Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6815c8ab
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6815c8ab
编写于
8月 15, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
8月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mish and mish_grad for XPU, test=kunlun (#45098)
上级
3649099f
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
290 addition
and
177 deletion
+290
-177
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+2
-2
paddle/fluid/operators/activation_op_xpu.cc
paddle/fluid/operators/activation_op_xpu.cc
+44
-0
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+8
-0
python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
...addle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
+52
-0
python/paddle/fluid/tests/unittests/xpu/test_deformable_conv_op_xpu.py
.../fluid/tests/unittests/xpu/test_deformable_conv_op_xpu.py
+184
-175
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
6815c8ab
...
...
@@ -10,7 +10,7 @@ set(XPU_RT_LIB_NAME "libxpurt.so")
if
(
NOT DEFINED XPU_BASE_URL
)
set
(
XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022081
0
"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022081
2
"
)
else
()
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL
}
"
)
endif
()
...
...
@@ -19,7 +19,7 @@ endif()
if
(
NOT DEFINED XPU_XDNN_BASE_URL
)
set
(
XPU_XDNN_BASE_URL_WITHOUT_DATE
"https://klx-sdk-release-public.su.bcebos.com/xdnn/dev"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/2022081
0
"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/2022081
2
"
)
else
()
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL
}
"
)
endif
()
...
...
paddle/fluid/operators/activation_op_xpu.cc
浏览文件 @
6815c8ab
...
...
@@ -404,6 +404,49 @@ struct XPULogGradFunctor : public BaseActivationFunctor<T> {
}
};
template
<
typename
T
>
struct
XPUMishFunctor
:
public
BaseActivationFunctor
<
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
const
T
*
x_data
=
x
->
data
<
T
>
();
T
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
float
threshold
=
ctx
.
Attr
<
float
>
(
"threshold"
);
auto
xpu_context
=
ctx
.
device_context
<
paddle
::
platform
::
XPUDeviceContext
>
().
x_context
();
int
r
=
xpu
::
mish
(
xpu_context
,
x_data
,
y_data
,
x
->
numel
(),
threshold
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"mish"
);
}
};
template
<
typename
T
>
struct
XPUMishGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
dOut
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
y_grad
=
dOut
->
data
<
T
>
();
T
*
x_grad
=
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
float
threshold
=
ctx
.
Attr
<
float
>
(
"threshold"
);
auto
xpu_context
=
ctx
.
device_context
<
paddle
::
platform
::
XPUDeviceContext
>
().
x_context
();
int
r
=
xpu
::
mish_grad
(
xpu_context
,
reinterpret_cast
<
const
float
*>
(
x_data
),
reinterpret_cast
<
const
float
*>
(
x_data
),
// mish_grad do not need y_data
reinterpret_cast
<
const
float
*>
(
y_grad
),
reinterpret_cast
<
float
*>
(
x_grad
),
dX
->
numel
(),
threshold
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"mish_grad"
);
}
};
template
<
typename
T
>
struct
XPUPowFunctor
:
public
BaseActivationFunctor
<
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
...
...
@@ -589,6 +632,7 @@ REGISTER_ACTIVATION_XPU_KERNEL(hard_swish,
REGISTER_ACTIVATION_XPU_KERNEL
(
leaky_relu
,
XPULeakyReluFunctor
,
XPULeakyReluGradFunctor
)
REGISTER_ACTIVATION_XPU_KERNEL
(
mish
,
XPUMishFunctor
,
XPUMishGradFunctor
)
REGISTER_ACTIVATION_XPU_KERNEL
(
reciprocal
,
XPUReciprocalFunctor
,
XPUReciprocalGradFunctor
)
...
...
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
6815c8ab
...
...
@@ -111,6 +111,10 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d_transpose"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"deformable_conv_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"deformable_conv"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"depthwise_conv2d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"depthwise_conv2d"
,
...
...
@@ -342,6 +346,8 @@ XPUOpMap& get_kl2_ops() {
{
"merged_momentum"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"mish_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"mish"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"momentum"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"mul"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
...
...
@@ -559,6 +565,8 @@ XPUOpMap& get_kl2_ops() {
{
"update_loss_scaling"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"uniform_random"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"unsqueeze2_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
...
...
python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
浏览文件 @
6815c8ab
...
...
@@ -1100,5 +1100,57 @@ def ref_thresholded_relu(x, threshold=1.0):
return
out
class
XPUTestMishOP
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'mish'
self
.
use_dynamic_create_class
=
False
class
XPUTestMishBase
(
TestActivationOPBase
):
def
set_case
(
self
):
self
.
op_type
=
"mish"
self
.
dtype
=
self
.
in_type
self
.
init_config
()
threshold
=
np
.
random
.
uniform
(
0
,
1
)
out
=
ref_mish
(
self
.
x
,
threshold
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
'use_xpu'
:
True
,
'threshold'
:
threshold
}
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
class
XPUTestMish2
(
XPUTestMishBase
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[
1024
,
8
]).
astype
(
self
.
dtype
)
class
XPUTestMish3
(
XPUTestMishBase
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[
4
,
512
,
15
,
15
]).
astype
(
self
.
dtype
)
class
XPUTestMish4
(
XPUTestMishBase
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[
4
,
256
,
22
,
22
]).
astype
(
self
.
dtype
)
support_types
=
get_xpu_op_support_types
(
'mish'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestMishOP
,
stype
)
def
ref_mish
(
x
,
threshold
=
20
):
sp
=
np
.
select
([
x
<=
threshold
,
x
>
threshold
],
[
np
.
log
(
1
+
np
.
exp
(
x
)),
x
])
out
=
x
*
np
.
tanh
(
sp
)
return
out
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_deformable_conv_op_xpu.py
浏览文件 @
6815c8ab
...
...
@@ -24,6 +24,7 @@ import paddle.fluid as fluid
from
op_test_xpu
import
OpTest
,
XPUOpTest
import
paddle
from
paddle.fluid
import
Program
,
program_guard
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
def
dmc_bilinear
(
data_im
,
height
,
width
,
h
,
w
):
...
...
@@ -111,181 +112,189 @@ def dconv_im2col_gemm(input, offset, mask, filter, group, conv_param):
return
out
class
TestModulatedDeformableConvOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"deformable_conv"
self
.
dtype
=
np
.
float32
self
.
init_group
()
self
.
init_dilation
()
self
.
init_test_case
()
conv_param
=
{
'stride'
:
self
.
stride
,
'pad'
:
self
.
pad
,
'dilation'
:
self
.
dilations
}
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
offset
=
10
*
np
.
random
.
random
(
self
.
offset_size
).
astype
(
self
.
dtype
)
mask
=
10
*
np
.
random
.
random
(
self
.
mask_size
).
astype
(
self
.
dtype
)
filter
=
np
.
random
.
random
(
self
.
filter_size
).
astype
(
self
.
dtype
)
output
=
dconv_im2col_gemm
(
input
,
offset
,
mask
,
filter
,
self
.
groups
,
conv_param
)
output
=
output
.
astype
(
self
.
dtype
)
self
.
inputs
=
{
'Input'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
),
'Offset'
:
OpTest
.
np_dtype_to_fluid_dtype
(
offset
),
'Mask'
:
OpTest
.
np_dtype_to_fluid_dtype
(
mask
),
'Filter'
:
OpTest
.
np_dtype_to_fluid_dtype
(
filter
)
}
self
.
attrs
=
{
'strides'
:
self
.
stride
,
'paddings'
:
self
.
pad
,
'groups'
:
self
.
groups
,
'deformable_groups'
:
self
.
deformable_groups
,
'im2col_step'
:
self
.
im2col_step
,
'dilations'
:
self
.
dilations
,
}
self
.
outputs
=
{
'Output'
:
output
}
def
has_cuda
(
self
):
return
core
.
is_compiled_with_cuda
()
and
(
self
.
use_cudnn
or
self
.
use_cuda
)
def
test_check_output
(
self
):
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
{
'Input'
,
'Offset'
,
'Mask'
,
'Filter'
},
'Output'
,
max_relative_error
=
0.06
)
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
input_size
=
[
2
,
8
,
4
,
4
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
8
,
f_c
,
3
,
3
]
self
.
im2col_step
=
1
self
.
deformable_groups
=
1
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
self
.
offset_size
=
[
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
self
.
mask_size
=
[
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
def
init_dilation
(
self
):
self
.
dilations
=
[
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
class
TestWithDilation
(
TestModulatedDeformableConvOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
2
,
2
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
4
,
3
,
4
,
4
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
im2col_step
=
1
self
.
deformable_groups
=
1
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
self
.
offset_size
=
[
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
self
.
mask_size
=
[
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
def
init_dilation
(
self
):
self
.
dilations
=
[
2
,
2
]
class
TestWith3x3
(
TestModulatedDeformableConvOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
im2col_step
=
1
self
.
deformable_groups
=
1
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
self
.
offset_size
=
[
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
self
.
mask_size
=
[
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
class
TestModulatedDeformableConvInvalidInput
(
unittest
.
TestCase
):
def
test_error
(
self
):
def
test_invalid_input
():
paddle
.
enable_static
()
input
=
[
1
,
3
,
32
,
32
]
offset
=
fluid
.
data
(
name
=
'offset'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
mask
=
fluid
.
data
(
name
=
'mask'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
loss
=
fluid
.
layers
.
deformable_conv
(
input
,
offset
,
mask
,
num_filters
=
4
,
filter_size
=
1
)
self
.
assertRaises
(
TypeError
,
test_invalid_input
)
def
test_invalid_offset
():
paddle
.
enable_static
()
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'int32'
)
offset
=
fluid
.
data
(
name
=
'offset'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
mask
=
fluid
.
data
(
name
=
'mask'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
loss
=
fluid
.
layers
.
deformable_conv
(
input
,
offset
,
mask
,
num_filters
=
4
,
filter_size
=
1
)
self
.
assertRaises
(
TypeError
,
test_invalid_offset
)
class
XPUTestModulatedDeformableConvOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'deformable_conv'
self
.
use_dynamic_create_class
=
False
class
TestModulatedDeformableConvOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"deformable_conv"
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
init_group
()
self
.
init_dilation
()
self
.
init_test_case
()
conv_param
=
{
'stride'
:
self
.
stride
,
'pad'
:
self
.
pad
,
'dilation'
:
self
.
dilations
}
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
offset
=
10
*
np
.
random
.
random
(
self
.
offset_size
).
astype
(
self
.
dtype
)
mask
=
10
*
np
.
random
.
random
(
self
.
mask_size
).
astype
(
self
.
dtype
)
filter
=
np
.
random
.
random
(
self
.
filter_size
).
astype
(
self
.
dtype
)
output
=
dconv_im2col_gemm
(
input
,
offset
,
mask
,
filter
,
self
.
groups
,
conv_param
)
output
=
output
.
astype
(
self
.
dtype
)
self
.
inputs
=
{
'Input'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
),
'Offset'
:
OpTest
.
np_dtype_to_fluid_dtype
(
offset
),
'Mask'
:
OpTest
.
np_dtype_to_fluid_dtype
(
mask
),
'Filter'
:
OpTest
.
np_dtype_to_fluid_dtype
(
filter
)
}
self
.
attrs
=
{
'strides'
:
self
.
stride
,
'paddings'
:
self
.
pad
,
'groups'
:
self
.
groups
,
'deformable_groups'
:
self
.
deformable_groups
,
'im2col_step'
:
self
.
im2col_step
,
'dilations'
:
self
.
dilations
,
}
self
.
outputs
=
{
'Output'
:
output
}
def
test_check_output
(
self
):
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
self
.
check_grad_with_place
(
self
.
place
,
{
'Input'
,
'Offset'
,
'Mask'
,
'Filter'
},
'Output'
,
max_relative_error
=
0.06
)
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
input_size
=
[
2
,
8
,
4
,
4
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
8
,
f_c
,
3
,
3
]
self
.
im2col_step
=
1
self
.
deformable_groups
=
1
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
self
.
offset_size
=
[
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
self
.
mask_size
=
[
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
def
init_dilation
(
self
):
self
.
dilations
=
[
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
class
TestWithDilation
(
TestModulatedDeformableConvOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
2
,
2
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
4
,
3
,
4
,
4
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
im2col_step
=
1
self
.
deformable_groups
=
1
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
self
.
offset_size
=
[
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
self
.
mask_size
=
[
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
def
init_dilation
(
self
):
self
.
dilations
=
[
2
,
2
]
class
TestWith3x3
(
TestModulatedDeformableConvOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
im2col_step
=
1
self
.
deformable_groups
=
1
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
self
.
offset_size
=
[
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
self
.
mask_size
=
[
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
class
TestModulatedDeformableConvInvalidInput
(
unittest
.
TestCase
):
def
test_error
(
self
):
def
test_invalid_input
():
paddle
.
enable_static
()
input
=
[
1
,
3
,
32
,
32
]
offset
=
fluid
.
data
(
name
=
'offset'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
mask
=
fluid
.
data
(
name
=
'mask'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
loss
=
fluid
.
layers
.
deformable_conv
(
input
,
offset
,
mask
,
num_filters
=
4
,
filter_size
=
1
)
self
.
assertRaises
(
TypeError
,
test_invalid_input
)
def
test_invalid_offset
():
paddle
.
enable_static
()
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'int32'
)
offset
=
fluid
.
data
(
name
=
'offset'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
mask
=
fluid
.
data
(
name
=
'mask'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
loss
=
fluid
.
layers
.
deformable_conv
(
input
,
offset
,
mask
,
num_filters
=
4
,
filter_size
=
1
)
self
.
assertRaises
(
TypeError
,
test_invalid_offset
)
support_types
=
get_xpu_op_support_types
(
'deformable_conv'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestModulatedDeformableConvOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录