Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
681d908e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
681d908e
编写于
1月 14, 2020
作者:
F
FlyingQianMM
提交者:
GitHub
1月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add backward gradient computation for op argsort. cherry-pick #22203. test=release/1.7 (#22233)
上级
c63a63d5
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
287 addition
and
6 deletion
+287
-6
paddle/fluid/operators/argsort_op.cc
paddle/fluid/operators/argsort_op.cc
+50
-5
paddle/fluid/operators/argsort_op.cu
paddle/fluid/operators/argsort_op.cu
+123
-0
paddle/fluid/operators/argsort_op.h
paddle/fluid/operators/argsort_op.h
+97
-0
python/paddle/fluid/tests/unittests/test_argsort_op.py
python/paddle/fluid/tests/unittests/test_argsort_op.py
+17
-1
未找到文件。
paddle/fluid/operators/argsort_op.cc
浏览文件 @
681d908e
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/argsort_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -21,7 +22,7 @@ class ArgsortOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of ArgsortOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
...
...
@@ -49,6 +50,24 @@ class ArgsortOp : public framework::OperatorWithKernel {
}
};
class
ArgsortGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*-->*/
framework
::
GradVarName
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
)),
ctx
.
device_context
());
}
};
class
ArgsortOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
...
...
@@ -83,16 +102,42 @@ Output(Indices) gives the sorted order along the given axis Attr(axis).
}
};
template
<
typename
T
>
class
ArgsortGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
std
::
unique_ptr
<
T
>
Apply
()
const
override
{
std
::
unique_ptr
<
T
>
op
(
new
T
());
op
->
SetType
(
"argsort_grad"
);
op
->
SetInput
(
"Indices"
,
this
->
Output
(
"Indices"
));
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetAttrMap
(
this
->
Attrs
());
return
op
;
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE
(
ArgsortGradNoNeedBufferVarInference
,
"X"
);
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
argsort
,
ops
::
ArgsortOp
,
ops
::
ArgsortOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
argsort
,
ops
::
ArgsortOp
,
ops
::
ArgsortOpMaker
,
ops
::
ArgsortGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
ArgsortGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
argsort_grad
,
ops
::
ArgsortGradOp
,
ops
::
ArgsortGradNoNeedBufferVarInference
);
REGISTER_OP_CPU_KERNEL
(
argsort
,
ops
::
ArgsortKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
ArgsortKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
ArgsortKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
ArgsortKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
argsort_grad
,
ops
::
ArgsortGradientKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
ArgsortGradientKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
ArgsortGradientKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
ArgsortGradientKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
);
paddle/fluid/operators/argsort_op.cu
浏览文件 @
681d908e
...
...
@@ -58,6 +58,19 @@ static __global__ void FillIndex(T* indices, T num_rows, T num_cols) {
}
}
template
<
typename
T
,
typename
IndType
>
static
__global__
void
FillGrad
(
const
T
*
dO
,
const
IndType
*
indices
,
T
*
dX
,
IndType
num_rows
,
IndType
num_cols
)
{
int
col_id
=
threadIdx
.
x
;
int
row_id
=
blockIdx
.
x
;
for
(
IndType
j
=
row_id
;
j
<
num_rows
;
j
+=
gridDim
.
x
)
{
for
(
IndType
i
=
col_id
;
i
<
num_cols
;
i
+=
blockDim
.
x
)
{
dX
[
j
*
num_cols
+
indices
[
j
*
num_cols
+
i
]]
=
dO
[
j
*
num_cols
+
i
];
}
}
}
// Sort by flag descending, True: descending. False: Ascending.
// Default is false.
template
<
typename
T
,
typename
IndType
>
...
...
@@ -160,6 +173,35 @@ void ArgFullSort(const platform::CUDADeviceContext& ctx, const Tensor* input,
temp_storage_bytes
,
cudaGetErrorString
(
err
));
}
template
<
typename
T
,
typename
IndType
>
void
ArgFullAssign
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
Tensor
*
dO
,
const
Tensor
*
indices
,
Tensor
*
dX
,
const
IndType
num_rows
,
const
IndType
num_cols
)
{
auto
cu_stream
=
ctx
.
stream
();
auto
ComputeBlockSize
=
[](
IndType
col
)
{
if
(
col
>
512
)
return
1024
;
else
if
(
col
>
256
&&
col
<=
512
)
return
512
;
else
if
(
col
>
128
&&
col
<=
256
)
return
256
;
else
if
(
col
>
64
&&
col
<=
128
)
return
128
;
else
return
64
;
};
int
block_size
=
ComputeBlockSize
(
num_cols
);
int
maxGridDimX
=
ctx
.
GetCUDAMaxGridDimSize
().
x
;
// actually, int num_rows < max_grid_size
int
grid_size
=
num_rows
<
maxGridDimX
?
num_rows
:
maxGridDimX
;
FillGrad
<<<
grid_size
,
block_size
,
0
,
cu_stream
>>>
(
dO
->
data
<
T
>
(),
indices
->
data
<
IndType
>
(),
dX
->
data
<
T
>
(),
num_rows
,
num_cols
);
}
template
<
typename
T
>
class
ArgsortOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -234,6 +276,81 @@ class ArgsortOpCUDAKernel : public framework::OpKernel<T> {
}
};
template
<
typename
T
>
class
ArgsortGradOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
indices
=
ctx
.
Input
<
Tensor
>
(
"Indices"
);
auto
*
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dO
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dxt
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
&
place
=
*
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>()
.
eigen_device
();
dxt
.
device
(
place
)
=
dxt
.
constant
(
static_cast
<
T
>
(
0
));
if
(
dO
->
numel
()
==
0
)
return
;
auto
in_dims
=
indices
->
dims
();
axis
=
(
axis
<
0
)
?
(
in_dims
.
size
()
+
axis
)
:
axis
;
int64_t
numel
=
indices
->
numel
();
// Special case for full sort, speedup ~190x.
if
(
axis
==
-
1
||
axis
+
1
==
in_dims
.
size
())
{
const
int64_t
input_height
=
framework
::
product
(
framework
::
slice_ddim
(
in_dims
,
0
,
in_dims
.
size
()
-
1
));
const
int64_t
input_width
=
in_dims
[
in_dims
.
size
()
-
1
];
const
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
ArgFullAssign
<
T
,
int64_t
>
(
dev_ctx
,
dO
,
indices
,
dX
,
input_height
,
input_width
);
}
else
{
// if not full sort, do transpose first
std
::
vector
<
int
>
trans
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
trans
.
push_back
(
i
);
}
trans
.
push_back
(
in_dims
.
size
()
-
1
);
for
(
int
i
=
axis
+
1
;
i
<
in_dims
.
size
()
-
1
;
i
++
)
{
trans
.
push_back
(
i
);
}
trans
.
push_back
(
axis
);
framework
::
DDim
trans_dims
(
in_dims
);
for
(
int
i
=
0
;
i
<
trans
.
size
();
i
++
)
{
trans_dims
[
i
]
=
in_dims
[
trans
[
i
]];
}
Tensor
trans_dO
;
trans_dO
.
mutable_data
<
T
>
(
trans_dims
,
ctx
.
GetPlace
());
Tensor
trans_ind
;
trans_ind
.
mutable_data
<
int64_t
>
(
trans_dims
,
ctx
.
GetPlace
());
int
ndims
=
trans
.
size
();
const
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
// Do transpose
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
ndims
,
dev_ctx
,
*
dO
,
&
trans_dO
,
trans
);
TransCompute
<
platform
::
CUDADeviceContext
,
int64_t
>
(
ndims
,
dev_ctx
,
*
indices
,
&
trans_ind
,
trans
);
const
int64_t
input_height
=
framework
::
product
(
framework
::
slice_ddim
(
trans_dims
,
0
,
trans_dims
.
size
()
-
1
));
const
int64_t
input_width
=
trans_dims
[
trans_dims
.
size
()
-
1
];
Tensor
tmp_out
;
tmp_out
.
mutable_data
<
T
>
(
trans_dims
,
ctx
.
GetPlace
());
ArgFullAssign
<
T
,
int64_t
>
(
dev_ctx
,
&
trans_dO
,
&
trans_ind
,
&
tmp_out
,
input_height
,
input_width
);
// transpose back
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
ndims
,
dev_ctx
,
tmp_out
,
dX
,
trans
);
return
;
}
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -243,3 +360,9 @@ REGISTER_OP_CUDA_KERNEL(
paddle
::
operators
::
ArgsortOpCUDAKernel
<
int
>
,
paddle
::
operators
::
ArgsortOpCUDAKernel
<
int64_t
>
,
paddle
::
operators
::
ArgsortOpCUDAKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
argsort_grad
,
paddle
::
operators
::
ArgsortGradOpCUDAKernel
<
float
>
,
paddle
::
operators
::
ArgsortGradOpCUDAKernel
<
double
>
,
paddle
::
operators
::
ArgsortGradOpCUDAKernel
<
int
>
,
paddle
::
operators
::
ArgsortGradOpCUDAKernel
<
int64_t
>
,
paddle
::
operators
::
ArgsortGradOpCUDAKernel
<
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/argsort_op.h
浏览文件 @
681d908e
...
...
@@ -68,6 +68,31 @@ static void FullSort(Type input_height, Type input_width, int input_dim,
}
}
}
template
<
typename
T
,
typename
Type
>
static
void
FullAssign
(
Type
input_height
,
Type
input_width
,
int
input_dim
,
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
indices
,
T
*
t_out
)
{
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for
(
Type
i
=
0
;
i
<
input_height
;
++
i
)
{
if
(
input_dim
==
1
)
{
auto
e_input
=
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
e_indices
=
EigenVector
<
Type
>::
Flatten
(
*
indices
);
for
(
Type
j
=
0
;
j
<
input_width
;
++
j
)
{
t_out
[
i
*
input_width
+
e_indices
(
j
)]
=
e_input
(
e_indices
(
j
));
}
}
else
{
auto
e_input
=
EigenMatrix
<
T
>::
Reshape
(
*
input
,
input_dim
-
1
);
auto
e_indices
=
EigenMatrix
<
Type
>::
Reshape
(
*
indices
,
input_dim
-
1
);
for
(
Type
j
=
0
;
j
<
input_width
;
++
j
)
{
t_out
[
i
*
input_width
+
e_indices
(
i
,
j
)]
=
e_input
(
i
,
e_indices
(
i
,
j
));
}
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
ArgsortKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -142,5 +167,77 @@ class ArgsortKernel : public framework::OpKernel<T> {
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ArgsortGradientKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
indices
=
ctx
.
Input
<
Tensor
>
(
"Indices"
);
auto
*
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dO
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
auto
in_dims
=
indices
->
dims
();
axis
=
(
axis
<
0
)
?
(
in_dims
.
size
()
+
axis
)
:
axis
;
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dxt
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
&
place
=
*
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>()
.
eigen_device
();
dxt
.
device
(
place
)
=
dxt
.
constant
(
static_cast
<
T
>
(
0
));
if
(
dO
->
numel
()
==
0
)
return
;
// Do full assign
if
(
axis
==
-
1
||
axis
+
1
==
in_dims
.
size
())
{
const
int64_t
input_height
=
framework
::
product
(
framework
::
slice_ddim
(
in_dims
,
0
,
in_dims
.
size
()
-
1
));
const
int64_t
input_width
=
in_dims
[
in_dims
.
size
()
-
1
];
FullAssign
<
T
,
int64_t
>
(
input_height
,
input_width
,
in_dims
.
size
(),
dO
,
indices
,
dX
->
data
<
T
>
());
}
else
{
// If not full assign do transpose
std
::
vector
<
int
>
trans
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
trans
.
push_back
(
i
);
}
trans
.
push_back
(
in_dims
.
size
()
-
1
);
for
(
int
i
=
axis
+
1
;
i
<
in_dims
.
size
()
-
1
;
i
++
)
{
trans
.
push_back
(
i
);
}
trans
.
push_back
(
axis
);
framework
::
DDim
trans_dims
(
in_dims
);
for
(
size_t
i
=
0
;
i
<
trans
.
size
();
i
++
)
{
trans_dims
[
i
]
=
in_dims
[
trans
[
i
]];
}
Tensor
trans_dO
;
trans_dO
.
mutable_data
<
T
>
(
trans_dims
,
ctx
.
GetPlace
());
Tensor
trans_ind
;
trans_ind
.
mutable_data
<
int64_t
>
(
trans_dims
,
ctx
.
GetPlace
());
int
ndims
=
trans
.
size
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
// Do transpose
TransCompute
<
platform
::
CPUDeviceContext
,
T
>
(
ndims
,
dev_ctx
,
*
dO
,
&
trans_dO
,
trans
);
TransCompute
<
platform
::
CPUDeviceContext
,
int64_t
>
(
ndims
,
dev_ctx
,
*
indices
,
&
trans_ind
,
trans
);
const
int64_t
input_height
=
framework
::
product
(
framework
::
slice_ddim
(
trans_dims
,
0
,
trans_dims
.
size
()
-
1
));
const
int64_t
input_width
=
trans_dims
[
trans_dims
.
size
()
-
1
];
Tensor
tmp_out
;
T
*
t_out
=
tmp_out
.
mutable_data
<
T
>
(
trans_dims
,
ctx
.
GetPlace
());
FullAssign
<
T
,
int64_t
>
(
input_height
,
input_width
,
in_dims
.
size
(),
&
trans_dO
,
&
trans_ind
,
t_out
);
// transpose back
TransCompute
<
platform
::
CPUDeviceContext
,
T
>
(
ndims
,
dev_ctx
,
tmp_out
,
dX
,
trans
);
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_argsort_op.py
100755 → 100644
浏览文件 @
681d908e
...
...
@@ -48,7 +48,7 @@ class TestArgsortOp(OpTest):
self
.
axis
=
-
1
def
init_datatype
(
self
):
self
.
dtype
=
"float
32
"
self
.
dtype
=
"float
64
"
def
init_direction
(
self
):
self
.
descending
=
False
...
...
@@ -56,6 +56,9 @@ class TestArgsortOp(OpTest):
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestArgsortOpAxis0
(
TestArgsortOp
):
def
init_axis
(
self
):
...
...
@@ -146,5 +149,18 @@ class TestArgsortOpDescendingAxisNeg2(TestArgsortOpAxisNeg2):
self
.
descending
=
True
class
TestArgsortOpFP32Axis
(
TestArgsortOp
):
def
init_datatype
(
self
):
self
.
dtype
=
"float32"
class
TestArgsortOpFP32DescendingAxis
(
TestArgsortOp
):
def
init_datatype
(
self
):
self
.
dtype
=
"float32"
def
init_direction
(
self
):
self
.
descending
=
True
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录