提交 67e9247f 编写于 作者: J juncaipeng 提交者: Tao Luo

Make every op in a line to avoid conflict in the future (#22274)

上级 4bf2ccaa
......@@ -14,25 +14,82 @@
# For op in NO_FP64_CHECK_GRAD_OP_LIST, the op test requires check_grad with fp64 precision
NO_FP64_CHECK_GRAD_OP_LIST = [
'affine_grid', 'clip', 'conv2d', 'conv2d_transpose', 'conv3d',
'conv3d_transpose', 'conv_shift', 'cos_sim', 'cudnn_lstm', 'cvm',
'data_norm', 'deformable_conv', 'deformable_conv_v1',
'deformable_psroi_pooling', 'depthwise_conv2d',
'depthwise_conv2d_transpose', 'dropout', 'elementwise_max',
'fused_elemwise_activation', 'hierarchical_sigmoid', 'hinge_loss',
'huber_loss', 'im2sequence', 'increment', 'l1_norm', 'log_loss', 'lrn',
'margin_rank_loss', 'match_matrix_tensor', 'matmul',
'max_pool2d_with_index', 'max_pool3d_with_index', 'maxout', 'minus',
'modified_huber_loss', 'mul', 'nce', 'pad', 'pad2d', 'pad_constant_like',
'pool2d', 'pool3d', 'prelu', 'prroi_pool', 'rank_loss', 'reduce_max',
'reduce_min', 'relu', 'reshape2', 'roi_perspective_transform', 'row_conv',
'scale', 'scatter', 'sequence_conv', 'sequence_pool', 'sequence_reverse',
'sequence_slice', 'sequence_topk_avg_pooling', 'shuffle_channel', 'sigmoid',
'smooth_l1_loss', 'softmax', 'spectral_norm', 'sqrt', 'squared_l2_distance',
'squared_l2_norm', 'tanh', 'transpose2', 'trilinear_interp', 'var_conv_2d',
'affine_grid', \
'clip', \
'conv2d', \
'conv2d_transpose', \
'conv3d', \
'conv3d_transpose', \
'conv_shift', \
'cos_sim', \
'cudnn_lstm', \
'cvm', \
'data_norm', \
'deformable_conv', \
'deformable_conv_v1', \
'deformable_psroi_pooling', \
'depthwise_conv2d', \
'depthwise_conv2d_transpose', \
'dropout', \
'elementwise_max', \
'fused_elemwise_activation', \
'hierarchical_sigmoid', \
'hinge_loss', \
'huber_loss', \
'im2sequence', \
'increment', \
'l1_norm', \
'log_loss', \
'lrn', \
'margin_rank_loss', \
'match_matrix_tensor', \
'matmul', \
'max_pool2d_with_index', \
'max_pool3d_with_index', \
'maxout', \
'minus', \
'modified_huber_loss', \
'mul', \
'nce', \
'pad', \
'pad2d', \
'pad_constant_like', \
'pool2d', \
'pool3d', \
'prelu', \
'prroi_pool', \
'rank_loss', \
'reduce_max', \
'reduce_min', \
'relu', \
'reshape2', \
'roi_perspective_transform', \
'row_conv', \
'scale', \
'scatter', \
'sequence_conv', \
'sequence_pool', \
'sequence_reverse', \
'sequence_slice', \
'sequence_topk_avg_pooling', \
'shuffle_channel', \
'sigmoid', \
'smooth_l1_loss', \
'softmax', \
'spectral_norm', \
'sqrt', \
'squared_l2_distance', \
'squared_l2_norm', \
'tanh', \
'transpose2', \
'trilinear_interp', \
'var_conv_2d', \
'warpctc'
]
NO_FP16_CHECK_GRAD_OP_LIST = [
'fused_elemwise_activation', 'pool2d', 'pool3d', 'softmax'
'fused_elemwise_activation', \
'pool2d', \
'pool3d', \
'softmax'
]
......@@ -13,13 +13,34 @@
# limitations under the License.
NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST = [
'affine_channel', 'bilinear_interp', 'bilinear_tensor_product', 'conv2d',
'conv3d', 'cross_entropy', 'depthwise_conv2d_transpose', 'elementwise_pow',
'grid_sampler', 'group_norm', 'gru', 'gru_unit', 'kldiv_loss', 'lstm',
'lstmp', 'max_pool2d_with_index', 'max_pool3d_with_index', 'norm', 'pool3d',
'reduce_prod', 'selu', 'sigmoid_cross_entropy_with_logits', 'soft_relu',
'softmax_with_cross_entropy', 'spp', 'teacher_student_sigmoid_loss',
'unpool', 'yolov3_loss'
'affine_channel', \
'bilinear_interp', \
'bilinear_tensor_product', \
'conv2d', \
'conv3d', \
'cross_entropy', \
'depthwise_conv2d_transpose', \
'elementwise_pow', \
'grid_sampler', \
'group_norm', \
'gru', \
'gru_unit', \
'kldiv_loss', \
'lstm', \
'lstmp', \
'max_pool2d_with_index', \
'max_pool3d_with_index', \
'norm', \
'pool3d', \
'reduce_prod', \
'selu', \
'sigmoid_cross_entropy_with_logits', \
'soft_relu', \
'softmax_with_cross_entropy', \
'spp', \
'teacher_student_sigmoid_loss', \
'unpool', \
'yolov3_loss'
]
NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST = ['bilinear_interp']
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册