未验证 提交 65e86580 编写于 作者: 提交者: GitHub

[inference]add topk/topk_v2 trt convertor (#43368)

上级 4af7ebf4
...@@ -1960,6 +1960,8 @@ USE_TRT_CONVERTER(strided_slice) ...@@ -1960,6 +1960,8 @@ USE_TRT_CONVERTER(strided_slice)
USE_TRT_CONVERTER(transformer_input_convert) USE_TRT_CONVERTER(transformer_input_convert)
USE_TRT_CONVERTER(recover_padding) USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding) USE_TRT_CONVERTER(remove_padding)
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000) #if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc) USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul) USE_TRT_CONVERTER(sparse_multihead_matmul)
......
...@@ -60,7 +60,8 @@ list( ...@@ -60,7 +60,8 @@ list(
roll_op.cc roll_op.cc
transformer_input_convert_op.cc transformer_input_convert_op.cc
remove_padding_op.cc remove_padding_op.cc
recover_padding_op.cc) recover_padding_op.cc
top_k_op.cc)
if(CUSPARSELT_FOUND AND ${TENSORRT_MAJOR_VERSION} GREATER_EQUAL 8) if(CUSPARSELT_FOUND AND ${TENSORRT_MAJOR_VERSION} GREATER_EQUAL 8)
list(APPEND CONVERT_FILES sparse_fc_op.cc sparse_multihead_matmul_op.cc) list(APPEND CONVERT_FILES sparse_fc_op.cc sparse_multihead_matmul_op.cc)
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <NvInfer.h>
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle
namespace paddle {
namespace inference {
namespace tensorrt {
class TopKOpConverter : public OpConverter {
public:
TopKOpConverter() {}
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
// Here the two nullptr looks strange, that's because the
// framework::OpDesc's constructor is strange.
framework::OpDesc op_desc(op, nullptr);
auto* input_tensor = engine_->GetITensor(op_desc.Input("X")[0]);
const int k = op_desc.HasAttr("k")
? BOOST_GET_CONST(int, op_desc.GetAttr("k"))
: 1.0f;
nvinfer1::Dims input_dims = input_tensor->getDimensions();
int axis = input_dims.nbDims;
nvinfer1::ITopKLayer* layer =
TRT_ENGINE_ADD_LAYER(engine_, TopK, *input_tensor,
nvinfer1::TopKOperation::kMAX, k, 1 << (axis - 1));
std::vector<std::string> output_names;
output_names.push_back(op_desc.Output("Out").front());
output_names.push_back(op_desc.Output("Indices").front());
RreplenishLayerAndOutput(layer, "top_k", output_names, test_mode);
}
};
class TopKv2OpConverter : public OpConverter {
public:
TopKv2OpConverter() {}
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
// Here the two nullptr looks strange, that's because the
// framework::OpDesc's constructor is strange.
framework::OpDesc op_desc(op, nullptr);
auto* input_tensor = engine_->GetITensor(op_desc.Input("X")[0]);
const int k = op_desc.HasAttr("k")
? BOOST_GET_CONST(int, op_desc.GetAttr("k"))
: 1.0f;
const int axis = op_desc.HasAttr("axis")
? BOOST_GET_CONST(int, op_desc.GetAttr("axis"))
: 1.0f;
const bool largest = op_desc.HasAttr("largest")
? BOOST_GET_CONST(bool, op_desc.GetAttr("largest"))
: true;
auto flag =
largest ? nvinfer1::TopKOperation::kMAX : nvinfer1::TopKOperation::kMIN;
nvinfer1::ITopKLayer* layer = nullptr;
if (axis == -1) {
nvinfer1::Dims input_dims = input_tensor->getDimensions();
layer = TRT_ENGINE_ADD_LAYER(engine_, TopK, *input_tensor, flag, k,
1 << (input_dims.nbDims - 1));
} else {
if (engine_->with_dynamic_shape()) {
layer = TRT_ENGINE_ADD_LAYER(engine_, TopK, *input_tensor, flag, k,
1 << axis);
} else {
layer = TRT_ENGINE_ADD_LAYER(engine_, TopK, *input_tensor, flag, k,
1 << (axis - 1));
}
}
std::vector<std::string> output_names;
output_names.push_back(op_desc.Output("Out").front());
output_names.push_back(op_desc.Output("Indices").front());
RreplenishLayerAndOutput(layer, "top_k_v2", output_names, test_mode);
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(top_k, TopKOpConverter);
REGISTER_TRT_OP_CONVERTER(top_k_v2, TopKv2OpConverter);
...@@ -104,6 +104,8 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -104,6 +104,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"stack", "stack",
"transpose2", "transpose2",
"transpose", "transpose",
"top_k",
"top_k_v2",
"flatten2", "flatten2",
"flatten", "flatten",
"gather", "gather",
...@@ -175,6 +177,8 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -175,6 +177,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"stack", "stack",
"transpose2", "transpose2",
"transpose", "transpose",
"top_k",
"top_k_v2",
"flatten2", "flatten2",
"flatten", "flatten",
"gather", "gather",
...@@ -1759,6 +1763,34 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8, ...@@ -1759,6 +1763,34 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
} }
} }
if (op_type == "top_k_v2" || op_type == "top_k") {
auto* block = desc.Block();
auto x_var_name = desc.Input("X")[0];
auto* x_var_desc = block->FindVar(x_var_name);
const auto x_shape = x_var_desc->GetShape();
if (x_shape.size() == 1) {
VLOG(3) << "top_k/top_k_v2 does not support 1-dimensional input in "
"tensorrt";
return false;
}
if (desc.HasAttr("axis")) {
int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
if (axis == 0) {
VLOG(3) << "top_k_v2 does not support axis == 0 in "
"tensorrt";
return false;
}
}
if (desc.HasAttr("sorted")) {
bool sorted = BOOST_GET_CONST(bool, desc.GetAttr("sorted"));
if (!sorted) {
VLOG(3) << "top_k_v2 does not support results not sorted in "
"tensorrt";
return false;
}
}
}
#if IS_TRT_VERSION_GE(8000) #if IS_TRT_VERSION_GE(8000)
if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") { if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") {
if (!with_dynamic_shape) { if (!with_dynamic_shape) {
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import unittest
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertActivationTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
self.trt_param.workspace_size = 1073741824
def generate_input1(dims, batch, attrs: List[Dict[str, Any]]):
if dims == 1:
return np.random.random([32]).astype(np.float32)
elif dims == 2:
return np.random.random([3, 32]).astype(np.float32)
elif dims == 3:
return np.random.random([3, 32, 32]).astype(np.float32)
else:
return np.random.random([batch, 3, 32, 32]).astype(np.float32)
for dims in [2, 3, 4, 5]:
for batch in [1]:
for k in [1, 3]:
self.dims = dims
dics = [{"k": k}]
ops_config = [{
"op_type": "top_k",
"op_inputs": {
"X": ["input_data"]
},
"op_outputs": {
"Out": ["output_data"],
"Indices": ["indices_data"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data":
TensorConfig(data_gen=partial(
generate_input1, dims, batch, dics))
},
outputs=["output_data", "indices_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 1:
self.dynamic_shape.min_input_shape = {"input_data": [1]}
self.dynamic_shape.max_input_shape = {"input_data": [64]}
self.dynamic_shape.opt_input_shape = {"input_data": [32]}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {"input_data": [1, 16]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 32]}
self.dynamic_shape.opt_input_shape = {"input_data": [3, 32]}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {"input_data": [1, 16, 16]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 32, 32]}
self.dynamic_shape.opt_input_shape = {"input_data": [3, 32, 32]}
else:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 3, 16, 16]
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 3, 32, 32]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [1, 3, 32, 32]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
if self.dims == 1:
return 0, 4
return 1, 3
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
## for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), 1e-5
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import unittest
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertActivationTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
if len(inputs['input_data'].shape) <= attrs[0]['axis']:
return False
return True
def sample_program_configs(self):
self.trt_param.workspace_size = 1073741824
def generate_input1(dims, batch, attrs: List[Dict[str, Any]]):
if dims == 1:
return np.random.random([3]).astype(np.float32)
elif dims == 2:
return np.random.random([3, 32]).astype(np.float32)
elif dims == 3:
return np.random.random([3, 32, 32]).astype(np.float32)
else:
return np.random.random([batch, 32, 32, 32]).astype(np.float32)
for dims in [1, 2, 3, 4]:
for batch in [1, 4]:
for k in [1, 3]:
for axis in [-1, 1, 2, 3]:
for largest in [True, False]:
for sort in [True, False]:
self.dims = dims
self.sort = sort
dics = [{
"k": k,
"axis": axis,
"largest": largest,
"sorted": sort
}]
ops_config = [{
"op_type": "top_k_v2",
"op_inputs": {
"X": ["input_data"]
},
"op_outputs": {
"Out": ["output_data"],
"Indices": ["indices_data"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data":
TensorConfig(data_gen=partial(
generate_input1, dims, batch, dics))
},
outputs=["output_data", "indices_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 1:
self.dynamic_shape.min_input_shape = {"input_data": [1]}
self.dynamic_shape.max_input_shape = {"input_data": [64]}
self.dynamic_shape.opt_input_shape = {"input_data": [32]}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {"input_data": [1, 1]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 64]}
self.dynamic_shape.opt_input_shape = {"input_data": [3, 10]}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {"input_data": [1, 1, 1]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 64, 64]}
self.dynamic_shape.opt_input_shape = {"input_data": [3, 10, 10]}
else:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 3, 16, 16]
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 32, 32, 32]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [1, 3, 32, 32]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
if self.dims == 1:
return 0, 4
if self.sort == False:
return 0, 4
return 1, 3
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), 1e-5
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册