Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
67204c18
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
67204c18
编写于
11月 23, 2022
作者:
Y
Yuanle Liu
提交者:
GitHub
11月 23, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle Inference] add Conv2d fusion layout transfer pass (#48128)
上级
a914d68e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
313 addition
and
0 deletion
+313
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/conv2d_fusion_layout_transfer_pass.cc
.../fluid/framework/ir/conv2d_fusion_layout_transfer_pass.cc
+278
-0
paddle/fluid/framework/ir/conv2d_fusion_layout_transfer_pass.h
...e/fluid/framework/ir/conv2d_fusion_layout_transfer_pass.h
+34
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
67204c18
...
...
@@ -101,6 +101,7 @@ pass_library(delete_c_identity_op_pass inference)
pass_library
(
preln_residual_bias_fuse_pass inference
)
pass_library
(
delete_fill_constant_op_pass inference
)
pass_library
(
constant_folding_pass inference
)
pass_library
(
conv2d_fusion_layout_transfer_pass inference
)
pass_library
(
simplify_with_basic_ops_pass base
)
pass_library
(
fc_elementwise_layernorm_fuse_pass base
)
pass_library
(
skip_layernorm_fuse_pass base
)
...
...
paddle/fluid/framework/ir/conv2d_fusion_layout_transfer_pass.cc
0 → 100644
浏览文件 @
67204c18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv2d_fusion_layout_transfer_pass.h"
#include <string>
#include <unordered_map>
#include <unordered_set>
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
{
void
TransDataLayout
(
DataLayout
from_layout
,
DataLayout
to_layout
,
const
phi
::
DenseTensor
&
in
,
phi
::
DenseTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
arity
(
in
.
dims
()),
4
,
platform
::
errors
::
InvalidArgument
(
"Input dimension arity only can be 4, the input dimension is %s."
,
in
.
dims
()));
auto
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
src_dim
=
in
.
dims
();
std
::
vector
<
int64_t
>
dst_dim
;
auto
axis
=
GetAxis
(
from_layout
,
to_layout
);
dst_dim
.
resize
(
axis
.
size
());
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
dst_dim
[
i
]
=
src_dim
[
axis
[
i
]];
}
out
->
Resize
(
phi
::
make_ddim
(
dst_dim
));
out
->
mutable_data
(
phi
::
CPUPlace
(),
in
.
dtype
());
framework
::
VisitDataType
(
framework
::
TransToProtoVarType
(
in
.
dtype
()),
CastDataLayout
(
pool
.
Get
(
phi
::
CPUPlace
()),
axis
,
in
,
out
));
out
->
set_layout
(
to_layout
);
}
void
InsertLayoutTransOp
(
ir
::
Graph
*
graph
,
ir
::
Node
*
prev_node
,
ir
::
Node
*
next_node
,
DataLayout
from_layout
,
DataLayout
to_layout
,
framework
::
BlockDesc
*
block_desc
,
std
::
unordered_map
<
ir
::
Node
*
,
ir
::
Node
*>
*
cache
)
{
auto
do_insert
=
[
&
](
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
)
{
auto
update_op_desc
=
[
&
](
framework
::
OpDesc
&
desc
,
const
std
::
string
&
x_name
,
const
std
::
string
&
out_name
)
{
desc
.
SetType
(
"transfer_layout"
);
desc
.
SetInput
(
"X"
,
{
x_name
});
desc
.
SetOutput
(
"Out"
,
{
out_name
});
desc
.
SetAttr
(
"src_layout"
,
static_cast
<
int
>
(
from_layout
));
desc
.
SetAttr
(
"dst_layout"
,
static_cast
<
int
>
(
to_layout
));
desc
.
Flush
();
};
CHECK_NOTNULL
(
block_desc
);
if
(
cache
->
count
(
prev_node
)
==
0
)
{
framework
::
OpDesc
op_desc
(
block_desc
);
update_op_desc
(
op_desc
,
in_var_name
,
out_var_name
);
auto
*
op_node
=
graph
->
CreateOpNode
(
&
op_desc
);
auto
*
op_out_var_desc
=
block_desc
->
Var
(
out_var_name
);
op_out_var_desc
->
SetPersistable
(
false
);
op_out_var_desc
->
SetDataType
(
prev_node
->
Var
()
->
GetDataType
());
auto
to_shape
=
prev_node
->
Var
()
->
GetShape
();
if
(
from_layout
==
DataLayout
::
kNCHW
)
{
auto
n
=
to_shape
[
0
];
auto
c
=
to_shape
[
1
];
auto
h
=
to_shape
[
2
];
auto
w
=
to_shape
[
3
];
op_out_var_desc
->
SetShape
({
n
,
h
,
w
,
c
});
}
else
{
auto
n
=
to_shape
[
0
];
auto
h
=
to_shape
[
1
];
auto
w
=
to_shape
[
2
];
auto
c
=
to_shape
[
3
];
op_out_var_desc
->
SetShape
({
n
,
c
,
h
,
w
});
}
auto
*
op_out_var_node
=
graph
->
CreateVarNode
(
op_out_var_desc
);
IR_NODE_LINK_TO
(
op_node
,
op_out_var_node
);
cache
->
insert
(
std
::
make_pair
(
prev_node
,
op_out_var_node
));
}
next_node
->
Op
()
->
RenameInput
(
prev_node
->
Name
(),
cache
->
at
(
prev_node
)
->
Name
());
IR_NODE_LINK_TO
(
prev_node
,
cache
->
at
(
prev_node
)
->
inputs
.
front
());
IR_NODE_LINK_TO
(
cache
->
at
(
prev_node
),
next_node
);
IR_NODE_UNLINK
(
prev_node
,
next_node
);
};
if
(
from_layout
==
DataLayout
::
kNCHW
&&
to_layout
==
DataLayout
::
kNHWC
)
{
auto
in_var_name
=
prev_node
->
Var
()
->
Name
();
auto
out_var_name
=
in_var_name
+
"_nchw_to_nhwc"
;
do_insert
(
in_var_name
,
out_var_name
);
}
else
if
(
from_layout
==
DataLayout
::
kNHWC
&&
to_layout
==
DataLayout
::
kNCHW
)
{
auto
in_var_name
=
prev_node
->
Var
()
->
Name
();
auto
out_var_name
=
in_var_name
+
"_nhwc_to_nchw"
;
do_insert
(
in_var_name
,
out_var_name
);
}
}
}
// namespace
void
Conv2dFusionLayoutTransferPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be nullptr."
));
FusePassBase
::
Init
(
"data_layout_transfer"
,
graph
);
auto
*
scope
=
param_scope
();
PADDLE_ENFORCE_EQ
(
graph
->
IsMainGraph
(),
true
,
platform
::
errors
::
InvalidArgument
(
"the graph should be main graph when applying "
"conv2d_fusion_layout_transfer_pass"
));
PADDLE_ENFORCE_NOT_NULL
(
scope
,
platform
::
errors
::
Fatal
(
"scope must not be nullptr when applying "
"conv2d_fusion_layout_transfer_pass"
));
// Not support multiple block now.
std
::
unordered_map
<
ir
::
Node
*
,
ir
::
Node
*>
cache
;
auto
op_nodes
=
ir
::
TopologySortOperations
(
*
graph
);
auto
iter
=
op_nodes
.
cbegin
();
auto
*
block_desc
=
(
*
iter
)
->
Op
()
->
Block
();
std
::
unordered_set
<
ir
::
Node
*>
vars_shape_nhwc
;
// Only support conv2d_fusion now.
std
::
string
target_op_type
=
"conv2d_fusion"
;
std
::
unordered_set
<
ir
::
Node
*>
valid_ops
;
auto
OpIsValid
=
[
&
](
ir
::
Node
*
op_node
)
->
bool
{
if
(
op_node
->
Op
()
->
Type
()
!=
target_op_type
)
return
false
;
auto
data_format
=
op_node
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"data_format"
);
if
(
data_format
!=
"NCHW"
)
return
false
;
auto
filter_names
=
op_node
->
Op
()
->
Input
(
"Filter"
);
// If filter's channel is not multiple of 8, conv2d_fusion not run at nhwc.
for
(
const
auto
&
filter_name
:
filter_names
)
{
auto
*
filter_var
=
scope
->
FindLocalVar
(
filter_name
);
const
auto
&
filter_tensor
=
filter_var
->
Get
<
phi
::
DenseTensor
>
();
if
(
filter_tensor
.
dims
().
size
()
==
4
&&
(
filter_tensor
.
dims
()[
0
]
%
8
!=
0
||
filter_tensor
.
dims
()[
1
]
%
8
!=
0
))
{
return
false
;
}
}
return
true
;
};
for
(
auto
*
op_node
:
op_nodes
)
{
CHECK_EQ
(
op_node
->
IsOp
(),
true
);
if
(
OpIsValid
(
op_node
))
{
valid_ops
.
insert
(
op_node
);
auto
*
op_desc
=
op_node
->
Op
();
auto
nhwc_attr
=
framework
::
Attribute
(
std
::
string
(
"NHWC"
));
op_desc
->
SetAttr
(
"data_format"
,
nhwc_attr
);
op_desc
->
Flush
();
// transfer weights
auto
filter_names
=
op_desc
->
Input
(
"Filter"
);
for
(
const
auto
&
filter_name
:
filter_names
)
{
auto
*
filter_var
=
scope
->
FindLocalVar
(
filter_name
);
auto
*
filter_tensor
=
filter_var
->
GetMutable
<
phi
::
DenseTensor
>
();
phi
::
DenseTensor
temp_tensor
=
*
filter_tensor
;
filter_tensor
->
clear
();
TransDataLayout
(
DataLayout
::
kNCHW
,
DataLayout
::
kNHWC
,
temp_tensor
,
filter_tensor
);
}
auto
op_inputs
=
op_node
->
inputs
;
for
(
auto
*
in_var_node
:
op_inputs
)
{
CHECK_EQ
(
in_var_node
->
IsVar
(),
true
);
if
(
in_var_node
->
Var
()
->
Persistable
())
{
if
(
std
::
find
(
filter_names
.
cbegin
(),
filter_names
.
cend
(),
in_var_node
->
Var
()
->
Name
())
!=
filter_names
.
cend
())
{
auto
from_shape
=
in_var_node
->
Var
()
->
GetShape
();
in_var_node
->
Var
()
->
SetShape
(
{
from_shape
[
0
],
from_shape
[
2
],
from_shape
[
3
],
from_shape
[
1
]});
}
}
}
// transfer outputs
auto
op_outputs
=
op_node
->
outputs
;
for
(
auto
*
out_var_node
:
op_outputs
)
{
CHECK_EQ
(
out_var_node
->
IsVar
(),
true
);
if
(
out_var_node
->
Var
()
->
Persistable
())
continue
;
auto
from_shape
=
out_var_node
->
Var
()
->
GetShape
();
out_var_node
->
Var
()
->
SetShape
(
{
from_shape
[
0
],
from_shape
[
2
],
from_shape
[
3
],
from_shape
[
1
]});
vars_shape_nhwc
.
insert
(
out_var_node
);
}
}
}
// Insert transfer_layout op
for
(
auto
*
op_node
:
op_nodes
)
{
CHECK_EQ
(
op_node
->
IsOp
(),
true
);
if
(
valid_ops
.
count
(
op_node
))
{
auto
op_inputs
=
op_node
->
inputs
;
for
(
auto
*
in_var_node
:
op_inputs
)
{
CHECK_EQ
(
in_var_node
->
IsVar
(),
true
);
if
(
in_var_node
->
Var
()
->
Persistable
())
continue
;
if
(
vars_shape_nhwc
.
count
(
in_var_node
))
continue
;
InsertLayoutTransOp
(
graph
,
in_var_node
,
op_node
,
DataLayout
::
kNCHW
,
DataLayout
::
kNHWC
,
block_desc
,
&
cache
);
}
}
else
{
auto
op_inputs
=
op_node
->
inputs
;
for
(
auto
*
in_var_node
:
op_inputs
)
{
CHECK_EQ
(
in_var_node
->
IsVar
(),
true
);
if
(
vars_shape_nhwc
.
count
(
in_var_node
))
{
InsertLayoutTransOp
(
graph
,
in_var_node
,
op_node
,
DataLayout
::
kNHWC
,
DataLayout
::
kNCHW
,
block_desc
,
&
cache
);
}
}
}
}
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
conv2d_fusion_layout_transfer_pass
,
paddle
::
framework
::
ir
::
Conv2dFusionLayoutTransferPass
);
paddle/fluid/framework/ir/conv2d_fusion_layout_transfer_pass.h
0 → 100644
浏览文件 @
67204c18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Conv2dFusionLayoutTransferPass
:
public
FusePassBase
{
public:
Conv2dFusionLayoutTransferPass
()
=
default
;
virtual
~
Conv2dFusionLayoutTransferPass
()
=
default
;
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录