
...
...
@@ -226,7 +226,8 @@ op_library(sequence_softmax_op DEPS softmax)
if
(
WITH_GPU AND TENSORRT_FOUND
)
op_library
(
tensorrt_engine_op DEPS tensorrt_engine
)
nv_test
(
test_tensorrt_engine_op SRCS tensorrt_engine_op_test.cc
DEPS tensorrt_engine_op tensorrt_engine tensorrt_converter
)
DEPS tensorrt_engine_op tensorrt_engine tensorrt_converter
analysis
)
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
tensorrt_engine_op
)
endif
()
...
...
paddle/fluid/operators/adam_op.cc
浏览文件 @
68fe1d54
...
...
@@ -56,9 +56,12 @@ class AdamOp : public framework::OperatorWithKernel {
"Beta2 power accumulator should have 1 dimension"
);
auto
param_dims
=
ctx
->
GetInputDim
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Grad"
),
"Param and Grad input of AdamOp should have same dimension"
);
if
(
ctx
->
GetInputsVarType
(
"Grad"
)[
0
]
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Grad"
),
"Param and Grad input of AdamOp should have same dimension"
);
}
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Moment1"
),
"Param and Moment1 input of AdamOp should have same dimension"
);
...
...
paddle/fluid/operators/adam_op.h
浏览文件 @
68fe1d54
...
...
@@ -282,6 +282,10 @@ class AdamOpKernel : public framework::OpKernel<T> {
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
grad
=
Ref
(
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
),
"Must set Grad"
);
if
(
grad
.
rows
().
size
()
==
0
)
{
VLOG
(
3
)
<<
"grad row size is 0!!"
;
return
;
}
// merge duplicated rows if any.
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
auto
grad_merge
=
...
...
paddle/fluid/operators/average_accumulates_op.cc
浏览文件 @
68fe1d54
...
...
@@ -19,28 +19,28 @@ namespace operators {
template
<
>
void
GetAccumulators
<
paddle
::
platform
::
CPUDeviceContext
>
(
const
framework
::
ExecutionContext
&
ctx
,
int64_t
*
num_updates
_
,
int64_t
*
num_accumulates
_
,
int64_t
*
old_num_accumulates_
)
{
const
framework
::
ExecutionContext
&
ctx
,
int64_t
*
num_updates
,
int64_t
*
num_accumulates
,
int64_t
*
old_num_accumulates
)
{
auto
*
in_old_num_accumulates
=
ctx
.
Input
<
Tensor
>
(
"in_old_num_accumulates"
);
auto
*
in_num_accumulates
=
ctx
.
Input
<
Tensor
>
(
"in_num_accumulates"
);
auto
*
in_num_updates
=
ctx
.
Input
<
Tensor
>
(
"in_num_updates"
);
*
old_num_accumulates
_
=
in_old_num_accumulates
->
data
<
int64_t
>
()[
0
];
*
num_accumulates
_
=
in_num_accumulates
->
data
<
int64_t
>
()[
0
];
*
num_updates
_
=
in_num_updates
->
data
<
int64_t
>
()[
0
];
*
old_num_accumulates
=
in_old_num_accumulates
->
data
<
int64_t
>
()[
0
];
*
num_accumulates
=
in_num_accumulates
->
data
<
int64_t
>
()[
0
];
*
num_updates
=
in_num_updates
->
data
<
int64_t
>
()[
0
];
}
template
<
>
void
SetAccumulators
<
paddle
::
platform
::
CPUDeviceContext
>
(
const
framework
::
ExecutionContext
&
ctx
,
int64_t
num_updates
_
,
int64_t
num_accumulates
_
,
int64_t
old_num_accumulates_
)
{
const
framework
::
ExecutionContext
&
ctx
,
int64_t
num_updates
,
int64_t
num_accumulates
,
int64_t
old_num_accumulates
)
{
auto
*
out_old_num_accumulates
=
ctx
.
Output
<
Tensor
>
(
"out_old_num_accumulates"
);
auto
*
out_num_accumulates
=
ctx
.
Output
<
Tensor
>
(
"out_num_accumulates"
);
auto
*
out_num_updates
=
ctx
.
Output
<
Tensor
>
(
"out_num_updates"
);
out_old_num_accumulates
->
data
<
int64_t
>
()[
0
]
=
old_num_accumulates
_
;
out_num_accumulates
->
data
<
int64_t
>
()[
0
]
=
num_accumulates
_
;
out_num_updates
->
data
<
int64_t
>
()[
0
]
=
num_updates
_
;
out_old_num_accumulates
->
data
<
int64_t
>
()[
0
]
=
old_num_accumulates
;
out_num_accumulates
->
data
<
int64_t
>
()[
0
]
=
num_accumulates
;
out_num_updates
->
data
<
int64_t
>
()[
0
]
=
num_updates
;
}
class
AverageAccumulatesOp
:
public
framework
::
OperatorWithKernel
{
...
...
@@ -177,7 +177,7 @@ class AverageAccumulatesOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
AverageAccumulates Operator.
Accumulate the sum of parameter w
ht
in sliding window. The size of sliding window is
Accumulate the sum of parameter w
ith
in sliding window. The size of sliding window is
determined by 'average_window', 'max_average_window' and 'min_average_window'.
Memory was shared by Input(in_sum_1) and Output(out_sum_1) which acts as an accumulator 'sum_1'.
'sum_2', 'sum_3', 'num_accumulates', 'old_num_accumulates' and 'num_updates' were the same as 'sum_1'.
...
...
paddle/fluid/operators/average_accumulates_op.h
浏览文件 @
68fe1d54
...
...
@@ -54,8 +54,9 @@ class AverageAccumulatesKernel : public framework::OpKernel<T> {
float
average_window
=
ctx
.
Attr
<
float
>
(
"average_window"
);
int64_t
max_average_window
=
ctx
.
Attr
<
int64_t
>
(
"max_average_window"
);
int64_t
min_average_window
=
ctx
.
Attr
<
int64_t
>
(
"min_average_window"
);
min_average_window
=
std
::
min
<
int64_t
>
(
min_average_window
,
max_average_window
);
PADDLE_ENFORCE_LE
(
min_average_window
,
max_average_window
,
"min_average_window shouldn't be larger than "
"max_average_window"
);
// Get inputs
auto
*
param
=
ctx
.
Input
<
Tensor
>
(
"param"
);
...
...
paddle/fluid/operators/fill_zeros_like_op.cc
浏览文件 @
68fe1d54
...
...
@@ -26,8 +26,12 @@ class FillZerosLikeOp : public framework::OperatorWithKernel {
"Input(X) of FillZerosLikeOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of FillZerosLikeOp should not be null."
);
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
if
(
ctx
->
IsRuntime
()
&&
ctx
->
GetOutputsVarType
(
"Out"
)[
0
]
==
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
{
return
;
// skip runtime infershape when is tensor array;
}
}
};
...
...
@@ -39,7 +43,7 @@ class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
FillZerosLike Operator.
Fill up a variable with zeros.
Fill up a variable with zeros
, supporting both LoDTensor and LoDTensorArray
.
The output will have the same size as the input.
)DOC"
);
...
...
paddle/fluid/operators/fill_zeros_like_op.h
浏览文件 @
68fe1d54
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
...
...
@@ -23,12 +24,29 @@ template <typename DeviceContext, typename T>
class
FillZerosLikeKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
setter
;
setter
(
context
.
template
device_context
<
DeviceContext
>(),
out
,
static_cast
<
T
>
(
0
));
auto
var
=
context
.
InputVar
(
"X"
);
if
(
var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
input
=
*
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
&
output
=
*
context
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
output
.
Resize
(
input
.
dims
());
output
.
set_lod
(
input
.
lod
());
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
setter
;
setter
(
context
.
template
device_context
<
DeviceContext
>(),
&
(
output
),
static_cast
<
T
>
(
0
));
}
else
if
(
var
->
IsType
<
framework
::
LoDTensorArray
>
())
{
auto
&
input
=
*
context
.
Input
<
framework
::
LoDTensorArray
>
(
"X"
);
auto
&
output
=
*
context
.
Output
<
framework
::
LoDTensorArray
>
(
"Out"
);
output
.
resize
(
input
.
size
());
for
(
auto
i
=
0
;
i
<
input
.
size
();
i
++
)
{
output
[
i
].
Resize
(
input
[
i
].
dims
());
output
[
i
].
set_lod
(
input
[
i
].
lod
());
output
[
i
].
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
setter
;
setter
(
context
.
template
device_context
<
DeviceContext
>(),
&
(
output
[
i
]),
static_cast
<
T
>
(
0
));
}
}
}
};
...
...
paddle/fluid/operators/tensorrt_engine_op.h
浏览文件 @
68fe1d54
...
...
@@ -53,6 +53,7 @@ template <typename DeviceContext, typename T>
class
TensorRTEngineKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
VLOG
(
4
)
<<
"TensorRTEngineKernel executing"
;
auto
engine_name
=
context
.
Attr
<
std
::
string
>
(
"engine_uniq_key"
);
if
(
!
Singleton
<
TRT_EngineManager
>::
Global
().
HasEngine
(
engine_name
))
{
Prepare
(
context
);
...
...
paddle/fluid/operators/tensorrt_engine_op_test.cc
浏览文件 @
68fe1d54
...
...
@@ -19,6 +19,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
...
...
@@ -51,48 +52,10 @@ void AddTensorToBlockDesc(framework::proto::BlockDesc* block,
*
var
=
*
desc
.
Proto
();
}
template
<
typename
T
>
void
SetAttr
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
T
&
data
);
template
<
>
void
SetAttr
<
std
::
string
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
std
::
string
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
STRING
);
attr
->
set_s
(
data
);
}
template
<
>
void
SetAttr
<
int
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
int
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
INT
);
attr
->
set_i
(
data
);
}
template
<
>
void
SetAttr
<
int64_t
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
int64_t
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
LONG
);
attr
->
set_l
(
data
);
}
template
<
>
void
SetAttr
<
std
::
vector
<
std
::
string
>>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
std
::
vector
<
std
::
string
>&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
STRINGS
);
for
(
const
auto
&
s
:
data
)
{
attr
->
add_strings
(
s
.
c_str
());
}
}
}
// namespace
using
inference
::
analysis
::
SetAttr
;
TEST
(
TensorRTEngineOp
,
manual
)
{
framework
::
ProgramDesc
program
;
auto
*
block_
=
program
.
Proto
()
->
add_blocks
();
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
68fe1d54
...
...
@@ -107,6 +107,7 @@ function cmake_gen() {
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
-DWITH_CONTRIB=
${
WITH_CONTRIB
:-
ON
}
-DWITH_ANAKIN=
${
WITH_ANAKIN
:-
ON
}
-DWITH_INFERENCE_DEMO=
${
WITH_INFERENCE_DEMO
:-
ON
}
========================================
EOF
# Disable UNITTEST_USE_VIRTUALENV in docker because
...
...
@@ -134,7 +135,8 @@ EOF
-DWITH_FLUID_ONLY
=
${
WITH_FLUID_ONLY
:-
OFF
}
\
-DCMAKE_EXPORT_COMPILE_COMMANDS
=
ON
\
-DWITH_CONTRIB
=
${
WITH_CONTRIB
:-
ON
}
\
-DWITH_ANAKIN
=
${
WITH_ANAKIN
:-
ON
}
-DWITH_ANAKIN
=
${
WITH_ANAKIN
:-
ON
}
\
-DWITH_INFERENCE_DEMO
=
${
WITH_INFERENCE_DEMO
:-
ON
}
}
function
abort
(){
...
...
python/paddle/dataset/mnist.py
浏览文件 @
68fe1d54
...
...
@@ -111,7 +111,7 @@ def fetch():
paddle
.
dataset
.
common
.
download
(
TRAIN_IMAGE_URL
,
'mnist'
,
TRAIN_IMAGE_MD5
)
paddle
.
dataset
.
common
.
download
(
TRAIN_LABEL_URL
,
'mnist'
,
TRAIN_LABEL_MD5
)
paddle
.
dataset
.
common
.
download
(
TEST_IMAGE_URL
,
'mnist'
,
TEST_IMAGE_MD5
)
paddle
.
dataset
.
common
.
download
(
TEST_LABEL_URL
,
'mnist'
,
T
RAIN
_LABEL_MD5
)
paddle
.
dataset
.
common
.
download
(
TEST_LABEL_URL
,
'mnist'
,
T
EST
_LABEL_MD5
)
def
convert
(
path
):
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
68fe1d54
...
...
@@ -95,6 +95,7 @@ __all__ = [
'relu'
,
'log'
,
'crop'
,
'fill_zeros_like'
,
]
...
...
@@ -5184,3 +5185,40 @@ def crop(x, shape=None, offsets=None, name=None):
outputs
=
{
'Out'
:
out
},
attrs
=
None
if
len
(
attrs
)
==
0
else
attrs
)
return
out
def
fill_zeros_like
(
x
):
"""
This layer takes an input and outputs a variable that has the same structure as
the input and with all the element values as zero. The variable can be a Tensor
or TensorArray.
.. code-block:: text
Given
X = [[0, 1, 2, 0],
[0, 3, 4, 0],
[0, 0, 0, 0]],
output is:
Out = [[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]].
Args:
x (Variable): The input variable, which could be a tensor or tensor array
Returns:
Variable: The zero-filled variable, which has the same type and shape as
the input variable.
Examples:
.. code-block:: python
y = fluid.layers.fill_zeros_like(x)
"""
helper
=
LayerHelper
(
'fill_zeros_like'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'fill_zeros_like'
,
inputs
=
{
'X'
:
[
x
]},
outputs
=
{
'Out'
:
[
out
]})
return
out
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
68fe1d54
...
...
@@ -51,3 +51,4 @@ py_test_modules(test_dist_train MODULES test_dist_train SERIAL)
py_test_modules
(
test_parallel_executor_crf MODULES test_parallel_executor_crf SERIAL
)
py_test_modules
(
test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL
)
set_tests_properties
(
test_listen_and_serv_op PROPERTIES TIMEOUT 20
)
set_tests_properties
(
test_dist_mnist PROPERTIES TIMEOUT 180
)
python/paddle/fluid/tests/unittests/test_dist_mnist.py
0 → 100644
浏览文件 @
68fe1d54
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
SEED
=
1
DTYPE
=
"float32"
paddle
.
dataset
.
mnist
.
fetch
()
# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def
cnn_model
(
data
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
data
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
# TODO(dzhwinter) : refine the initializer and random seed settting
SIZE
=
10
input_shape
=
conv_pool_2
.
shape
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
1
:],
1
)]
+
[
SIZE
]
scale
=
(
2.0
/
(
param_shape
[
0
]
**
2
*
SIZE
))
**
0.5
predict
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
SIZE
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)))
return
predict
def
get_model
(
batch_size
):
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
predict
=
cnn_model
(
images
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Evaluator
batch_size_tensor
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size_tensor
)
inference_program
=
fluid
.
default_main_program
().
clone
()
# Optimization
opt
=
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.001
,
beta1
=
0.9
,
beta2
=
0.999
)
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
opt
.
minimize
(
avg_cost
)
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
def
get_transpiler
(
trainer_id
,
main_program
,
pserver_endpoints
,
trainers
):
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
trainer_id
=
trainer_id
,
program
=
main_program
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
return
t
def
run_pserver
(
pserver_endpoints
,
trainers
,
current_endpoint
):
get_model
(
batch_size
=
20
)
t
=
get_transpiler
(
0
,
fluid
.
default_main_program
(),
pserver_endpoints
,
trainers
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
exe
.
run
(
pserver_prog
)
class
TestDistMnist
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_trainers
=
1
self
.
_pservers
=
1
self
.
_ps_endpoints
=
"127.0.0.1:9123"
def
start_pserver
(
self
,
endpoint
):
p
=
Process
(
target
=
run_pserver
,
args
=
(
self
.
_ps_endpoints
,
self
.
_trainers
,
endpoint
))
p
.
start
()
return
p
.
pid
def
_wait_ps_ready
(
self
,
pid
):
retry_times
=
5
while
True
:
assert
retry_times
>=
0
,
"wait ps ready failed"
time
.
sleep
(
1
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
:
retry_times
-=
1
def
stop_pserver
(
self
,
pid
):
os
.
kill
(
pid
,
signal
.
SIGTERM
)
def
test_with_place
(
self
):
p
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
pserver_pid
=
self
.
start_pserver
(
self
.
_ps_endpoints
)
self
.
_wait_ps_ready
(
pserver_pid
)
self
.
run_trainer
(
p
,
0
)
self
.
stop_pserver
(
pserver_pid
)
def
run_trainer
(
self
,
place
,
trainer_id
):
test_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
=
get_model
(
batch_size
=
20
)
t
=
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
self
.
_ps_endpoints
,
self
.
_trainers
)
trainer_prog
=
t
.
get_trainer_program
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
feed_var_list
=
[
var
for
var
in
trainer_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
]
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
for
pass_id
in
xrange
(
10
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
exe
.
run
(
trainer_prog
,
feed
=
feeder
.
feed
(
data
))
if
(
batch_id
+
1
)
%
10
==
0
:
acc_set
=
[]
avg_loss_set
=
[]
for
test_data
in
test_reader
():
acc_np
,
avg_loss_np
=
exe
.
run
(
program
=
test_program
,
feed
=
feeder
.
feed
(
test_data
),
fetch_list
=
[
batch_acc
,
avg_cost
])
acc_set
.
append
(
float
(
acc_np
))
avg_loss_set
.
append
(
float
(
avg_loss_np
))
# get test acc and loss
acc_val
=
np
.
array
(
acc_set
).
mean
()
avg_loss_val
=
np
.
array
(
avg_loss_set
).
mean
()
if
float
(
acc_val
)
>
0.8
:
# Smaller value to increase CI speed
return
else
:
print
(
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'
.
format
(
pass_id
,
batch_id
+
1
,
float
(
avg_loss_val
),
float
(
acc_val
)))
if
math
.
isnan
(
float
(
avg_loss_val
)):
assert
(
"got Nan loss, training failed."
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fill_zeros_like_op_for_array.py
0 → 100644
浏览文件 @
68fe1d54
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.fluid.core
as
core
import
numpy
import
paddle.fluid.layers
as
layers
from
paddle.fluid.framework
import
Program
,
program_guard
from
paddle.fluid.executor
import
Executor
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
class
TestFillZerosLikeOpForTensorArray
(
unittest
.
TestCase
):
def
place
(
self
):
return
core
.
CPUPlace
()
def
test_zero_filling_lod_tensor_array
(
self
):
tensor
=
core
.
LoDTensor
()
tensor
.
set
(
numpy
.
arange
(
20
).
reshape
(
20
,
1
).
astype
(
'int32'
),
self
.
place
())
tensor
.
set_lod
([[
0
,
2
,
5
],
[
0
,
3
,
9
,
11
,
17
,
20
]])
expect
=
[
numpy
.
array
(
[
0
,
0
,
0
,
0
,
0
],
dtype
=
'int32'
),
numpy
.
array
(
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
dtype
=
'int32'
),
numpy
.
array
(
[
0
,
0
,
0
],
dtype
=
'int32'
)
]
lod
=
[[[
0
,
2
,
5
]],
[[
0
,
6
,
12
]],
[[
0
,
3
]]]
self
.
main
(
tensor
=
tensor
,
expect_array
=
expect
,
expect_lod
=
lod
,
expect_max_len
=
3
)
def
main
(
self
,
tensor
,
expect_array
,
expect_lod
,
expect_max_len
,
level
=
0
):
place
=
self
.
place
()
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
10
])
x
.
persistable
=
True
table
=
layers
.
lod_rank_table
(
x
,
level
=
level
)
max_len
=
layers
.
max_sequence_len
(
table
)
max_len
.
persistable
=
True
array
=
layers
.
lod_tensor_to_array
(
x
,
table
)
array
=
layers
.
fill_zeros_like
(
array
)
array
.
persistable
=
True
result
=
layers
.
array_to_lod_tensor
(
array
,
table
)
result
.
persistable
=
True
exe
=
Executor
(
place
)
scope
=
core
.
Scope
()
exe
.
run
(
program
,
feed
=
{
'x'
:
tensor
},
scope
=
scope
)
var
=
scope
.
find_var
(
array
.
name
)
array
=
var
.
get_lod_tensor_array
()
if
expect_array
is
not
None
and
expect_lod
is
not
None
:
self
.
check_array_same
(
array
,
expect_array
,
expect_lod
)
self
.
assertEqual
(
numpy
.
array
(
scope
.
find_var
(
max_len
.
name
).
get_tensor
())[
0
],
expect_max_len
)
def
check_array_same
(
self
,
array
,
expect_tensor
,
expect_lod
):
self
.
assertEqual
(
len
(
expect_tensor
),
len
(
array
))
for
i
,
exp
in
enumerate
(
zip
(
expect_tensor
,
expect_lod
)):
exp_tensor
,
exp_lod
=
exp
exp_tensor
=
numpy
.
expand_dims
(
exp_tensor
,
axis
=
1
)
self
.
assertTrue
(
numpy
.
allclose
(
exp_tensor
,
numpy
.
array
(
array
[
i
])))
self
.
assertEqual
(
exp_lod
,
array
[
i
].
lod
())
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/trainer.py
浏览文件 @
68fe1d54
...
...
@@ -315,7 +315,7 @@ class Trainer(object):
for
ip
in
worker_ips
.
split
(
","
):
worker_endpoints
.
append
(
':'
.
join
([
ip
,
port
]))
self
.
num_trainers
=
len
(
worker_endpoints
)
current_endpoint
=
os
.
getenv
(
"P
OD
_IP"
)
+
":"
+
port
current_endpoint
=
os
.
getenv
(
"P
ADDLE_CURRENT
_IP"
)
+
":"
+
port
worker_endpoints
.
remove
(
current_endpoint
)
# TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
# in ParallelExecutor to start
...
...
python/paddle/v2/dataset/mnist.py
浏览文件 @
68fe1d54
...
...
@@ -112,7 +112,7 @@ def fetch():
paddle
.
v2
.
dataset
.
common
.
download
(
TRAIN_IMAGE_URL
,
'mnist'
,
TRAIN_IMAGE_MD5
)
paddle
.
v2
.
dataset
.
common
.
download
(
TRAIN_LABEL_URL
,
'mnist'
,
TRAIN_LABEL_MD5
)
paddle
.
v2
.
dataset
.
common
.
download
(
TEST_IMAGE_URL
,
'mnist'
,
TEST_IMAGE_MD5
)
paddle
.
v2
.
dataset
.
common
.
download
(
TEST_LABEL_URL
,
'mnist'
,
T
RAIN
_LABEL_MD5
)
paddle
.
v2
.
dataset
.
common
.
download
(
TEST_LABEL_URL
,
'mnist'
,
T
EST
_LABEL_MD5
)
def
convert
(
path
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录