未验证 提交 65e9bd90 编写于 作者: Y ykkk2333 提交者: GitHub

migrate sigmoid with cross entropy, and tile xpu kernels to phi, test=kunlun (#45621)

上级 0b9d4c56
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class SigmoidCrossEntropyWithLogitsXPUKernel : public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(
platform::is_xpu_place(context.GetPlace()),
true,
platform::errors::Unavailable("This kernel only runs on XPU."));
// input and output data
auto* input = context.Input<Tensor>("X");
auto* label = context.Input<Tensor>("Label");
auto* output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
// attrs
int ignore_index = context.Attr<int>("ignore_index");
bool normalize = context.Attr<bool>("normalize");
// allocate temp memory
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
int* hit = RAII_GUARD.alloc_l3_or_gm<int>(input->numel());
PADDLE_ENFORCE_NOT_NULL(
hit, platform::errors::External("XPU alloc_l3_or_gm returns nullptr"));
int r = xpu::sigmoid_cross_entropy_with_logits(
dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(input->data<T>()),
reinterpret_cast<const XPUType*>(label->data<T>()),
reinterpret_cast<XPUType*>(output->data<T>()),
1,
input->numel(),
hit,
ignore_index);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "sigmoid_cross_entropy_with_logits");
if (normalize) {
int* non_zero = RAII_GUARD.alloc_l3_or_gm<int>(1);
PADDLE_ENFORCE_NOT_NULL(
non_zero,
platform::errors::External("XPU alloc_l3_or_gm returns nullptr"));
int r = xpu::nonzero_count(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(hit),
non_zero,
input->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "nonzero_count");
int non_zero_cpu = 0;
memory::Copy(platform::CPUPlace(),
static_cast<void*>(&non_zero_cpu),
context.GetPlace(),
static_cast<void*>(non_zero),
sizeof(int));
r = xpu::scale(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(output->data<T>()),
reinterpret_cast<XPUType*>(output->data<T>()),
input->numel(),
false,
1.0f / static_cast<float>(non_zero_cpu),
0.0f);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
}
}
};
template <typename DeviceContext, typename T>
class SigmoidCrossEntropyWithLogitsGradXPUKernel
: public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(
platform::is_xpu_place(context.GetPlace()),
true,
platform::errors::Unavailable("This kernel only runs on XPU."));
// input and output data
auto* input = context.Input<Tensor>("X");
auto* label = context.Input<Tensor>("Label");
auto* dy = context.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
dx->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
// attrs
int ignore_index = context.Attr<int>("ignore_index");
bool normalize = context.Attr<bool>("normalize");
// allocate temp memory
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
int* hit = RAII_GUARD.alloc_l3_or_gm<int>(input->numel());
PADDLE_ENFORCE_NOT_NULL(
hit, platform::errors::External("XPU alloc_l3_or_gm returns nullptr"));
int r = xpu::sigmoid_cross_entropy_with_logits_grad(
dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(input->data<T>()),
reinterpret_cast<const XPUType*>(label->data<T>()),
reinterpret_cast<const XPUType*>(dy->data<T>()),
reinterpret_cast<XPUType*>(dx->data<T>()),
1,
input->numel(),
hit,
ignore_index);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "sigmoid_cross_entropy_with_logits");
if (normalize) {
int* non_zero = RAII_GUARD.alloc_l3_or_gm<int>(1);
PADDLE_ENFORCE_NOT_NULL(
non_zero,
platform::errors::External("XPU alloc_l3_or_gm returns nullptr"));
int r = xpu::nonzero_count(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(hit),
non_zero,
input->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "nonzero_count");
int non_zero_cpu = 0;
memory::Copy(platform::CPUPlace(),
static_cast<void*>(&non_zero_cpu),
context.GetPlace(),
static_cast<void*>(non_zero),
sizeof(int));
r = xpu::scale(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(dx->data<T>()),
reinterpret_cast<XPUType*>(dx->data<T>()),
input->numel(),
false,
1.0f / static_cast<float>(non_zero_cpu),
0.0f);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(sigmoid_cross_entropy_with_logits,
ops::SigmoidCrossEntropyWithLogitsXPUKernel<
paddle::platform::XPUDeviceContext,
float>);
REGISTER_OP_XPU_KERNEL(sigmoid_cross_entropy_with_logits_grad,
ops::SigmoidCrossEntropyWithLogitsGradXPUKernel<
paddle::platform::XPUDeviceContext,
float>);
#endif
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/tile_op_functor.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class TileXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto rank = context.Input<Tensor>("X")->dims().size();
PADDLE_ENFORCE_GE(
rank,
1,
platform::errors::InvalidArgument(
"The rank of the input 'x' for tile op must be a positive "
"integer, but the value received is %d.",
rank));
PADDLE_ENFORCE_LE(
rank,
MAX_RANK_SUPPORTED,
platform::errors::InvalidArgument(
"The rank of the input 'x' for tile op "
"must be less than or equal to %d, but the value received is %d.",
MAX_RANK_SUPPORTED,
rank));
auto repeat_times = get_repeat_times(context);
int repeat_times_size = repeat_times.size();
PADDLE_ENFORCE_GE(
repeat_times_size,
1,
platform::errors::InvalidArgument(
"The number of elements of the input 'repeat_times' for tile "
"op must be positive, but the value received is %d.",
repeat_times_size));
PADDLE_ENFORCE_LE(
repeat_times_size,
MAX_RANK_SUPPORTED,
platform::errors::InvalidArgument(
"The number of elements of the input 'repeat_times' for tile op "
"must be less than or equal to %d, but the value received is %d.",
MAX_RANK_SUPPORTED,
repeat_times_size));
auto* in0 = context.Input<framework::Tensor>("X");
auto in_dims = in0->dims();
for (size_t i = 0; i < repeat_times.size(); ++i) {
PADDLE_ENFORCE_GT(
repeat_times[i],
0,
platform::errors::InvalidArgument(
"All elements of the input 'repeat_times' for tile op must "
"be positive integers, but the value received is %d.",
repeat_times[i]));
}
auto vec_in_dims = phi::vectorize<int>(in_dims);
if (repeat_times.size() < vec_in_dims.size()) {
int diff = vec_in_dims.size() - repeat_times.size();
repeat_times.insert(repeat_times.begin(), diff, 1);
} else {
int diff = repeat_times.size() - vec_in_dims.size();
vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
}
PADDLE_ENFORCE_EQ(
repeat_times.size(),
vec_in_dims.size(),
platform::errors::InvalidArgument(
"The rank (%d) of the input 'x' and the rank (%d) of the input "
"'repeat_times' for tile op must match after promotion.",
vec_in_dims.size(),
repeat_times.size()));
auto* out0 = context.Output<framework::Tensor>("Out");
framework::DDim new_in_dims = phi::make_ddim(vec_in_dims);
framework::DDim out_dims(new_in_dims);
for (size_t i = 0; i < repeat_times.size(); ++i) {
out_dims[i] *= repeat_times[i];
}
auto vec_out_dims = phi::vectorize<int>(out_dims);
out0->Resize(out_dims);
out0->mutable_data<T>(context.GetPlace());
auto& dev_ctx =
context.template device_context<paddle::platform::XPUDeviceContext>();
std::vector<int> temp(repeat_times.size(), 1);
if (repeat_times == temp) {
framework::TensorCopy(*in0, context.GetPlace(), dev_ctx, out0);
return;
}
int ret = XPU_SUCCESS;
if (std::is_same<T, bool>::value) {
ret = xpu::broadcast<int8_t>(
dev_ctx.x_context(),
reinterpret_cast<const int8_t*>(in0->data<T>()),
reinterpret_cast<int8_t*>(out0->data<T>()),
vec_in_dims,
vec_out_dims);
} else {
ret = xpu::broadcast<T>(dev_ctx.x_context(),
in0->data<T>(),
out0->data<T>(),
vec_in_dims,
vec_out_dims);
}
PADDLE_ENFORCE_EQ(
ret,
XPU_SUCCESS,
platform::errors::External("XPU tile kernel return wrong value[%d %s]",
ret,
XPUAPIErrorMsg[ret]));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(tile,
ops::TileXPUKernel<bool>,
ops::TileXPUKernel<int>,
ops::TileXPUKernel<int64_t>,
ops::TileXPUKernel<float>);
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include "paddle/phi/kernels/sigmoid_cross_entropy_with_logits_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/fluid/memory/memcpy.h"
namespace phi {
template <typename T, typename Context>
void SigmoidCrossEntropyWithLogitsGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& label,
const DenseTensor& out_grad,
bool normalize,
int ignore_index,
DenseTensor* in_grad) {
using XPUType = typename XPUTypeTrait<T>::Type;
PADDLE_ENFORCE_EQ(x.place().GetType() == phi::AllocationType::XPU,
true,
errors::Unavailable("This kernel only runs on XPU."));
dev_ctx.template Alloc<T>(in_grad);
// allocate temp memory
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
int* hit = RAII_GUARD.alloc_l3_or_gm<int>(x.numel());
PADDLE_ENFORCE_NOT_NULL(
hit, errors::External("XPU alloc_l3_or_gm returns nullptr"));
int r = xpu::sigmoid_cross_entropy_with_logits_grad(
dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(x.data<T>()),
reinterpret_cast<const XPUType*>(label.data<T>()),
reinterpret_cast<const XPUType*>(out_grad.data<T>()),
reinterpret_cast<XPUType*>(in_grad->data<T>()),
1,
x.numel(),
hit,
ignore_index);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "sigmoid_cross_entropy_with_logits");
if (normalize) {
int* non_zero = RAII_GUARD.alloc_l3_or_gm<int>(1);
PADDLE_ENFORCE_NOT_NULL(
non_zero, errors::External("XPU alloc_l3_or_gm returns nullptr"));
int r = xpu::nonzero_count(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(hit),
non_zero,
x.numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "nonzero_count");
int non_zero_cpu = 0;
paddle::memory::Copy(CPUPlace(),
static_cast<void*>(&non_zero_cpu),
dev_ctx.GetPlace(),
static_cast<void*>(non_zero),
sizeof(int));
r = xpu::scale(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(in_grad->data<T>()),
reinterpret_cast<XPUType*>(in_grad->data<T>()),
x.numel(),
false,
1.0f / static_cast<float>(non_zero_cpu),
0.0f);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
}
}
} // namespace phi
PD_REGISTER_KERNEL(sigmoid_cross_entropy_with_logits_grad,
XPU,
ALL_LAYOUT,
phi::SigmoidCrossEntropyWithLogitsGradKernel,
float) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include "paddle/phi/kernels/sigmoid_cross_entropy_with_logits_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/fluid/memory/memcpy.h"
namespace phi {
template <typename T, typename Context>
void SigmoidCrossEntropyWithLogitsKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& label,
bool normalize,
int ignore_index,
DenseTensor* out) {
using XPUType = typename XPUTypeTrait<T>::Type;
PADDLE_ENFORCE_EQ(x.place().GetType() == phi::AllocationType::XPU,
true,
errors::Unavailable("This kernel only runs on XPU."));
dev_ctx.template Alloc<T>(out);
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
int* hit = RAII_GUARD.alloc_l3_or_gm<int>(x.numel());
PADDLE_ENFORCE_NOT_NULL(
hit, errors::External("XPU alloc_l3_or_gm returns nullptr"));
int r = xpu::sigmoid_cross_entropy_with_logits(
dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(x.data<T>()),
reinterpret_cast<const XPUType*>(label.data<T>()),
reinterpret_cast<XPUType*>(out->data<T>()),
1,
x.numel(),
hit,
ignore_index);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "sigmoid_cross_entropy_with_logits");
if (normalize) {
int* non_zero = RAII_GUARD.alloc_l3_or_gm<int>(1);
PADDLE_ENFORCE_NOT_NULL(
non_zero, errors::External("XPU alloc_l3_or_gm returns nullptr"));
int r = xpu::nonzero_count(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(hit),
non_zero,
x.numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "nonzero_count");
int non_zero_cpu = 0;
paddle::memory::Copy(CPUPlace(),
static_cast<void*>(&non_zero_cpu),
dev_ctx.GetPlace(),
static_cast<void*>(non_zero),
sizeof(int));
r = xpu::scale(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(out->data<T>()),
reinterpret_cast<XPUType*>(out->data<T>()),
x.numel(),
false,
1.0f / static_cast<float>(non_zero_cpu),
0.0f);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
}
}
} // namespace phi
PD_REGISTER_KERNEL(sigmoid_cross_entropy_with_logits,
XPU,
ALL_LAYOUT,
phi::SigmoidCrossEntropyWithLogitsKernel,
float) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <type_traits>
#include <vector>
#include "paddle/phi/kernels/tile_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
namespace phi {
template <typename T, typename Context>
void TileKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& repeat_times_arr,
DenseTensor* out) {
auto rank = x.dims().size();
PADDLE_ENFORCE_GE(
rank,
1,
errors::InvalidArgument(
"The rank of the input 'x' for tile op must be a positive "
"integer, but the value received is %d.",
rank));
PADDLE_ENFORCE_LE(
rank,
MAX_RANK_SUPPORTED,
errors::InvalidArgument(
"The rank of the input 'x' for tile op "
"must be less than or equal to %d, but the value received is %d.",
MAX_RANK_SUPPORTED,
rank));
std::vector<int64_t> repeat_times = repeat_times_arr.GetData();
int repeat_times_size = repeat_times.size();
PADDLE_ENFORCE_GE(
repeat_times_size,
1,
errors::InvalidArgument(
"The number of elements of the input 'repeat_times' for tile "
"op must be positive, but the value received is %d.",
repeat_times_size));
PADDLE_ENFORCE_LE(
repeat_times_size,
MAX_RANK_SUPPORTED,
errors::InvalidArgument(
"The number of elements of the input 'repeat_times' for tile op "
"must be less than or equal to %d, but the value received is %d.",
MAX_RANK_SUPPORTED,
repeat_times_size));
auto in_dims = x.dims();
for (size_t i = 0; i < repeat_times.size(); ++i) {
PADDLE_ENFORCE_GT(
repeat_times[i],
0,
errors::InvalidArgument(
"All elements of the input 'repeat_times' for tile op must "
"be positive integers, but the value received is %d.",
repeat_times[i]));
}
auto vec_in_dims = phi::vectorize<int>(in_dims);
if (repeat_times.size() < vec_in_dims.size()) {
int diff = vec_in_dims.size() - repeat_times.size();
repeat_times.insert(repeat_times.begin(), diff, 1);
} else {
int diff = repeat_times.size() - vec_in_dims.size();
vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
}
PADDLE_ENFORCE_EQ(
repeat_times.size(),
vec_in_dims.size(),
errors::InvalidArgument(
"The rank (%d) of the input 'x' and the rank (%d) of the input "
"'repeat_times' for tile op must match after promotion.",
vec_in_dims.size(),
repeat_times.size()));
DDim new_in_dims = phi::make_ddim(vec_in_dims);
DDim out_dims(new_in_dims);
for (size_t i = 0; i < repeat_times.size(); ++i) {
out_dims[i] *= repeat_times[i];
}
auto vec_out_dims = phi::vectorize<int>(out_dims);
out->Resize(out_dims);
dev_ctx.template Alloc<T>(out);
std::vector<int64_t> temp(repeat_times.size(), 1);
if (repeat_times == temp) {
phi::Copy(dev_ctx, x, dev_ctx.GetPlace(), false, out);
return;
}
int ret = XPU_SUCCESS;
if (std::is_same<T, bool>::value) {
ret = xpu::broadcast<int8_t>(dev_ctx.x_context(),
reinterpret_cast<const int8_t*>(x.data<T>()),
reinterpret_cast<int8_t*>(out->data<T>()),
vec_in_dims,
vec_out_dims);
} else {
ret = xpu::broadcast<T>(dev_ctx.x_context(),
x.data<T>(),
out->data<T>(),
vec_in_dims,
vec_out_dims);
}
PADDLE_ENFORCE_XDNN_SUCCESS(ret, "broadcast");
}
} // namespace phi
PD_REGISTER_KERNEL(
tile, XPU, ALL_LAYOUT, phi::TileKernel, bool, float, int, int64_t) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册